Computing divisors and common multiples
of quasi-linear ordinary differential equations
(jointly with F. Schwarz)

Dima Grigoriev (Lille)

CNRS

10/09/2012, Berlin

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 1/11

Factoring ordinary differential equations
Definition

Ordinary differential equation f(y(%), ... y’,y, x) = 0 is a generalized

factorof g(y(",...,y’,y,x) = 0 if any solution of the former is a
solution of the latter.

Dima Grigoriev (CNRS)

Computing divisors and common multiples 10.9.12 2/1

Factoring ordinary differential equations
Definition
Ordinary differential equation f(y(%), ... y’,y, x) = 0 is a generalized

factorof g(y(",...,y’,y,x) = 0 if any solution of the former is a
solution of the latter.

Factoring linear operators

A linear operator A= 3"o_;, a;- y\!) is a (generalized) factor of a linear
operator B=} o<, bj- yU) iff B = CA for a suitable linear operator C.

Dima Grigoriev (CNRS) Computing divisors and common multiple: 10.9.12 2/11

Factoring ordinary differential equations
Definition
Ordinary differential equation f(y(%), ... y’,y, x) = 0 is a generalized

factorof g(y(",...,y’,y,x) = 0 if any solution of the former is a
solution of the latter.

Factoring linear operators

A linear operator A= 3"o_;, a;- y\!) is a (generalized) factor of a linear
operator B=} <, bj- yU) iff B = CA for a suitable linear operator C.
Factoring of a linear operator is not unique.

Dima Grigoriev (CNRS) Computing divisors and common multiple: 10.9.12 2/11

Factoring ordinary differential equations
Definition
Ordinary differential equation f(y(%), ... y’,y, x) = 0 is a generalized

factorof g(y(",...,y’,y,x) = 0 if any solution of the former is a
solution of the latter.)

Factoring linear operators

A linear operator A = 3", @i -y is a (generalized) factor of a linear
operator B = Zogjgn b; - yU) iff B = CA for a suitable linear operator C.
Factoring of a linear operator is not unique. Thus, the problem is to
produce some factoring into irreducible factors.

Dima Grigoriev (CNRS) Computing divisors and common multiple: 10.9.12 2/11

Factoring ordinary differential equations
Definition
Ordinary differential equation f(y(%), ... y’,y, x) = 0 is a generalized

factorof g(y(",...,y’,y,x) = 0 if any solution of the former is a
solution of the latter.

Factoring linear operators

A linear operator A = 3", @i -y is a (generalized) factor of a linear
operator B = 3", b; - yV) iff B= CA for a suitable linear operator C.
Factoring of a linear operator is not unique. Thus, the problem is to
produce some factoring into irreducible factors.

e Beke-Schlesinger (1894): An algorithm for factoring linear operators
A with coefficients a; € Q(x) (triple-exponential complexity);

Dima Grigoriev (CNRS) 10.9.12 2/11

Factoring ordinary differential equations
Definition
Ordinary differential equation f(y(%), ... y’,y, x) = 0 is a generalized

factorof g(y(",...,y’,y,x) = 0 if any solution of the former is a
solution of the latter.

Factoring linear operators

A linear operator A = 3", @i -y is a (generalized) factor of a linear
operator B = 3", b; - yV) iff B= CA for a suitable linear operator C.
Factoring of a linear operator is not unique. Thus, the problem is to
produce some factoring into irreducible factors.

e Beke-Schlesinger (1894): An algorithm for factoring linear operators
A with coefficients a; € Q(x) (triple-exponential complexity);

e G. (1987): An algorithm with double-exponential complexity.

Dima Grigoriev (CNRS) 10.9.12 2/11

Factoring ordinary differential equations
Definition
Ordinary differential equation f(y(%), ... y’,y, x) = 0 is a generalized

factorof g(y(",...,y’,y,x) = 0 if any solution of the former is a
solution of the latter.

Factoring linear operators

A linear operator A= 3"o_;, a;- y\!) is a (generalized) factor of a linear
operator B = 3", b; - yV) iff B= CA for a suitable linear operator C.
Factoring of a linear operator is not unique. Thus, the problem is to
produce some factoring into irreducible factors.

e Beke-Schlesinger (1894): An algorithm for factoring linear operators
A with coefficients a; € Q(x) (triple-exponential complexity);

e G. (1987): An algorithm with double-exponential complexity.
Conjecture: the sharp bound of complexity is exponential.;

Dima Grigoriev (CNRS) 10.9.12 2/11

Factoring ordinary differential equations
Definition
Ordinary differential equation f(y(%), ... y’,y, x) = 0 is a generalized

factorof g(y(",...,y’,y,x) = 0 if any solution of the former is a
solution of the latter.

