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Tropical semi-ring
Tropical semi-ring T is endowed with operations ⊕, ⊗.
If T is an ordered semi-group then T is a tropical semi-ring with
inherited operations ⊕ := min, ⊗ := +.
If T is an ordered (resp. abelian) group then T is a tropical
semi-skew-field (resp. tropical semi-field) w.r.t. � := −.
Examples • Z+ := {0 ≤ a ∈ Z}, Z+

∞ := Z+ ∪ {∞} are commutative
tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1;
• Z, Z∞ are semi-fields;
• n × n matrices over Z∞ form a non-commutative tropical semi-ring:
(aij)⊗ (bkl) := (⊕1≤j≤naij ⊗ bjl).

Tropical polynomials

Tropical monomial x⊗i := x ⊗ · · · ⊗ x , Q = a⊗ x⊗i1
1 ⊗ · · · ⊗ x⊗in

n , its
tropical degree trdeg = i1 + · · ·+ in. Then Q = a + i1 · x1 + · · ·+ in · xn.
Tropical polynomial f =

⊕
j(aj ⊗ x ij1

1 ⊗ · · · ⊗ x ijn
n ) = minj{Qj};

x = (x1, . . . , xn) is a tropical zero of f if minimum minj{Qj} is attained
for at least two different values of j .
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Historical sources of the tropical algebra
Logarithmic scaling of the reals (mathematical physics)
Define two operations on positive reals, replacing addition and
multiplication:
a,b → t · log(exp(a/t) + exp(b/t)), limt→0 = max{a,b}
a,b → t · log(exp(a/t) · exp(b/t)) = a + b
Thus, the ”dequantization” of the logarithmic scaling is a tropical
semi-ring

Solving systems of polynomial equations in Puiseux series
(algebraic geometry)
The field of Puiseux series
F ((t1/∞)) 3 a0 · t i/q + a1 · t(i+1)/q + · · · , 0 < q ∈ Z over an
algebraically closed field F is algebraically closed. In the (Newton)
algorithm for solving a system of polynomial equations
fi(X1, . . . ,Xn) = 0, 1 ≤ i ≤ k with fi ∈ F ((t1/∞))[X1, . . . ,Xn] in Puiseux
series the leading exponents ij/qj in Xj = a0j · t ij/qj + · · · satisfy a
tropical polynomial system (due to cancelation of the leading terms).
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Minimal weights of paths in a graph (computer science)
For a graph with weights wij on edges (i , j) for any k to compute for
each pair of vertices i , j the minimal weight of paths between i and j .
This is equivalent to computing the tropical k -th power of matrix (wij).

Scheduling
Let several jobs i should be executed by means of several machines j
with times of execution tij . The restrictions like that job i0 should be
executed after job i are imposed. Denoting by unknown xij a starting
moment of execution of i by j , the latter restriction is expressed as
xi0,j0 ≥ minj{xij + tij}. Another sort of restrictions is that a machine
can’t execute two jobs simultaneously, i. e. xi1,j ≥ xij + tij . It leads to a
system of min-plus linear inequalities, the problem being equivalent to
tropical linear systems.
This approach is employed in scheduling of Dutch and Korean
railways.
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Tropical linear systems
If T is an ordered semi-group then tropical linear function over T can
be written as min1≤i≤n{ai + xi}.

Tropical linear system

min
1≤j≤n

{ai,j + xj}, 1 ≤ i ≤ m

(or (m × n)-matrix A = (ai,j)) has a tropical solution x = (x1 . . . , xn) if
for every row 1 ≤ i ≤ m there are two columns 1 ≤ k < l ≤ n such that

ai,k + xk = ai,l + xl = min
1≤j≤n

{ai,j + xj}

Coefficients ai,j ∈ Z∞ := Z ∪ {∞}. Not all xj =∞. For ai,j ∈ Z we
assume 0 ≤ ai,j ≤ M.

n × n matrix (ai,j) is tropically non-singular if
minπ∈Sn{a1,π(1) + · · ·+ an,π(n)} is attained for a unique permutation π
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Complexity of solving tropical linear systems
Theorem
One can solve an m × n tropical linear system A within complexity
polynomial in n,m,M. (Akian-Gaubert-Guterman; G.)
Moreover, the algorithm either finds a solution over Z∞ or produces an
n × n tropically nonsingular submatrix of A.

