
Computing divisors and common multiples
of quasi-linear ordinary differential equations

(jointly with F. Schwarz)

Dima Grigoriev (Lille)

CNRS

10/09/2012, Berlin

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 1 / 11

Factoring ordinary differential equations
Definition

Ordinary differential equation f (y (k), . . . , y ′, y , x) = 0 is a generalized
factor of g(y (n), . . . , y ′, y , x) = 0 if any solution of the former is a
solution of the latter.

Factoring linear operators

A linear operator A =
∑

0≤i≤k ai · y (i) is a (generalized) factor of a linear
operator B =

∑
0≤j≤n bj · y (j) iff B = CA for a suitable linear operator C.

Factoring of a linear operator is not unique. Thus, the problem is to
produce some factoring into irreducible factors.
• Beke-Schlesinger (1894): An algorithm for factoring linear operators
A with coefficients ai ∈ Q(x) (triple-exponential complexity);
• G. (1987): An algorithm with double-exponential complexity.
Conjecture: the sharp bound of complexity is exponential.;
• Tsarev (1996): An algorithm to describe the variety of all the
factorizations of an operator.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 2 / 11

Factoring ordinary differential equations
Definition

Ordinary differential equation f (y (k), . . . , y ′, y , x) = 0 is a generalized
factor of g(y (n), . . . , y ′, y , x) = 0 if any solution of the former is a
solution of the latter.

Factoring linear operators

A linear operator A =
∑

0≤i≤k ai · y (i) is a (generalized) factor of a linear
operator B =

∑
0≤j≤n bj · y (j) iff B = CA for a suitable linear operator C.

Factoring of a linear operator is not unique. Thus, the problem is to
produce some factoring into irreducible factors.
• Beke-Schlesinger (1894): An algorithm for factoring linear operators
A with coefficients ai ∈ Q(x) (triple-exponential complexity);
• G. (1987): An algorithm with double-exponential complexity.
Conjecture: the sharp bound of complexity is exponential.;
• Tsarev (1996): An algorithm to describe the variety of all the
factorizations of an operator.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 2 / 11

Factoring ordinary differential equations
Definition

Ordinary differential equation f (y (k), . . . , y ′, y , x) = 0 is a generalized
factor of g(y (n), . . . , y ′, y , x) = 0 if any solution of the former is a
solution of the latter.

Factoring linear operators

A linear operator A =
∑

0≤i≤k ai · y (i) is a (generalized) factor of a linear
operator B =

∑
0≤j≤n bj · y (j) iff B = CA for a suitable linear operator C.

Factoring of a linear operator is not unique. Thus, the problem is to
produce some factoring into irreducible factors.
• Beke-Schlesinger (1894): An algorithm for factoring linear operators
A with coefficients ai ∈ Q(x) (triple-exponential complexity);
• G. (1987): An algorithm with double-exponential complexity.
Conjecture: the sharp bound of complexity is exponential.;
• Tsarev (1996): An algorithm to describe the variety of all the
factorizations of an operator.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 2 / 11

Factoring ordinary differential equations
Definition

Ordinary differential equation f (y (k), . . . , y ′, y , x) = 0 is a generalized
factor of g(y (n), . . . , y ′, y , x) = 0 if any solution of the former is a
solution of the latter.

Factoring linear operators

A linear operator A =
∑

0≤i≤k ai · y (i) is a (generalized) factor of a linear
operator B =

∑
0≤j≤n bj · y (j) iff B = CA for a suitable linear operator C.

Factoring of a linear operator is not unique. Thus, the problem is to
produce some factoring into irreducible factors.
• Beke-Schlesinger (1894): An algorithm for factoring linear operators
A with coefficients ai ∈ Q(x) (triple-exponential complexity);
• G. (1987): An algorithm with double-exponential complexity.
Conjecture: the sharp bound of complexity is exponential.;
• Tsarev (1996): An algorithm to describe the variety of all the
factorizations of an operator.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 2 / 11

Factoring ordinary differential equations
Definition

Ordinary differential equation f (y (k), . . . , y ′, y , x) = 0 is a generalized
factor of g(y (n), . . . , y ′, y , x) = 0 if any solution of the former is a
solution of the latter.

Factoring linear operators

A linear operator A =
∑

0≤i≤k ai · y (i) is a (generalized) factor of a linear
operator B =

∑
0≤j≤n bj · y (j) iff B = CA for a suitable linear operator C.