Factoring linear operators

A linear operator A = 3", @i -y is a (generalized) factor of a linear
operator B = 3", b; - yV) iff B= CA for a suitable linear operator C.
Factoring of a linear operator is not unique. Thus, the problem is to
produce some factoring into irreducible factors.

e Beke-Schlesinger (1894): An algorithm for factoring linear operators
A with coefficients a; € Q(x) (triple-exponential complexity);

e G. (1987): An algorithm with double-exponential complexity.
Conjecture: the sharp bound of complexity is exponential.;

e Tsarev (1996): An algorithm to describe the variety of all the
factorizations of an operator.

Dima Grigoriev (CNRS) 10.9.12 2/11

Quasi-linear generalized factors

The algebra of differential polynomials C{y} := C[x, y,y’,y",...]isa

module over the algebra C{ y}[%] of linear operators with coefficients
in C{y}.

Dima Grigoriev (CNRS)

Computing divisors and common multiples

10.9.12 3/11

Quasi-linear generalized factors

The algebra of differential polynomials C{y} := C[x, y,y’,y",...]isa

module over the algebra C{ y}[%] of linear operators with coefficients
in C{y}. For a differential polynomial p € C{y} and an operator
H e C{y}[Z] their action denote by H+ p € C{y}.

Dima Grigoriev (CNRS)

Computing divisors and common multiples

10.9.12 3/11

Quasi-linear generalized factors

The algebra of differential polynomials C{y} := C[x, y,y’,y",...]isa
module over the algebra C{y}[%] of linear operators with coefficients
in C{y}. For a differential polynomial p € C{y} and an operator

H e C{y}[Z] their action denote by H+ p € C{y}.

Lemma

A quasi-linear differential polynomial ykt1) — f(y(®) .y y x)is a
generalized factor of a differential polynomial p iff there exists a linear
operator H € C{y}[&] such that H + (y*+1) —f(y(), ...y y,x)) =p

Dima Grigoriev (CNRS) Computing divisors and common multiple: 10.9.12 3/11

Quasi-linear generalized factors

The algebra of differential polynomials C{y} := C[x, y,y’,y",...]isa
module over the algebra C{y}[%] of linear operators with coefficients
in C{y}. For a differential polynomial p € C{y} and an operator

H e C{y}[Z] their action denote by H+ p € C{y}.

Lemma

A quasi-linear differential polynomial y<+') — f(y(&) v/ y x)is a
generalized factor of a differential polynomial p iff there exists a linear
operator H € C{y}[L] such that H+ (y*+1) — f(y(®), ... y".y,x)) =p

Tsarev (1999), Gao-Zhang (2008) studied another concept of
decomposition of differential polynomials when in a differential
polynomial p (depending on several variables y4, ..., ym) some
differential polynomials py, ..., pm are substituted.

Dima Grigoriev (CNRS) Computing divisors and common multiple: 10.9.12 3/11

Quasi-linear generalized factors

The algebra of differential polynomials C{y} := C[x, y,y’,y",...]isa
module over the algebra C{y}[%] of linear operators with coefficients
in C{y}. For a differential polynomial p € C{y} and an operator

H e C{y}[Z] their action denote by H+ p € C{y}.

Lemma

A quasi-linear differential polynomial y<+') — f(y(&) v/ y x)is a
generalized factor of a differential polynomial p iff there exists a linear
operator H € C{y}[L] such that H+ (y*+1) — f(y(®), ... y".y,x)) =p

Tsarev (1999), Gao-Zhang (2008) studied another concept of
decomposition of differential polynomials when in a differential
polynomial p (depending on several variables y4, ..., ym) some
differential polynomials py, ..., pm are substituted. This decomposition
differs from our notion of factoring.

Dima Grigoriev (CNRS) Computing divisors and common multiple: 10.9.12 3/11

Quasi-linear generalized factors

The algebra of differential polynomials C{y} := C[x, y,y’,y",...]isa
module over the algebra C{y}[%] of linear operators with coefficients
in C{y}. For a differential polynomial p € C{y} and an operator

H e C{y}[Z] their action denote by H+ p € C{y}.

Lemma

A quasi-linear differential polynomial y<+') — f(y(&) v/ y x)is a
generalized factor of a differential polynomial p iff there exists a linear
operator H € C{y}[L] such that H+ (y*+1) — f(y(®), ... y".y,x)) =p

Tsarev (1999), Gao-Zhang (2008) studied another concept of
decomposition of differential polynomials when in a differential
polynomial p (depending on several variables y4, ..., ym) some
differential polynomials py, ..., pm are substituted. This decomposition
differs from our notion of factoring. Tsarev, Gao-Zhang have designed
algorithms to decompose differential polynomials.