Corollary
The problem of solvability of tropical linear systems is in the complexity
class NP ∩ coNP.

Remark
• My algorithm has also a complexity bound polynomial in 2nm, log M
(as well as an obvious algorithm which invokes linear programming);
• Davydov: an example of A with M � 2n � 2m for which my algorithm
runs with exponential complexity Ω(M);
• Podol’ski: an example of A with m = 2, n = 3 for which the algorithm
of Akian-Gaubert-Guterman runs with exponential complexity Ω(M).
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Tropical and Kapranov ranks
Tropical rank trk(A) of matrix A is the maximal size of its tropically
nonsingular square submatrices.
A lifting of A is a matrix F = (fi,j) over the field of Newton-Puiseux
series K = R((t1/∞)) for a field R such that the order ordt (fi,j) = ai,j
where fi,j = b1 · tq1 + b2 · tq2 + · · · with rational exponents
ai,j = q1 < q2 < · · · having common denominator, or fi,j = 0 when
ai,j =∞.
Kapranov rank KrkR(A) = minimum of ranks (over K ) of liftings of A.
trk(A) ≤ KrkR(A) and not always equal (Develin-Santos-Sturmfels)

Complexity of computing ranks
• For n × n matrix B testing trk(B) = n (⇔ B is tropically nonsingular)
has polynomial complexity (Butkovic-Hevery);
• trk(A) = r is NP-hard, trk(A) ≥ r is NP-complete (Kim-Roush);
• Solvability of polynomial equations over R is reducible to
KrkR(A) = 3 (Kim-Roush).
Example R = Q or R = GF [p](t).
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Barvinok rank
Brk(A) is the minimal q such that A = (u1 ⊗ v1)⊕ · · · ⊕ (uq ⊗ vq) for
suitable vectors u1, . . . , vq over T

KrkR(A) ≤ Brk(A) and the equality is not always true
(Develin-Santos-Sturmfels)

Computing Barvinok rank is NP-hard (Kim-Roush)
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Solvability of a tropical linear system and rank(s)
The theorem on complexity of solving tropical linear systems implies

Corollary
The following statements are equivalent

1) a tropical linear system with m × n matrix A has a solution;

2) trk(A) < n;

3) KrkR(A) < n.

Remark
• The corollary holds for matrices over R∞.

• For matrices A with finite coefficients from R it was proved by
Develin-Santos-Sturmfels.

• Equivalence of 1) and 2) was established by Izhakian-Rowen.
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Computing dimension of a tropical system

Proposition
One can test uniqueness (in the tropical projective space) of a solution
of a tropical linear system (i. e. whether the dimension of a tropical
linear space equals 0) within complexity polynomial in n,m,M.

Theorem
Computing the dimension of a tropical linear space (being a union of
polyhedra) is NP-complete (G.-Podol’ski)

Proposition
One can test solvability of a tropical nonhomogeneous linear system
min1≤j≤n{ai,j + xj ,ai}, 1 ≤ i ≤ m
within complexity (n ·m ·M)O(1).
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Testing equivalence of tropical linear systems

Two tropical linear systems are equivalent if their spaces of solutions
coincide.

Theorem

One can reduce within polynomial, so (n ·m · log M)O(1) complexity
testing equivalence of a pair of tropical linear systems to solving
tropical linear systems. ( G.-Podol’ski using Allamigeon-Gaubert-Katz)
The inverse reduction is evident.
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Min-plus linear systems
Min-plus linear system has a form

min
1≤j≤n

{ai,j + xj} = min
1≤j≤n

{bi,j + xj}, 1 ≤ i ≤ m

Theorem
One can test solvability of a min-plus linear system within complexity
polynomial in M, n, m. If the system is solvable the algorithm yields its
solution (Butkovic-Zimmermann).

Two min-plus linear systems are equivalent if they have the same sets
of solutions.