Factoring of a linear operator is not unique. Thus, the problem is to
produce some factoring into irreducible factors.
• Beke-Schlesinger (1894): An algorithm for factoring linear operators
A with coefficients ai ∈ Q(x) (triple-exponential complexity);
• G. (1987): An algorithm with double-exponential complexity.
Conjecture: the sharp bound of complexity is exponential.;
• Tsarev (1996): An algorithm to describe the variety of all the
factorizations of an operator.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 2 / 11

Factoring ordinary differential equations
Definition

Ordinary differential equation f (y (k), . . . , y ′, y , x) = 0 is a generalized
factor of g(y (n), . . . , y ′, y , x) = 0 if any solution of the former is a
solution of the latter.

Factoring linear operators

A linear operator A =
∑

0≤i≤k ai · y (i) is a (generalized) factor of a linear
operator B =

∑
0≤j≤n bj · y (j) iff B = CA for a suitable linear operator C.

Factoring of a linear operator is not unique. Thus, the problem is to
produce some factoring into irreducible factors.
• Beke-Schlesinger (1894): An algorithm for factoring linear operators
A with coefficients ai ∈ Q(x) (triple-exponential complexity);
• G. (1987): An algorithm with double-exponential complexity.
Conjecture: the sharp bound of complexity is exponential.;
• Tsarev (1996): An algorithm to describe the variety of all the
factorizations of an operator.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 2 / 11

Factoring ordinary differential equations
Definition

Ordinary differential equation f (y (k), . . . , y ′, y , x) = 0 is a generalized
factor of g(y (n), . . . , y ′, y , x) = 0 if any solution of the former is a
solution of the latter.

Factoring linear operators

A linear operator A =
∑

0≤i≤k ai · y (i) is a (generalized) factor of a linear
operator B =

∑
0≤j≤n bj · y (j) iff B = CA for a suitable linear operator C.

Factoring of a linear operator is not unique. Thus, the problem is to
produce some factoring into irreducible factors.
• Beke-Schlesinger (1894): An algorithm for factoring linear operators
A with coefficients ai ∈ Q(x) (triple-exponential complexity);
• G. (1987): An algorithm with double-exponential complexity.
Conjecture: the sharp bound of complexity is exponential.;
• Tsarev (1996): An algorithm to describe the variety of all the
factorizations of an operator.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 2 / 11

Factoring ordinary differential equations
Definition

Ordinary differential equation f (y (k), . . . , y ′, y , x) = 0 is a generalized
factor of g(y (n), . . . , y ′, y , x) = 0 if any solution of the former is a
solution of the latter.

Factoring linear operators

A linear operator A =
∑

0≤i≤k ai · y (i) is a (generalized) factor of a linear
operator B =

∑
0≤j≤n bj · y (j) iff B = CA for a suitable linear operator C.

Factoring of a linear operator is not unique. Thus, the problem is to
produce some factoring into irreducible factors.
• Beke-Schlesinger (1894): An algorithm for factoring linear operators
A with coefficients ai ∈ Q(x) (triple-exponential complexity);
• G. (1987): An algorithm with double-exponential complexity.
Conjecture: the sharp bound of complexity is exponential.;
• Tsarev (1996): An algorithm to describe the variety of all the
factorizations of an operator.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 2 / 11

Quasi-linear generalized factors
The algebra of differential polynomials C{y} := C[x , y , y ′, y ′′, . . .] is a
module over the algebra C{y}[d

dx] of linear operators with coefficients
in C{y}. For a differential polynomial p ∈ C{y} and an operator
H ∈ C{y}[d

dx] their action denote by H ∗ p ∈ C{y}.

Lemma

A quasi-linear differential polynomial y (k+1) − f (y (k), . . . , y ′, y , x) is a
generalized factor of a differential polynomial p iff there exists a linear
operator H ∈ C{y}[d

dx] such that H ∗ (y (k+1) − f (y (k), . . . , y ′, y , x)) = p

Tsarev (1999), Gao-Zhang (2008) studied another concept of
decomposition of differential polynomials when in a differential
polynomial p (depending on several variables y1, . . . , ym) some
differential polynomials p1, . . . ,pm are substituted. This decomposition
differs from our notion of factoring. Tsarev, Gao-Zhang have designed
algorithms to decompose differential polynomials.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 3 / 11

Quasi-linear generalized factors
The algebra of differential polynomials C{y} := C[x , y , y ′, y ′′, . . .] is a
module over the algebra C{y}[d

dx] of linear operators with coefficients
in C{y}. For a differential polynomial p ∈ C{y} and an operator
H ∈ C{y}[d

dx] their action denote by H ∗ p ∈ C{y}.