Dima Grigoriev (CNRS) Computing divisors and common multiple: 10.9.12 3/11

Factoring a quasi-linear second-order equation
Theorem

1) If a first-order quasi-linear differential polynomial y' — p(y, x) is a
generalized factor of a second-order quasi-linear differential
polynomial y" — f(y', y, x) for polynomials

p(yax) € Q[y7x]7 f(Z,y,X) = Zogiglfi : (y,)l € Q[Zaan],

Dima Grigoriev (CNRS) Computing divisors and common multiple:

10.9.12

4/11

Factoring a quasi-linear second-order equation
Theorem

1) If a first-order quasi-linear differential polynomial y' — p(y, x) is a
generalized factor of a second-order quasi-linear differential
polynomial y" — f(y’, y, x) for polynomials

p(y,X) € @[anL f(Z,y, X) = ZO<i<Ifi : (y,)i € @[Z,y,X], then

deg,(p) < max{deg,(f),1+deg,(f)}, deg, (p) < max{deg,(f),deg,(f1)}.

Dima Grigoriev (CNRS) Computing divisors and common multiple: 10.9.12

4/11

Factoring a quasi-linear second-order equation
Theorem

1) If a first-order quasi-linear differential polynomial y' — p(y, x) is a
generalized factor of a second-order quasi-linear differential
polynomial y" — f(y’, y, x) for polynomials

p(y,X) € Q[anL f(Z,y, X) = Zogiglfi ’ (y/)l € Q[Z,y,X], then

deg, (p) < max{deg,(f),1+deg,(fo)}, deg,(p) < max{deg,(f),deg,(f)}.
2) An algorithm is designed which for a second-order quasi-linear
differential polynomial y" — f(y', y, x) either produces some its

first-order generalized divisor y' — p(y, x) satisfying the bounds from 1)
or certifies that it does not exist.

v

Dima Grigoriev (CNRS) Computing divisors and common multiple: 10.9.12 4/11

Factoring a quasi-linear second-order equation
Theorem

1) If a first-order quasi-linear differential polynomial y' — p(y, x) is a
generalized factor of a second-order quasi-linear differential
polynomial y" — f(y’, y, x) for polynomials

p(y,X) € Q[anL f(27y7 X) = ZOS/SI fl ’ (y/)l € Q[Z,y,X], then

deg, (p) < max{deg,(f),1+deg,(fo)}, deg,(p) < max{deg,(f),deg,(f)}.
2) An algorithm is designed which for a second-order quasi-linear
differential polynomial y" — f(y', y, x) either produces some its
first-order generalized divisor y' — p(y, x) satisfying the bounds from 1)
or certifies that it does not exist.

v

The algorithm from 2) solves a system of polynomial equations in the
indeterminate coefficients of polynomial p resulting from the equality

op op _ i
gTy'P‘FW—Zogiglf:'p

Dima Grigoriev (CNRS) Computing divisors and common multiple: 10.9.12 4/11

Factoring a quasi-linear second-order equation
Theorem

1) If a first-order quasi-linear differential polynomial y' — p(y, x) is a
generalized factor of a second-order quasi-linear differential
polynomial y" — f(y’, y, x) for polynomials

p(y,X) € Q[yax]’ f(27y7 X) = ZOS/SI fl ’ (y/)l € @[Z,y,X], then

deg, (p) < max{deg,(f), 1+deg,(fo)}, deg,(p) < max{deg,(f),deg, ()}
2) An algorithm is designed which for a second-order quasi-linear
differential polynomial y" — f(y', y, x) either produces some its
first-order generalized divisor y' — p(y, x) satisfying the bounds from 1)
or certifies that it does not exist.

The algorithm from 2) solves a system of polynomial equations in the
indeterminate coefficients of polynomial p resulting from the equality
ay ox o<i<li

which is equivalent to y’ — p(y, x) being a generalized factor of

y' =ty y, x).

Dima Grigoriev (CNRS) 10.9.12 4/11

Factoring a quasi-linear second-order equation

Theorem

1) If a first-order quasi-linear differential polynomial y' — p(y, x) is a
generalized factor of a second-order quasi-linear differential
polynomial y" — f(y’, y, x) for polynomials

p(y,X) € Q[yax]’ f(Z,y, X) = ZOS/SI fl ’ (y/)l € @[Z,y,X], then

deg, (p) < max{deg,(f), 1+deg,(fo)}, deg,(p) < max{deg,(f),deg, ()}
2) An algorithm is designed which for a second-order quasi-linear
differential polynomial y" — f(y', y, x) either produces some its
first-order generalized divisor y' — p(y, x) satisfying the bounds from 1)
or certifies that it does not exist.

