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Given a full rank system of linear ordinary differential equations of
arbitrary order, we examine the change in the dimension of its solution
space due to differentiation of one of its equations.

Scalar case L(y) = 0:
(L(y))′ = 0

The new equation has some extra solutions, if, e.g., the differential field K
of coefficients of equations and the “functional” space Λ where we
consider the solutions of equations are such that any equation of order
n ≥ 0 has the solution space of dimension n.

Case of a system?
The solution space of the original system is the intersection of the solution
spaces of all equations of the system. The fact that the solution space of
one of equations became larger does not imply that the mentioned
intersection became larger as well.
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Matn(R), In, MT

Let
(K, ∂)

( ∂ =′) be a differential field of characteristic 0 with an algebraically
closed constant field

Const(K) = {c ∈ K | ∂c = 0}.

We denote by Λ a fixed universal differential extension field of K (Singer,
van der Put).
This is a differential extension Λ of K with

Const(Λ) = Const(K)

such that any differential system

y ′ = Ay , (1)

with A ∈ Matn(K) has a solution space of dimension n over constants.
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If, e.g., K is a subfield of the field C((x)) of formal Laurent series with
complex coefficients with ∂ = d

dx then we can consider Λ as the quotient
field of the ring generated by expressions of the form

eP(x)xγ(ψ0 + ψ1 log x + · · ·+ ψs(log x)s), (2)

where in any such an expression

P(x) is a polynomial in x−1/p, where p is a positive integer,

γ ∈ C,

s is a non-negative integer and ψi ∈ C[[x1/p]], i = 0, 1, . . . , s.
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Besides first-order systems of the form (1) we will consider differential
systems of order r ≥ 1 which have the form

Ar y (r) + Ar−1y (r−1) + · · ·+ A0y = 0. (3)

The coefficient matrices
A0,A1, . . . ,Ar (4)

belong to Matm(K), and Ar (the leading matrix of the system) is non-zero.

S. Abramov, M. Barkatou On the dimension of solution spaces of systems 5/17



If Ar is invertible in Matm(K) then the system (3) is equivalent to the first
order system having mr equations:

Y ′ = AY , (5)

with

A =


0 Im . . . 0
. . . . . . . . . . . .
0 0 . . . Im

Â0 Â1 . . . Âr−1

 , (6)

where Âk = −A−1
r Ak , k = 0, 1, . . . , r − 1, and

Y =
(

y1 . . . , ym, y ′1 . . . , y
′
m, . . . , y

(r−1)
1 , . . . , y

(r−1)
m

)T
. (7)

Therefore if the leading matrix of the system (3) is invertible then the
dimension of the solution space of this system is equal to mr .
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System (3) can be also written as a system of m scalar linear equations

L1(y1, . . . , ym) = 0, . . . , Lm(y1, . . . , ym) = 0. (8)

When a system is represented in the form (8) we can rewrite it in the form
(3) and vice versa. The matrix Ar is the leading matrix of the system
regardless of the representation form.

We suppose that the system is of full rank, i.e., that equations (8) are
independent over K [∂].
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Theorem 1

Let a system of the form (8) be of full rank. Let the system

L1(y1, . . . , ym) = 0, . . . , Lm−1(y1, . . . , ym) = 0, L̃m(y1, . . . , ym) = 0,
(9)

be such that its first m − 1 equations are as in the system (8) while the
m-th equation is the result of differentiation of the m-th equation of (8)
(thus the equation L̃m(y1, . . . , ym) = 0 is equivalent to the equation
(Lm(y1, . . . , ym))′ = 0). Then the dimension of the solution space of (9)
exceeds by 1 the dimension of the solution space of (8).
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Invertible leading matrix case

L1(y1, . . . , ym) = 0, . . . , Lm−1(y1, . . . , ym) = 0,

Lm(y1, . . . , ym) = z , z ′ = 0. (10)

Y ′ = AY

System (10) is equivalent to the system Ỹ ′ = ÃỸ where

Ã =


0

A
...
0
1

0 . . . 0 0 0


The dimension of the solution space of Ỹ ′ = ÃỸ is equal to mr + 1, while
the dimension of the solution space of Y ′ = AY is equal to mr .
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General case
System (3) can be written as L(y) = 0 where

L = Ar∂
r + Ar−1∂

r−1 + · · ·+ A0 ∈ Dm. (11)

Denote the ring Matm(K) [∂] by Dm.