Lemma

A quasi-linear differential polynomial y (k+1) − f (y (k), . . . , y ′, y , x) is a
generalized factor of a differential polynomial p iff there exists a linear
operator H ∈ C{y}[d

dx] such that H ∗ (y (k+1) − f (y (k), . . . , y ′, y , x)) = p

Tsarev (1999), Gao-Zhang (2008) studied another concept of
decomposition of differential polynomials when in a differential
polynomial p (depending on several variables y1, . . . , ym) some
differential polynomials p1, . . . ,pm are substituted. This decomposition
differs from our notion of factoring. Tsarev, Gao-Zhang have designed
algorithms to decompose differential polynomials.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 3 / 11

Quasi-linear generalized factors
The algebra of differential polynomials C{y} := C[x , y , y ′, y ′′, . . .] is a
module over the algebra C{y}[d

dx] of linear operators with coefficients
in C{y}. For a differential polynomial p ∈ C{y} and an operator
H ∈ C{y}[d

dx] their action denote by H ∗ p ∈ C{y}.

Lemma

A quasi-linear differential polynomial y (k+1) − f (y (k), . . . , y ′, y , x) is a
generalized factor of a differential polynomial p iff there exists a linear
operator H ∈ C{y}[d

dx] such that H ∗ (y (k+1) − f (y (k), . . . , y ′, y , x)) = p

Tsarev (1999), Gao-Zhang (2008) studied another concept of
decomposition of differential polynomials when in a differential
polynomial p (depending on several variables y1, . . . , ym) some
differential polynomials p1, . . . ,pm are substituted. This decomposition
differs from our notion of factoring. Tsarev, Gao-Zhang have designed
algorithms to decompose differential polynomials.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 3 / 11

Quasi-linear generalized factors
The algebra of differential polynomials C{y} := C[x , y , y ′, y ′′, . . .] is a
module over the algebra C{y}[d

dx] of linear operators with coefficients
in C{y}. For a differential polynomial p ∈ C{y} and an operator
H ∈ C{y}[d

dx] their action denote by H ∗ p ∈ C{y}.

Lemma

A quasi-linear differential polynomial y (k+1) − f (y (k), . . . , y ′, y , x) is a
generalized factor of a differential polynomial p iff there exists a linear
operator H ∈ C{y}[d

dx] such that H ∗ (y (k+1) − f (y (k), . . . , y ′, y , x)) = p

Tsarev (1999), Gao-Zhang (2008) studied another concept of
decomposition of differential polynomials when in a differential
polynomial p (depending on several variables y1, . . . , ym) some
differential polynomials p1, . . . ,pm are substituted. This decomposition
differs from our notion of factoring. Tsarev, Gao-Zhang have designed
algorithms to decompose differential polynomials.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 3 / 11

Quasi-linear generalized factors
The algebra of differential polynomials C{y} := C[x , y , y ′, y ′′, . . .] is a
module over the algebra C{y}[d

dx] of linear operators with coefficients
in C{y}. For a differential polynomial p ∈ C{y} and an operator
H ∈ C{y}[d

dx] their action denote by H ∗ p ∈ C{y}.

Lemma

A quasi-linear differential polynomial y (k+1) − f (y (k), . . . , y ′, y , x) is a
generalized factor of a differential polynomial p iff there exists a linear
operator H ∈ C{y}[d

dx] such that H ∗ (y (k+1) − f (y (k), . . . , y ′, y , x)) = p

Tsarev (1999), Gao-Zhang (2008) studied another concept of
decomposition of differential polynomials when in a differential
polynomial p (depending on several variables y1, . . . , ym) some
differential polynomials p1, . . . ,pm are substituted. This decomposition
differs from our notion of factoring. Tsarev, Gao-Zhang have designed
algorithms to decompose differential polynomials.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 3 / 11

Quasi-linear generalized factors
The algebra of differential polynomials C{y} := C[x , y , y ′, y ′′, . . .] is a
module over the algebra C{y}[d

dx] of linear operators with coefficients
in C{y}. For a differential polynomial p ∈ C{y} and an operator
H ∈ C{y}[d

dx] their action denote by H ∗ p ∈ C{y}.