The algorithm from 2) solves a system of polynomial equations in the
indeterminate coefficients of polynomial p resulting from the equality

oy ox o<i<i

which is equivalent to y’ — p(y, x) being a generalized factor of

y" —f(y’,y, x). Also from this equality one deduces 1) making use of
the relation p|(f, — 22).

Dima Grigoriev (CNRS) 10.9.12 4/11

It would be interesting to extend the factoring algorithm from the
second to an arbitrary order and from quasi-linear to arbitrary
equations (perhaps, also from ordinary to partial differential equations).

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 5/11

It would be interesting to extend the factoring algorithm from the
second to an arbitrary order and from quasi-linear to arbitrary
equations (perhaps, also from ordinary to partial differential equations).

Example
Consider the equation

E=y"+(x+3y)y +y+x2 =0

According to the above Theorem 1) deg, £ < 1 and deg, E < 3.

v

Dima Grigoriev (CNRS) Computing divisors and common multiple: 10.9.12 5/11

It would be interesting to extend the factoring algorithm from the
second to an arbitrary order and from quasi-linear to arbitrary
equations (perhaps, also from ordinary to partial differential equations).

Example
Consider the equation

E=y"+(x+3y)y +y+x2 =0

According to the above Theorem 1) deg, £ < 1 and deg, E < 3.
Applying Theorem 2) two factors are obtained and the representations

E =/ +y?)+(y+x)(V+y?), E=(+y>+xy—1)+y(y'+y*+xy—1)

follow.

Dima Grigoriev (CNRS) 10.9.12 5/11

It would be interesting to extend the factoring algorithm from the
second to an arbitrary order and from quasi-linear to arbitrary
equations (perhaps, also from ordinary to partial differential equations).

Example
Consider the equation

E=y"+(x+3y)y +y+x2 =0

According to the above Theorem 1) deg, £ < 1 and deg, E < 3.
Applying Theorem 2) two factors are obtained and the representations

E= /) +(y+x) (V' +y?), E=(/+y*+xy=1)+y(y'+y*+xy-1)
follow. They yield the two one-parameter solutions

1 1 1 exp (—3 1x?)

x+C’ y=x7 Xzfexp —fx2) ’2‘+C

y:

respectively.

Dima Grigoriev (CNRS) 10.9.12 5/11

Quasi-linear common multiples

We say that a differential polynomial f € C{y} is a common multiple of

differential polynomials f;, f, if solutions of f = 0 contain solutions of
both ff =0and f, = 0.

Dima Grigoriev (CNRS)

Computing divisors and common multiples

10.9.12 6/11

Quasi-linear common multiples

We say that a differential polynomial f € C{y} is a common multiple of
differential polynomials f;, f, if solutions of f = 0 contain solutions of
both ff =0and f, = 0.

Lemma

For polynomials p, q € Q[y, x] there exists a quasi-linear common
multiple of the order n + 1 of a pair of first-order equations

Yy =ply,x), ¥y =q(y,x)

v
Dima Grigoriev (CNRS) Computing divisors and common multiple: 10.9.12 6/11

Quasi-linear common multiples
We say that a differential polynomial f € C{y} is a common multiple of

differential polynomials f;, f, if solutions of f = 0 contain solutions of
both ff =0 and f, = 0.

Lemma

For polynomials p, q € Q[y, x] there exists a quasi-linear common
multiple of the order n + 1 of a pair of first-order equations

y' =p(y,x), ¥y = qly, x) iff n-th derivative

(P-a)Mep—q, (P—q)",....(p—q)" ")

belongs to the ideal (in the algebra Q|y, x]) generated by first n — 1
derivatives of p — q.

v

Dima Grigoriev (CNRS) Computing divisors and common multiple: 10.9.12 6/11

Quasi-linear common multiples

We say that a differential polynomial f € C{y} is a common multiple of
differential polynomials f;, f, if solutions of f = 0 contain solutions of
both i =0and , = 0.

Lemma

For polynomials p, q € Q[y, x] there exists a quasi-linear common
multiple of the order n + 1 of a pair of first-order equations

y' =py,x), ¥y = qly, x) iff n-th derivative

(p-q)Mep-q (P-q",... (0 g ")

belongs to the ideal (in the algebra Q|y, x]) generated by first n — 1
derivatives of p — q.

More explicitly, if the latter relation holds, i. e.