Theorem
Complexities of the following 4 problems coincide up to a polynomial:
solvability, equivalence of min-plus and of tropical linear systems
(G.-Podol’ski using Allamigeon-Gaubert-Katz).

(a part of this theorem answers a question of V.Voevodsky)
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Min-atom problem and mean payoff games
Min-atom problem is a system of inequalities of the form
min{x , y}+ c ≤ z, c ∈ Z (min-plus linear programming).

Mean payoff games
A bipartite graph (V , W , E) with integer weights aij on edges eij ∈ E is
given. Two players in turn move a token between nodes V ∪W of the
graph. The first player moves from a (current) node i ∈ V to a node
j ∈W (respectively, the second player moves from W to V ). Weight aij
is assigned to this move. Mean sum of assigned weights after k moves
is computed: (

∑
aij)/k .

If lim infk→∞(
∑

aij)/k > 0 then the first player wins. The problem of
mean payoff games is whether the first player has a winning strategy?

Theorem
The following 4 problems are equivalent: mean payoff games,
min-atom, min-plus linear systems and tropical linear systems
(Bezem-Nieuwenhuis-Rodriguez-Carbonell,
Akian-Gaubert-Guterman).
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Tropical and min-plus polynomial systems

Theorem
Solvability of tropical polynomial systems is NP-complete (Theobald)

Theorem
Solvability of min-plus polynomial systems fi = 0, 1 ≤ i ≤ m where fi
are min-plus polynomials, is NP-complete (G.-Shpilrain).

How to reduce tropical polynomial systems to tropical linear ones?
In the classical algebra for this aim serves Nullstellensatz.
In the tropical world the direct version of Nullstellensatz is false even
for linear univariate polynomials: X ⊕ 0, X ⊕ 1 do not have a tropical
solution, while their (tropical) ideal does not contain 0 or any other
monomial (tropical monomials are the only polynomials without tropical
zeroes).
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”Dual” (classical) Nullstellensatz
For polynomials g1, . . . ,gs ∈ C[X1, . . . ,Xk ] consider an infinite Cayley
matrix C with the columns indexed by monomials X I and the rows by
shifts X J · gi

Nullstellensatz: system g1 = · · · = gs = 0 has no solution iff a linear
combination of the rows of a suitable finite submatrix C0 of C
(generated by a set of rows of C) equals vector (1,0, . . . ,0).
Effective Nullstellensatz: bound on the size of C0 via k and deg(gi).

Dual Nullstellensatz: g1 = · · · = gs = 0 has a solution iff for any finite
submatrix C0 of C linear system C0 · (y0, . . . , yN) = 0 has a solution
with y0 6= 0.
Infinite dual Nullstellensatz: g1 = · · · = gs = 0 has a solution iff
infinite linear system C · (y0, . . . ) = 0 has a solution with y0 6= 0.

Remark
Nullstellensatz deals with ideal 〈g1, . . . ,gs〉, while dual Nullstellensatz
forgets the ideal, therefore, gives a hope to hold in the tropical setting
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Tropical dual effective Nullstellensatz
Assume w.l.o.g. that for tropical polynomials h =

⊕
J(aJ ⊗ X⊗J) in k

variables which we consider, function J → aJ is concave on Rk . This
assumption does not change tropical varieties.
For tropical polynomials h1, . . . ,hs consider (infinite in all 4 directions)
Cayley matrix H with the rows indexed by X⊗I ⊗hi for I ∈ Zk , 1 ≤ i ≤ s.

Theorem
Tropical polynomials h1, . . . ,hs have a solution iff tropical linear system
H0 ⊗ (z0, . . . , zN) has a solution with z0 6=∞ where H0 is (finite)
submatrix of H generated by its rows X⊗I ⊗ hi for
0 ≤ |I| ≤ (k + 2) · (trdeg(h1) + · · ·+ trdeg(hs)), 1 ≤ i ≤ s. (G.-Podolskii)
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(Convex)-geometrical rephrasing of the tropical
dual Nullstellensatz
For a tropical polynomial h =

⊕
J(aJ ⊗ X⊗J) consider its extended

Newton polyhedron G being the convex hull of the graph
{(J,a) : a ≤ −aJ} ⊂ Rk+1. As vertices of G consider all the points of
the form (I, c), I ∈ Zk on the boundary of G. Let Gi correspond to
hi , 1 ≤ i ≤ s. Denote by G(I) := G + (I,0) a horizontal shift of G.
Solution Y := {(J, yJ)} ⊂ Rk+1 of a tropical linear system H ⊗ Y treat
also as a graph on Rk .