Lemma

A quasi-linear differential polynomial y (k+1) − f (y (k), . . . , y ′, y , x) is a
generalized factor of a differential polynomial p iff there exists a linear
operator H ∈ C{y}[d

dx] such that H ∗ (y (k+1) − f (y (k), . . . , y ′, y , x)) = p

Tsarev (1999), Gao-Zhang (2008) studied another concept of
decomposition of differential polynomials when in a differential
polynomial p (depending on several variables y1, . . . , ym) some
differential polynomials p1, . . . ,pm are substituted. This decomposition
differs from our notion of factoring. Tsarev, Gao-Zhang have designed
algorithms to decompose differential polynomials.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 3 / 11

Factoring a quasi-linear second-order equation
Theorem
1) If a first-order quasi-linear differential polynomial y ′ − p(y , x) is a
generalized factor of a second-order quasi-linear differential
polynomial y ′′ − f (y ′, y , x) for polynomials
p(y , x) ∈ Q[y , x], f (z, y , x) =

∑
0≤i≤l fi · (y ′)i ∈ Q[z, y , x], then

degx(p) ≤ max{degx(f),1+degx(f0)}, degy (p) ≤ max{degy (f), degy (f1)}.
2) An algorithm is designed which for a second-order quasi-linear
differential polynomial y ′′ − f (y ′, y , x) either produces some its
first-order generalized divisor y ′ − p(y , x) satisfying the bounds from 1)
or certifies that it does not exist.

The algorithm from 2) solves a system of polynomial equations in the
indeterminate coefficients of polynomial p resulting from the equality
∂p
∂y · p + ∂p

∂x =
∑

0≤i≤l fi · pi

which is equivalent to y ′ − p(y , x) being a generalized factor of
y ′′ − f (y ′, y , x). Also from this equality one deduces 1) making use of
the relation p|(f0 − ∂p

∂x).
Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 4 / 11

Factoring a quasi-linear second-order equation
Theorem
1) If a first-order quasi-linear differential polynomial y ′ − p(y , x) is a
generalized factor of a second-order quasi-linear differential
polynomial y ′′ − f (y ′, y , x) for polynomials
p(y , x) ∈ Q[y , x], f (z, y , x) =

∑
0≤i≤l fi · (y ′)i ∈ Q[z, y , x], then

degx(p) ≤ max{degx(f),1+degx(f0)}, degy (p) ≤ max{degy (f), degy (f1)}.
2) An algorithm is designed which for a second-order quasi-linear
differential polynomial y ′′ − f (y ′, y , x) either produces some its
first-order generalized divisor y ′ − p(y , x) satisfying the bounds from 1)
or certifies that it does not exist.

The algorithm from 2) solves a system of polynomial equations in the
indeterminate coefficients of polynomial p resulting from the equality
∂p
∂y · p + ∂p

∂x =
∑

0≤i≤l fi · pi

which is equivalent to y ′ − p(y , x) being a generalized factor of
y ′′ − f (y ′, y , x). Also from this equality one deduces 1) making use of
the relation p|(f0 − ∂p

∂x).
Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 4 / 11

Factoring a quasi-linear second-order equation
Theorem
1) If a first-order quasi-linear differential polynomial y ′ − p(y , x) is a
generalized factor of a second-order quasi-linear differential
polynomial y ′′ − f (y ′, y , x) for polynomials
p(y , x) ∈ Q[y , x], f (z, y , x) =

∑
0≤i≤l fi · (y ′)i ∈ Q[z, y , x], then

degx(p) ≤ max{degx(f),1+degx(f0)}, degy (p) ≤ max{degy (f), degy (f1)}.
2) An algorithm is designed which for a second-order quasi-linear
differential polynomial y ′′ − f (y ′, y , x) either produces some its
first-order generalized divisor y ′ − p(y , x) satisfying the bounds from 1)
or certifies that it does not exist.