(p—q) =g inti- (p—q)) for some polynomials
rieQly,x],0<i<n

Dima Grigoriev (CNRS) 10.9.12 6/11

Quasi-linear common multiples

We say that a differential polynomial f € C{y} is a common multiple of
differential polynomials f;, f, if solutions of f = 0 contain solutions of
both i =0and , = 0.

Lemma

For polynomials p, q € Q[y, x] there exists a quasi-linear common
multiple of the order n + 1 of a pair of first-order equations

y' =py,x), ¥y = qly, x) iff n-th derivative

(p-q)Mep-q (P-q",... (0 g ")

belongs to the ideal (in the algebra Q|y, x]) generated by first n — 1
derivatives of p — q.

More explicitly, if the latter relation holds, i. e.

(p—q) =g inti- (p—q)) for some polynomials

ri € Qly, x], 0 <i < n then for polynomial

Sn(Zn, -+, 21,Y,X) == Eogi<n ri - (Zig1 — p(i)) + p(n) =

a required quasi-linear common multiple.

Dima Grigoriev (CNRS) 10.9.12 6/11

Existence of a quasi-linear common multiple

One can directly extend the lemma to a quasi-linear common multiple
of a pair of quasi-linear equations of an arbitrary order.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 7/11

Existence of a quasi-linear common multiple

One can directly extend the lemma to a quasi-linear common multiple
of a pair of quasi-linear equations of an arbitrary order.

Employing Hilbert’s Idealbasissatz we obtain
Corollary

Any pair of ordinary quasi-linear differential equations has a
quasi-linear common multiple.

Dima Grigoriev (CNRS) Computing divisors and common multiple: 10.9.12 7/11

Existence of a quasi-linear common multiple

One can directly extend the lemma to a quasi-linear common multiple
of a pair of quasi-linear equations of an arbitrary order.

Employing Hilbert’s Idealbasissatz we obtain

Corollary

Any pair of ordinary quasi-linear differential equations has a
quasi-linear common multiple.

To formulate the complexity bound of an algorithm computing a
quasi-linear common multiple we need to recall Grzegorczyk’s classes
of primitive-recursive function

Dima Grigoriev (CNRS) Computing divisors and common multiple: 10.9.12 7/11

Grzegorczyk’s classes of primitive-recursive functions
&' consist of functions Z$ — Z.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 8/11

Grzegorczyk’s classes of primitive-recursive functions
&' consist of functions 7 — 7.
For the base of recursion

class £° contains
e constant functions x, — c,

Dima Grigoriev (CNRS) Computing divisors and common multiples

10.9.12

8/11

Grzegorczyk’s classes of primitive-recursive functions
&' consist of functions 7 — 7.

For the base of recursion

class £° contains
e constant functions x, — c,
e shifts xx — xx + c,

Dima Grigoriev (CNRS) Computing divisors and common multiples

10.9.12

8/11

Grzegorczyk’s classes of primitive-recursive functions
&' consist of functions 7 — 7.

For the base of recursion

class £° contains

e constant functions x, — ¢,

e shifts xx — xx + c,

e projections (X1, ..., Xn) — Xk;

Dima Grigoriev (CNRS) Computing divisors and common multiples

10.9.12

8/11

Grzegorczyk’s classes of primitive-recursive functions
&' consist of functions Z$ — Z.

For the base of recursion

class £° contains

e constant functions x, — ¢,

e shifts xx — xx + c,

e projections (X1, ..., Xn) — Xk;

class £ contains linear functions x, — ¢ - x, and (Xky > Xiy) = Xk, + Xiy

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 8/11

Grzegorczyk’s classes of primitive-recursive functions
&' consist of functions Z$ — Z.
For the base of recursion

class £° contains

e constant functions x, — ¢,

e shifts xx — xx + c,

e projections (X1, ..., Xn) — Xk;

class £ contains linear functions x, — ¢ - x, and (Xky > Xiy) = Xk, + Xiy

class £2 contains all the polynomials with integer coefficients.

Dima Grigoriev (CNRS) Computing divisors and common multiple: 10.9.12 8/11

Primitive and limited primitive recursion

Let / > 2. For the inductive step of the definition, assume that functions
G(x1,...,Xp), H(x1,...,xn,y,2) € E.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 9/11

Primitive and limited primitive recursion

Let / > 2. For the inductive step of the definition, assume that functions
G(X1,...,Xn), H(X1,...,Xn, ¥, 2) € . Then the function

F(x1,...,Xn,y) defined by the primitive recursion,
F(X1,...,%2,0) = G(xq,...,Xn), (1)
F(Xt,...sXny+1)=H(X1, ..., Xn, ¥, F(X1,. .., Xn, ¥)), (2)

belongs to £1.

