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New method: HoCaT method

* We build on our previous work already presented in
CASC 2012: “Computing Hopf Bifurcations in Chemical Reaction
Networks Using Reaction Coordinates”.

* The new method ,HoCaT":

» extends the previous algorithmic approach ,HoCoQ".

» uses a simplified condition for Hopf bifurcation.

> is based on tropical geometry.
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Previous Work: HoCoQ method

* The previous method ,,HoCoQ":

» combines the ideas of stoichiometric network analysis
(SNA) and quantifier elimination.

» allows also the analysis of chemical systems with linear
constraint.

» uses the semi algebraic condition for Hopf bifurcation:

Jr(fi(uw,z) =0A folu,z)=0A A folu,z) =0 A

ap > 0A Ap_t(u,z) =0A Apoafu,z) >0A - A dy(u,z) > 0),
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Previous Work: HoCoQ method
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Previous Work: Results

e Using HoCoQ method we could compute Hopf
bifurcation in chemical reaction systems, for which the
existing symbolic methods fails.

* The criteria for determining Hopf bifurcation involving
equality and inequality conditions still turned out to be
hard problems for general real quantifier elimination
procedures even for moderate dimensions.
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The new method HoCaT: simplified condition for Hopf bifurcation

e By dropping condition of empty unstable manifold
computational problem becomes easier.

e Criterion: pair of pure imaginary eigenvalues of
Jacobian; dropping that all others have negative real
part.

Criterion is a consequence from (Orlando, 1911); see also
(Liu, 1994) or (El Kahoui and Weber, 2000), ... for alternate
proofs and generalized criteria for n-pairs of pure imaginary

eigenvalues.

e |Nn convex coordinates this leads to a dramatic
simplification of the problem.
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HoCaT method: condition of pair of pure imaginary eigenvalues

e The new condition for the existence of Hopf bifurcations
Is given by A,,_1(j.2) = 0 only.

e Solving such single equations enables us to refrain
from utilizing quantifier elimination techniques.

e |Instead, the main algorithmic problem is to determine
whether a single multivariate polynomial has a zero for
positive coordinates.
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HoCaT method: Sufficient Conditions for a Positive Solution of a Single
Multivariate Polynomial Equation

e Given f € Z|x1.....x,,]|, our goal is to heuristically
certify the existence of at least one zero
(Z1. ..., 2m) € 10, o[ for which all coordinates are
strictly positive.

 To start with, we evaluate f([L.....1) = f1 e R. If
f1 =0, then we are done.

e If fi <0, then by the intermediate value theorem, it is
sufficient to find p € 10, oo[™ such that f(p) > 0.

e Similarly, if fi > 0itis sufficient to find p € |0, cc[™ such
that (—f)(p) > 0.
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HoCaT method: Sufficient Conditions for a Positive Solution of a Single
Multivariate Polynomial Equation

e This algorithmically reduces our original problem to
finding, for given g € Z|x1.....x,,], at least one
p € 10, 00" such that g(p) = f2 > 0.

e We have implemented a heuristics on the basis of the
Newton polytope that ensure the existence of positive
and negative values of the polynomial for positive
coordinates.

e Requires linear programming on the Newton polytope
of the single multivariate polynomial.
The implementation (by. T. Sturm) has been made
available in REDLOG with external calls to Gurobi.
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HoCaT method:
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HoCaT vs HoCoQ: computation of Hopf bifurcations in the phosphofructokinase

reaction using HoCaT method

Subsystem Result Time
Eq unsat = 1
Eo unsat — 1
Ea unsat = 1
E4 sat = 1
E1E5 unsat = 1
E1E3 unsat — 1
E1E4 sat = 1
EoE3 unsat = 1
EE,4 sat < 1
E3&E 4 sat = 1
E1E>E3 unsat = 1
51 52 54 sat = 1
51 Ea 54 sat < 1
ESE3E, sat = 1
E1EE3E, sat = 1
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HoCaT vs HoCoQ: Computation of Hopf bifurcations in the phosphofructokinase
reaction using HoCoQ method

Subsystem Redlog 23

- Result | Time(s) Result Time(s)
Eq false <1 unsat < 1
Eo false < 1 unsat <1
Ea false < 1 unsat <1
E true <1 sat < 1
E1E5 false <1 unsat < 1
E1E3 false < 1 unsat <1
E1&E4 true <1 sat < 1
Ea&E3 false <1 unsat <1
Ea&Ey true <1 sat <1
E3&E, true <1 sat < 1
E1E2E3 false <1 unsat < 1
E1EE, true < 1 sat < 1
E1E3E, true 1 sat < 1
EE3E, true 2.5 sat <1
E1E2E3E, true 6 no result | = 10000
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Computing Hopf bifurcation in Methylene Blue Oscillator System:

MB* + HS—

H-O + MB + HS—
HS + OH + MB™
H-0O + 2MB

HS™ + O»

HS + O +~ OH™
H>O + HS™ + O35
OS5 + HS

H->0O, + 2HS

MB + O

HS + MB + H>0->
OH— + 2HS

MB + HS

H-O + MBH + O35

— MB + HS

— MBH + HS + OH™
— MB + S 4+ H>O

—— MB'" +~ MBH +~ OH ™
— HS + O5

— O, +S + H20

—+— HOS + HS +~ OH™
— HO,; + S

— 2HS + 20H™

— MB* + O3

—— MB*" + HS + 20H
— HS™ + S + H-0
—— MBH + S

— MB + H>0O5 + OH ™
— O>
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Computing Hopf bifurcation in Methylene Blue Oscillator System:

* The MBO reaction system contains 15 reactions and 11

species (not counting water)
O2, O5, HS, MB*, MB, MBH, HS—, OH, S, H,O5 and HO; .