The algorithm from 2) solves a system of polynomial equations in the
indeterminate coefficients of polynomial p resulting from the equality
∂p
∂y · p + ∂p

∂x =
∑

0≤i≤l fi · pi

which is equivalent to y ′ − p(y , x) being a generalized factor of
y ′′ − f (y ′, y , x). Also from this equality one deduces 1) making use of
the relation p|(f0 − ∂p

∂x).
Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 4 / 11

Factoring a quasi-linear second-order equation
Theorem
1) If a first-order quasi-linear differential polynomial y ′ − p(y , x) is a
generalized factor of a second-order quasi-linear differential
polynomial y ′′ − f (y ′, y , x) for polynomials
p(y , x) ∈ Q[y , x], f (z, y , x) =

∑
0≤i≤l fi · (y ′)i ∈ Q[z, y , x], then

degx(p) ≤ max{degx(f),1+degx(f0)}, degy (p) ≤ max{degy (f), degy (f1)}.
2) An algorithm is designed which for a second-order quasi-linear
differential polynomial y ′′ − f (y ′, y , x) either produces some its
first-order generalized divisor y ′ − p(y , x) satisfying the bounds from 1)
or certifies that it does not exist.

The algorithm from 2) solves a system of polynomial equations in the
indeterminate coefficients of polynomial p resulting from the equality
∂p
∂y · p + ∂p

∂x =
∑

0≤i≤l fi · pi

which is equivalent to y ′ − p(y , x) being a generalized factor of
y ′′ − f (y ′, y , x). Also from this equality one deduces 1) making use of
the relation p|(f0 − ∂p

∂x).
Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 4 / 11

Factoring a quasi-linear second-order equation
Theorem
1) If a first-order quasi-linear differential polynomial y ′ − p(y , x) is a
generalized factor of a second-order quasi-linear differential
polynomial y ′′ − f (y ′, y , x) for polynomials
p(y , x) ∈ Q[y , x], f (z, y , x) =

∑
0≤i≤l fi · (y ′)i ∈ Q[z, y , x], then

degx(p) ≤ max{degx(f),1+degx(f0)}, degy (p) ≤ max{degy (f), degy (f1)}.
2) An algorithm is designed which for a second-order quasi-linear
differential polynomial y ′′ − f (y ′, y , x) either produces some its
first-order generalized divisor y ′ − p(y , x) satisfying the bounds from 1)
or certifies that it does not exist.

The algorithm from 2) solves a system of polynomial equations in the
indeterminate coefficients of polynomial p resulting from the equality
∂p
∂y · p + ∂p

∂x =
∑

0≤i≤l fi · pi

which is equivalent to y ′ − p(y , x) being a generalized factor of
y ′′ − f (y ′, y , x). Also from this equality one deduces 1) making use of
the relation p|(f0 − ∂p

∂x).
Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 4 / 11

Factoring a quasi-linear second-order equation
Theorem
1) If a first-order quasi-linear differential polynomial y ′ − p(y , x) is a
generalized factor of a second-order quasi-linear differential
polynomial y ′′ − f (y ′, y , x) for polynomials
p(y , x) ∈ Q[y , x], f (z, y , x) =

∑
0≤i≤l fi · (y ′)i ∈ Q[z, y , x], then

degx(p) ≤ max{degx(f),1+degx(f0)}, degy (p) ≤ max{degy (f), degy (f1)}.
2) An algorithm is designed which for a second-order quasi-linear
differential polynomial y ′′ − f (y ′, y , x) either produces some its
first-order generalized divisor y ′ − p(y , x) satisfying the bounds from 1)
or certifies that it does not exist.

The algorithm from 2) solves a system of polynomial equations in the
indeterminate coefficients of polynomial p resulting from the equality
∂p
∂y · p + ∂p

∂x =
∑

0≤i≤l fi · pi

which is equivalent to y ′ − p(y , x) being a generalized factor of
y ′′ − f (y ′, y , x). Also from this equality one deduces 1) making use of
the relation p|(f0 − ∂p

∂x).
Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 4 / 11

It would be interesting to extend the factoring algorithm from the
second to an arbitrary order and from quasi-linear to arbitrary
equations (perhaps, also from ordinary to partial differential equations).

Example
Consider the equation

E ≡ y ′′ + (x + 3y)y ′ + y3 + xy2 = 0.

According to the above Theorem 1) degxE ≤ 1 and degyE ≤ 3.
Applying Theorem 2) two factors are obtained and the representations

E ≡ (y ′+y2)′+(y+x)(y ′+y2), E = (y ′+y2+xy−1)′+y(y ′+y2+xy−1)

follow. They yield the two one-parameter solutions

y =
1

x + C
, y =

1
x
+

1
x2

exp (−1
2x2)∫

exp (−1
2x2)dx

x2 + C

respectively.
Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 5 / 11

It would be interesting to extend the factoring algorithm from the
second to an arbitrary order and from quasi-linear to arbitrary
equations (perhaps, also from ordinary to partial differential equations).