It can be proved that if L is a full rank operator of the form (11) then
there exists N ∈ Dm such that the leading matrix of LN is invertible. (In
addition, N can be taken such that LN is of order r .)

Set

D =


0 . . . 0 0
...

. . .
...

...
0 . . . 0 0
0 . . . 0 1

 ∂ +


1 . . . 0 0
...

. . .
...

...
0 . . . 1 0
0 . . . 0 0

 , (12)

D ∈ Dm (“the differentiation of the m-th equation”).
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The dimension of the solution space of the system

DLN(y) = 0 (13)

is bigger than the dimension of the solution space of the system

LN(y) = 0. (14)

This implies that there exists ϕ ∈ Λm such that

N(ϕ) (15)

is a solution of the system
DL(y) = 0 (16)

but is not a solution of L(y) = 0.
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An application: Dimension of the solution space of a given full rank
system

We use the notation
[M]i ,∗ , 1 ≤ i ≤ m, (17)

for the (1×m)-matrix which is the i-th row of an (m ×m)-matrix M.

Let a full rank operator L ∈ Dm be of form

L = Ar∂
r + Ar−1∂

r−1 + · · ·+ A0 ∈ Dm. (18)

If 1 ≤ i ≤ m then define αi (L) as the maximal integer k , 1 ≤ k ≤ r , such
that [Ak(x)]i ,∗ is a nonzero row.

The matrix M(x) ∈ Matm(K) such that

[M(x)]i ,∗ = [Aαi (L)]i ,∗, i = 1, 2, . . . ,m, (19)

is the row frontal matrix of L.
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Example

L =

 1 0 0
0 0 0
0 0 0

 ∂3 +

 0 2 0
1 x 0
0 0 0

 ∂2+

 0 0 0
0 0 0
1 x 0

 ∂ +

 x 0 x2 + x
0 0 2x2 + 1
0 0 1

 . (20)

The row frontal matrix is:  1 0 0
1 x 0
1 x 0

 (21)

(this matrix is not invertible).
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Theorem 2

Let the row frontal matrix of a full rank system L(y) = 0, L ∈ Dm, be
invertible. Then the dimension of the solution space of this system is
α1(L) + α2(L) + · · ·+ αm(L).

It follows directly from Theorem 1: when we differentiate r − α1(L) times
the i-th equation of the given system, i = 1, 2, . . . ,m, we increase the
dimension of the solution space by

mr − (α1(L) + α2(L) + · · ·+ αm(L)), (22)

and the received full rank system has the leading matrix which coincides
with the row frontal matrix of the original system, therefore the obtained
system has an invertible leading matrix and the dimension of its solution
space is equal to mr .
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An algorithm for transforming a given full rank system to an equivalent
system having an invertible row frontal matrix was proposed by
M.A. Barkatou, C. El Bacha, G. Labahn and E. Pflügel. Using this
algorithm we can find an equivalent operator for operator (20):

L̄ =

 1 0 0
0 0 0
0 0 0

 ∂3 +

 0 2 0
0 0 0
0 0 0

 ∂2+

 0 0 0
0 −1 −1
1 x 0

 ∂ +

 x 0 x2 + x
0 0 2x2 + 1
0 0 1

 . (23)

The row frontal matrix is invertible, and

α1(L̄) = 3, α2(L̄) = 1, α3(L̄) = 1. (24)

By Theorem 2 the dimension of the solution space of L̄(y) = 0 is
3 + 1 + 1 = 5. The same holds for L(y) = 0.
Remark. The algorithm is correct when the field K is constructive, in
particular that the zero testing problem in K is decidable.
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A universal differential extension of K is not unique, and we can consider
the solution space of a system only after fixing such an extension. But due
to Theorem 2 it is no matter which universal extension is fixed when we
consider the dimension of the solution space.
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One more application: Proving algorithms termination

The idea is the following. Regardless of the fact that solutions belonging
to a universal differential extensions are not possibly of our interest, each
differentiation of one of equations increases the dimension of the solution
space. Suppose that each step of an algorithm makes some equivalent
transformation of the system and differentiates an equation after this, and
that the order of the system and the number of equations do not grow up,
then the number of such steps is bounded by rm.

Using this approach we propose an improved version of EGδ algorithm by
S.Abramov and D.Khmelnov, which transforms step-by-step a given full
rank system into an appropriate form.
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