The tropical dual (infinite) Nullstellensatz is equivalent to the following.

For any I, i take the maximal b := bI,i such that a vertical shift
G(I)

i + (0,b) ≤ Y (pointwise as graphs).
Assume that G(I)

i + (0,b) has at least two common points with Y .
Then there is a hyperplane in Rk+1 (not containing the vertical line)
which supports (after a parallel shift) each Gi , 1 ≤ i ≤ s at least at two
points.
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Dual effective Nullstellensatz for min-plus
equations
Let a system of non-linear min-plus equations be given

fi(X1, . . . ,Xk ) = gi(X1, . . . ,Xk ), 1 ≤ i ≤ s (1)

where fi , gi are min-plus polynomials.
Consider an (infinite) Cayley matrix B with 2 sets of columns both
corresponding to X⊗I with entries in the row J, i being coefficients in
the expansion of X⊗J ⊗ fi and of X⊗J ⊗ gi in two sets, correspondingly.
BN denotes a finite submatrix of B spanned by |J| ≤ N.

Theorem
System (1) has a solution iff min-plus linear system with matrix
BN , N ≤ (k + 2) · (trdeg(f1) + · · ·+ trdeg(fs) + trdeg(g1) + · · ·+ trdeg(gs))
has a solution (G.-Podolskii).

Question. Is it possible to get rid of factor k + 2?
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Algorithm for solving tropical linear systems:
finite coefficients
First assume that the coefficients of a tropical linear system A = (ai,j)
are finite: 0 ≤ ai,j ≤ M, 1 ≤ i ≤ n, 1 ≤ j ≤ m.
Induction on m. Suppose that (tropical) vector x := (x1, . . . , xn) fulfils
m − 1 equations (except, perhaps, the first one).

The algorithm modifies x and either produces a solution of A or finds
n × n tropically nonsingular submatrix of A (in the latter case A has no
solution).
After each step of modification a vector is produced (we keep for it the
same notation x) such that it still fulfils m − 1 equations, and m × n
matrix B := (ai,j + xj) (after suitable permutations of rows and
columns) has a form below.

If ai,j + xj = min1≤l≤n{ai,l + xl} mark entry i , j with ∗. The first row
contains a single ∗ (otherwise, x is a solution of A and every other row
contains at least two ∗.
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Continuation: producing a candidate for solution

B =

 B1 B2
B3 B4
B5 B6


• a square matrix B1 contains ∗ on the diagonal and no ∗ above the
diagonal. Hence B1 is tropically nonsingular.
• B2, B4 contain no ∗.
• Each row of B3 and of B6 contains at least two ∗.
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(b, . . . ,b,0, . . . ,0) for integer b = maxi{ai,j + xj − ai,l − xl} where j
runs right columns, l runs left columns, i runs rows from matrices
(B1 B2) and (B3 B4).
The modified vector (keeping for it the notation x) still fulfils m − 1
equations and b ≥ 1.

If the first row of the modified matrix B contains at least two ∗, x is a
solution of A.
Otherwise, bring modified matrix B to a similar form as follows.
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Termination of the algorithm
Construct recursively a set L of the left columns by augmenting. As a
base of recursion the first column belongs to L.
For current L if there exists a row with single ∗ in a column off L, join
this column to L. These rows and columns form matrix B1.

If L coincides with the set of all the columns then B1 is n × n tropically
nonsingular submatrix of B and therefore, A has no solution. This
completes the description of the algorithm.

Tropical norm and complexity bound
To estimate the number of steps of the algorithm define a tropical norm
of a vector (in the tropical projective space) (y1, . . . , yn) as∑

1≤i≤n

(yi − min
1≤j≤n

{yj}).