* It may be reduced to a six dimensional system by
considering only the essential species:

O,, O5, HS, MB+, MB and MBH.

* The flux cone of this model is spanned by 31 extreme
currents
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Computing Hopf bifurcation in Methylene Blue Oscillator System using HoCoQ;

We tried to compute Hopf bifurcation in all subsystems
involving 2-faces and 3-faces using our original approach
HoCoQ, but the generated quantified formulae could not
be solved by quantifier elimination, even with main

memory up to 500 GB and computation times up to one
week.
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Computing Hopf bifurcation in Methylene Blue Oscillator System using HoCaT
method:

* Using HoCaT method we could find Hopf bifurcation in
30% of the cases involving 2- faces.

* For 67% of the cases it could be excluded that the
resulting polynomial has a zero.

* In only 3% of the cases no definite answer could be
obtained.
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Thank you for your attention !
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Algorithm 3: Computing Hopf Bifurcations in Chemical Reaction Net-
works Using Reaction Coordinates

Input: A chemical reaction network N with dim(AN) = n.

Output: (L,. L. L,) as follows: L, 1s a list of subsystems containing a Hopf
bifurcation, L ¢ 1s a list of subsystems 1in which i1ts occurrence is
excluded, and L. 1s a list of subsystems for which the incomplete
sub-procedure pzerop fails.

1 begin
2 Le =0
3 Lf =0
a L.,.=20
s generate the stoichiometric matrix & and the kinetic matrix A of A/
6 compute the minimal set £ of the vectors generating the flux cone
T ford=1...n do
s L compute all d-faces (subsystems) {A}. of the flux cone
o for each subsystern N: do
10 compute from K, S the transformed Jacobian Jac; of A in terms of
convex coordinates j;
11 if Jac: is singular then
12 L compute the reduced manifold of Jac: calling the result also Jac;
13 compute the characteristic polynomial x; of Jac;
14 compute the (n — 1)*™ Hurwitz determinant A,, ;1 of x;
15 compute F; := pzerop(A._—1(7.x)) using Algorithm 1
16 if F, = 1 or F; is of the form (7, v) then
17 | Le:=L.u {N:}
18 else if ;. = + or F;, = — then
19 L Lyg:= Ly {N:}
20 else if 7, — | then
21 | Lu:=L.u{A:}
22 return (L, Ly L.)
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Algorithm 1: pzerop
Input: f € Z[xy. ..., 7.5.]

Output: One of the following:

(A) 1. which means that f(1....,1) = 0.

(B) (7.v). where v = (p, f(p)) and @™ = (q. f(g)) for p. g € 10, co[™, which means that
f(p) <0 < f(g). Then there is a zero on |0, co[™ by the intermediate value
theorem.

(C) +. which means that f has been identified as positive definite on 0, oo[™. Then
there is no zero on |0, oc[™.

(D) —., which means that f has been identified as negative definite on ]0, oco[™. Then
there is no zero on |0, occ[™.

(E) L. which means that this incomplete procedure failed.

1 begin

2 n=J{1,...,1)

3 if f1 — 0 then

a4 |_ return 1

5 else if f;, <= 0 then

L w 1= pzerop(f)

7 vi=((1....,1). f1)
s if mre {1.—} then
o L return

10 else

11 | return (v, x)
12 else

13 wmi=((1,....1). f1)
14 v := pzeropi(—f)
15 if " — | then

168 L return [

17 else if v — — then
18 L return —+

19 else
20 (p. f(p)) =
21 v:= (p. —f(p))
22 return (v, 7)




Algorithm 2: pzerop,
Input: g € Z[zy,...,x,,]

Output: One of the following:

(A) m=(g,9(q)), where g € ]0,00[™ with 0 < g(q).

(B) —. which means that g has been identified as negative definite on 0, 0o[™. Then
there 1s no zero on ]0, co[™.

(C) L. which means that this incomplete procedure failed.

1 begin
2 F' :={d € frame(g) | sgn(d) =1}
3 if F* =0 then
4 |_ return —
5 foreach (di,....d.n) € F7 do
6 L:={dini+---+dnn, —c=0}
7 foreach (e;.....¢e,,) € frame(g) \ F' do
~ I_L:=LU{exn1+---+emnm—cg—l}
9 if L is feasible with solution (n1,...,nm.c) € Q™! then
10 n := the principal denominator of ny, ..., n,,
11 (Ny,...,N,,) = (nnyg,....nn,, ) € Z™
12 g = glz1 « WV Tm wN"‘] € Z(w)
13 assert lc(g) > 0 when using non-exact arithmetic in the LP solver
14 k:=min{keN|g?2*) >0}
15 return ((28V1, ..., 2FVm) 5(2F))
16 return |
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