Dima Grigoriev (CNRS) Computing divisors and common multiple: 10.9.12 9/11

Primitive and limited primitive recursion

Let / > 2. For the inductive step of the definition, assume that functions
G(X1,...,Xn), H(X1,...,Xn, ¥, 2) € . Then the function

F(x1,...,Xn,y) defined by the primitive recursion,
F(X1,...,%2,0) = G(xq,...,Xn), (1)
F(Xt,...sXny+1)=H(X1, ..., Xn, ¥, F(X1,. .., Xn, ¥)), (2)

belongs to £1.
To complete the definition of £/, | > 0, take the closure with respect to
composition

Dima Grigoriev (CNRS) Computing divisors and common multiple: 10.9.12 9/11

Primitive and limited primitive recursion

Let / > 2. For the inductive step of the definition, assume that functions
G(X1,...,Xn), H(X1,...,Xn, ¥, 2) € . Then the function

F(x1,...,Xn,y) defined by the primitive recursion,
F(X1,...,%2,0) = G(xq,...,Xn), (1)
F(Xt,...sXny+1)=H(X1, ..., Xn, ¥, F(X1,. .., Xn, ¥)), (2)

belongs to £1.
To complete the definition of £/, | > 0, take the closure with respect to
composition and the following limited primitive recursion:

Let G(x1,...,Xn), H(X1,..., Xn, ¥,2), Q(Xq, ..., Xn,y) € E..

Dima Grigoriev (CNRS) 10.9.12 9/11

Primitive and limited primitive recursion

Let / > 2. For the inductive step of the definition, assume that functions
G(X1,...,Xn), H(X1,...,Xn, ¥, 2) € . Then the function

F(x1,...,Xn,y) defined by the primitive recursion,
F(X1,...,%2,0) = G(xq,...,Xn), (1)
F(Xt,...sXny+1)=H(X1, ..., Xn, ¥, F(X1,. .., Xn, ¥)), (2)

belongs to £1.

To complete the definition of £/, | > 0, take the closure with respect to

composition and the following limited primitive recursion:
Let G(x1,...,Xn), H(X1,..., X0, ¥,2), Q(Xq, ..., Xn,¥) € E. Then
the function F(xq, ..., X, y) defined by (1),(2) also belongs to &/,
provided that F(xq,...,Xn, ¥Y) < Q(X1,...,Xn, ¥).

Dima Grigoriev (CNRS) 10.9.12 9/11

Primitive and limited primitive recursion

Let / > 2. For the inductive step of the definition, assume that functions
G(X1,...,Xn), H(X1,...,Xn, ¥, 2) € . Then the function

F(x1,...,Xn,y) defined by the primitive recursion,
F(X1,...,%2,0) = G(xq,...,Xn), (1)
F(Xt,...sXny+1)=H(X1, ..., Xn, ¥, F(X1,. .., Xn, ¥)), (2)

belongs to £1.

To complete the definition of £/, | > 0, take the closure with respect to

composition and the following limited primitive recursion:
Let G(x1,...,Xn), H(X1,..., X0, ¥,2), Q(Xq, ..., Xn,¥) € E. Then
the function F(xq, ..., X, y) defined by (1),(2) also belongs to &/,
provided that F(xq,...,Xn, ¥Y) < Q(X1,...,Xn, ¥).

Clearly, &1 > &/,

Dima Grigoriev (CNRS) 10.9.12 9/11

Primitive and limited primitive recursion

Let / > 2. For the inductive step of the definition, assume that functions
G(X1,...,Xn), H(X1,...,Xn, ¥, 2) € . Then the function

F(x1,...,Xn,y) defined by the primitive recursion,
F(X1,...,%2,0) = G(xq,...,Xn), (1)
F(Xt,...sXny+1)=H(X1, ..., Xn, ¥, F(X1,. .., Xn, ¥)), (2)

belongs to £1.

To complete the definition of £/, | > 0, take the closure with respect to

composition and the following limited primitive recursion:
Let G(Xy,...,Xn), H(Xq, ..., Xn, ¥, 2), Q(X1, ..., Xn,y) € E. Then
the function F(xq, ..., X, y) defined by (1),(2) also belongs to &/,
provided that F(xq,...,Xn, ¥Y) < Q(X1,...,Xn, ¥).

Clearly, &1 > &/,

Observe that £3 contains all towers of exponential functions.

Dima Grigoriev (CNRS) 10.9.12 9/11

Primitive and limited primitive recursion

Let / > 2. For the inductive step of the definition, assume that functions
G(X1,...,Xn), H(X1,...,Xn, ¥, 2) € . Then the function

F(x1,...,Xn,y) defined by the primitive recursion,
F(X1,...,%2,0) = G(xq,...,Xn), (1)
F(Xt,...sXny+1)=H(X1, ..., Xn, ¥, F(X1,. .., Xn, ¥)), (2)

belongs to £1.