After every modification step the tropical norm of vector
(a1,1 + x1, . . . ,a1,n + xn) (corresponding to the first row) drops.
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Solving tropical linear systems over Z∞
For the inductive (again on m) hypothesis assume that (m − 1)× n
matrix A′ (obtained from A by removing its first row) has a block form
(after permuting its rows and columns)

A1,1 ∞ · · · ∞ ∞
A2,1 A2,2 · · · ∞ ∞
· · · · · · · · · · · · · · ·

At−1,1 At−1,2 · · · At−1,t−1 ∞
At ,1 At ,2 · · · At ,t−1 At ,t


where each entry of upper-triangular blocks equals∞.

A finite vector y = (y1, . . . , yn) =: (y (1), . . . , y (t)) ∈ Zn is produced
(where y (1), . . . , y (t) is its partition corresponding to the block
structure) such that each diagonal block Ap,p, 1 ≤ p ≤ t − 1 has ∗ (with
respect to vector y (p)) everywhere on its diagonal and no ∗ above the
diagonal. Matrix Ap,p is of size up × vp with uP ≥ vp.
Vector (∞, . . . ,∞, y (t)) is a (tropical) solution of matrix A′, and y (t) is a
solution of At ,t .
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Continuation: modifying candidate for a solution

To be closer to the finite case Z extend the lowest block
At ,1 At ,2 · · · At ,t−1 At ,t of A′ by joining to it the first row of A as its first
row. The resulting extension of matrix At ,t denote by C.
Again as in the finite case assume (after a permutation of the columns)
that a single ∗ (with respect to vector y (t)) in the first row of C is
located in the first column.

The algorithm modifies vector y (t) keeping it to be a solution of At ,t and
keeping the same notation for the modified vectors.
If y (t) is a solution of C then vector (∞, . . . ,∞, y (t)) is a solution of A
and the algorithm terminates the inductive step.

In a similar way as in the finite case the algorithm recursively
constructs a set L of the left columns of C and accordingly modifies
vector y (t).
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Continuation of modifying a candidate: graph of
possibly infinite coordinates

In addition, the algorithm considers an oriented graph with the nodes
being the coordinates of vector y (t) =: (y (t)

1 , . . . , y (t)
s ) and with an edge

from node y (t)
j to y (t)

l when y (t)
j − y (t)

l ≤ M (remind that all finite
coefficients of matrix A satisfy 0 ≤ ai,j ≤ M).
Denote by S the set of nodes of the graph reachable from the first
node y (t)

1 .

Lemma
L ⊂ S and in the course of the algorithm while modifying S, the next S
is a subset of the previous one.

The algorithm modifies y (t) while L 6= S.

If L = S then (after suitable permutations of the rows and columns)
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being the coordinates of vector y (t) =: (y (t)

1 , . . . , y (t)
s ) and with an edge

from node y (t)
j to y (t)

l when y (t)
j − y (t)

l ≤ M (remind that all finite
coefficients of matrix A satisfy 0 ≤ ai,j ≤ M).
Denote by S the set of nodes of the graph reachable from the first
node y (t)

1 .

Lemma
L ⊂ S and in the course of the algorithm while modifying S, the next S
is a subset of the previous one.

The algorithm modifies y (t) while L 6= S.
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Termination of the algorithm

C =

 C1 ∞
C2 ∞
C3 C4


• L are columns of a square matrix C1;
• (tropically nonsingular) C1 contains ∗ everywhere on the diagonal
and no ∗ above it;
• each row of C2 and of C4 contains at least two ∗

This completes the inductive step of the algorithm and constructing a
new block structure of matrix A.
Vector y (t) =: (y (t), y (t+1)) (abusing the notations) and vector
(∞, . . . ,∞, y (t+1)) is a solution of A.

The algorithm terminates if either all the columns or all the rows are
exhausted. If all the columns are exhausted then A has no solution.
Otherwise, if first all the rows are exhausted then (∞, . . . ,∞, y (t+1)) is
a solution of A.
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