To complete the definition of £/, | > 0, take the closure with respect to

composition and the following limited primitive recursion:
Let G(Xy,...,Xn), H(Xq, ..., Xn, ¥, 2), Q(X1, ..., Xn,y) € E. Then
the function F(xq, ..., X, y) defined by (1),(2) also belongs to &/,
provided that F(xq,...,Xn, ¥Y) < Q(X1,...,Xn, ¥).

Clearly, &1 > &/,

Observe that £3 contains all towers of exponential functions.

Union U, ..&’ coincides with the set of all primitive-recursive functions.

Complexity of computing a quasi-linear common

multiple
From the explicit bound on the Idealbasissatz (due to Seidenberg) we
obtain the following complexity bound

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 10/ 11

Complexity of computing a quasi-linear common
multiple

From the explicit bound on the Idealbasissatz (due to Seidenberg) we
obtain the following complexity bound

Corollary

Any pair of ordinary quasi-linear differential equations

Y9 = pe(y*D, Ly x), Y0 = gy, Ly, x)

of order k with polynomials of degrees deg(px), deg(qx) < d has a
quasi-linear common multiple of order g(d), where g belongs to the
class k12 of Grzegorczyk’s hierarchy.

Dima Grigoriev (CNRS) Computing divisors and common multiple: 10.9.12 10/ 11

Complexity of computing a quasi-linear common
multiple

From the explicit bound on the Idealbasissatz (due to Seidenberg) we
obtain the following complexity bound

Corollary

Any pair of ordinary quasi-linear differential equations

y(k) = pk(y(k_1)7 RS £ X)7 y(k) = qk(y(k_1)7 e Y X)

of order k with polynomials of degrees deg(px), deg(qx) < d has a
quasi-linear common multiple of order g(d), where g belongs to the
class £¥+2 of Grzegorczyk’s hierarchy.

This provides also a complexity bound of the similar order of
magnitude of the algorithm which looks for a quasi-linear common
multiple by trying consecutively increasing orders n of a candidate and
solving the membership problem to an ideal generated by first n
derivatives (using Lemma above), say, with the help of Grobner basis.

v

Dima Grigoriev (CNRS) 10.9.12 10/11

Complexity of computing a quasi-linear common
multiple

From the explicit bound on the Idealbasissatz (due to Seidenberg) we
obtain the following complexity bound

Corollary

Any pair of ordinary quasi-linear differential equations

y(k) = pk(y(k_1)7 RS £ X)7 y(k) = qk(y(k_1)7 e Y X)

of order k with polynomials of degrees deg(px), deg(qx) < d has a
quasi-linear common multiple of order g(d), where g belongs to the
class £¥+2 of Grzegorczyk’s hierarchy.

This provides also a complexity bound of the similar order of
magnitude of the algorithm which looks for a quasi-linear common
multiple by trying consecutively increasing orders n of a candidate and
solving the membership problem to an ideal generated by first n
derivatives (using Lemma above), say, with the help of Grobner basis.

v

In particular, in case of first-order equations (k = 1) function g(d)

grows exponentially.
Dima Grigoriev (CNRS) 10.9.12 10/11

Example
LetE; =y +y?=0and E, =y’ +y = 0.

Dima Grigoriev (CNRS) Computing divisors and common multiples

Example

Let E; =y +y?>=0and E; =y’ + y = 0. A common multiple of order
2 does not exist; however, our algorithm yields the following common
multiple of order 3 involving a parameter C:

Es =y"+(C—4)yy"+(C+1)y"+(2C—2)y*+(2C+2)yy'+Cy'+Cy>.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 11/11

Example

Let Ey =y’ +y?>=0and E; = y' + y = 0. A common multiple of order
2 does not exist; however, our algorithm yields the following common
multiple of order 3 involving a parameter C:
Es=y"+(C—4)yy"+(C+1)y"+(2C-2)y?+(2C+2)yy'+ Cy' + Cy>.
For C = 0 it simplifies to Eq = y" + 4yy” + y" — 2y’?> + 2yy’ = 0.

Dima Grigoriev (CNRS) Computing divisors and common multiple: 10.9.12 11/11

Example

Let Ey =y’ +y?>=0and E; = y' + y = 0. A common multiple of order
2 does not exist; however, our algorithm yields the following common
multiple of order 3 involving a parameter C:
Es=y"+(C—4)yy"+(C+1)y"+(2C-2)y?+(2C+2)yy'+ Cy' + Cy>.
For C = 0 it simplifies to Ey =y’ + 4yy” + y" — 2y’? +2yy’ = 0. Our
factorization algorithm yields factors y’ + y2, y’ + y and y’ of E,.

Dima Grigoriev (CNRS) Computing divisors and common multiple: 10.9.12 11/11

Example

Let Ey =y’ +y?>=0and E; = y' + y = 0. A common multiple of order
2 does not exist; however, our algorithm yields the following common
multiple of order 3 involving a parameter C:
Es=y"+(C—4)yy"+(C+1)y"+(2C-2)y?+(2C+2)yy'+ Cy' + Cy>.
For C = 0 it simplifies to Ey =y’ + 4yy” + y" — 2y’? +2yy’ = 0. Our
factorization algorithm yields factors y’ + y2, y’ + y and y’ of E,.

Example

Let Ey =y’ + y? =0 and E; = y’ = 0 with solutions y = .~ and
y = C respectively.

Dima Grigoriev (CNRS) Computing divisors and common multiple: 10.9.12 11/11

Example

Let E; =y +y?>=0and E; =y’ + y = 0. A common multiple of order
2 does not exist; however, our algorithm yields the following common
multiple of order 3 involving a parameter C:

Es = y"+(C-4)yy"+(C+1)y"+(2C-2)y"*+(2C+2)yy'+ Cy'+ Cy?.
For C = 0 it simplifies to Ey =y’ + 4yy” + y" — 2y’? +2yy’ = 0. Our
factorization algorithm yields factors y’ + y2, y’ + y and y’ of Ej.

Example

Let Ey =y’ + y? =0 and E; = y’ = 0 with solutions y = .~ and
y = C respectively. The common multiple algorithm for E; and E»
yields y” +2yy’ = 0.

Dima Grigoriev (CNRS) Computing divisors and common multiple: 10.9.12 11/11

Example

Let E; =y +y?>=0and E; =y’ + y = 0. A common multiple of order
2 does not exist; however, our algorithm yields the following common
multiple of order 3 involving a parameter C:

Es = y"+(C-4)yy"+(C+1)y"+(2C-2)y"*+(2C+2)yy'+ Cy'+ Cy?.
For C = 0 it simplifies to Ey =y’ + 4yy” + y" — 2y’? +2yy’ = 0. Our
factorization algorithm yields factors y’ + y2, y’ + y and y’ of Ej.

Example

Let Ey =y’ + y? =0 and E; = y’ = 0 with solutions y = .~ and
y = C respectively. The common multiple algorithm for E; and E»
yields y” + 2yy’ = 0. Its general solution is y = Cy tan(Cz — C1x).

Dima Grigoriev (CNRS) 10.9.12 11/11

Example

Let E; =y +y?>=0and E; =y’ + y = 0. A common multiple of order
2 does not exist; however, our algorithm yields the following common
multiple of order 3 involving a parameter C:

Es = y"+(C-4)yy"+(C+1)y"+(2C-2)y"*+(2C+2)yy'+ Cy'+ Cy?.
For C = 0 it simplifies to Ey =y’ + 4yy” + y" — 2y’? +2yy’ = 0. Our
factorization algorithm yields factors y’ + y2, y’ + y and y’ of Ej.

Example

Let Ey =y’ + y? =0 and E; = y’ = 0 with solutions y = .~ and
y = C respectively. The common multiple algorithm for E; and E;
yields y” + 2yy’ = 0. Its general solution is y = Cy tan(Cz — C1x).

Remark

The general solution of the second-order equation in the preceding
example may also be written as y = Cq tanh(Cs + Cqx).

y
Dima Grigoriev (CNRS) 10.9.12 11/11

Example

LetEy =y +y2=0and E; = y' + y = 0. A common multiple of order
2 does not exist; however, our algorithm yields the following common
multiple of order 3 involving a parameter C:

Es = y"+(C-4)yy"+(C+1)y"+(2C-2)y"*+(2C+2)yy'+ Cy'+ Cy?.
For C = 0 it simplifies to Ey =y’ + 4yy” + y" — 2y’? +2yy’ = 0. Our
factorization algorithm yields factors y’ + y2, y’ + y and y’ of Ej.

Example

Let Ey =y’ + y? =0 and E; = y’ = 0 with solutions y = .~ and
y = C respectively. The common multiple algorithm for E; and E;
yields y” + 2yy’ = 0. Its general solution is y = Cy tan(Cz — C1x).

Remark

The general solution of the second-order equation in the preceding
example may also be written as y = C;tanh(Cs + Cyx). From the
latter representation the constant solution may be obtained by taking
the limit Co — ~c.

Dima Grigoriev (CNRS) 10.9.12 11/11