Example
Consider the equation

E ≡ y ′′ + (x + 3y)y ′ + y3 + xy2 = 0.

According to the above Theorem 1) degxE ≤ 1 and degyE ≤ 3.
Applying Theorem 2) two factors are obtained and the representations

E ≡ (y ′+y2)′+(y+x)(y ′+y2), E = (y ′+y2+xy−1)′+y(y ′+y2+xy−1)

follow. They yield the two one-parameter solutions

y =
1

x + C
, y =

1
x
+

1
x2

exp (−1
2x2)∫

exp (−1
2x2)dx

x2 + C

respectively.
Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 5 / 11

It would be interesting to extend the factoring algorithm from the
second to an arbitrary order and from quasi-linear to arbitrary
equations (perhaps, also from ordinary to partial differential equations).

Example
Consider the equation

E ≡ y ′′ + (x + 3y)y ′ + y3 + xy2 = 0.

According to the above Theorem 1) degxE ≤ 1 and degyE ≤ 3.
Applying Theorem 2) two factors are obtained and the representations

E ≡ (y ′+y2)′+(y+x)(y ′+y2), E = (y ′+y2+xy−1)′+y(y ′+y2+xy−1)

follow. They yield the two one-parameter solutions

y =
1

x + C
, y =

1
x
+

1
x2

exp (−1
2x2)∫

exp (−1
2x2)dx

x2 + C

respectively.
Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 5 / 11

It would be interesting to extend the factoring algorithm from the
second to an arbitrary order and from quasi-linear to arbitrary
equations (perhaps, also from ordinary to partial differential equations).

Example
Consider the equation

E ≡ y ′′ + (x + 3y)y ′ + y3 + xy2 = 0.

According to the above Theorem 1) degxE ≤ 1 and degyE ≤ 3.
Applying Theorem 2) two factors are obtained and the representations

E ≡ (y ′+y2)′+(y+x)(y ′+y2), E = (y ′+y2+xy−1)′+y(y ′+y2+xy−1)

follow. They yield the two one-parameter solutions

y =
1

x + C
, y =

1
x
+

1
x2

exp (−1
2x2)∫

exp (−1
2x2)dx

x2 + C

respectively.
Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 5 / 11

Quasi-linear common multiples
We say that a differential polynomial f ∈ C{y} is a common multiple of
differential polynomials f1, f2 if solutions of f = 0 contain solutions of
both f1 = 0 and f2 = 0.

Lemma

For polynomials p,q ∈ Q[y , x] there exists a quasi-linear common
multiple of the order n + 1 of a pair of first-order equations
y ′ = p(y , x), y ′ = q(y , x) iff n-th derivative
(p − q)(n) ∈ 〈p − q, (p − q)(1), . . . , (p − q)(n−1)〉
belongs to the ideal (in the algebra Q[y , x]) generated by first n − 1
derivatives of p − q.
More explicitly, if the latter relation holds, i. e.
(p − q)(n) =

∑
0≤i<n ri · (p − q)(i) for some polynomials

ri ∈ Q[y , x], 0 ≤ i < n then for polynomial
sn(zn, . . . , z1, y , x) :=

∑
0≤i<n ri · (zi+1 − p(i)) + p(n) =∑

0≤i<n ri · (zi+1 − q(i)) + q(n) equation y (n+1) = sn(y (n), . . . , y ′, y , x) is
a required quasi-linear common multiple.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 6 / 11

Quasi-linear common multiples
We say that a differential polynomial f ∈ C{y} is a common multiple of
differential polynomials f1, f2 if solutions of f = 0 contain solutions of
both f1 = 0 and f2 = 0.

Lemma

For polynomials p,q ∈ Q[y , x] there exists a quasi-linear common
multiple of the order n + 1 of a pair of first-order equations
y ′ = p(y , x), y ′ = q(y , x) iff n-th derivative
(p − q)(n) ∈ 〈p − q, (p − q)(1), . . . , (p − q)(n−1)〉
belongs to the ideal (in the algebra Q[y , x]) generated by first n − 1
derivatives of p − q.
More explicitly, if the latter relation holds, i. e.
(p − q)(n) =

∑
0≤i<n ri · (p − q)(i) for some polynomials

ri ∈ Q[y , x], 0 ≤ i < n then for polynomial
sn(zn, . . . , z1, y , x) :=

∑
0≤i<n ri · (zi+1 − p(i)) + p(n) =∑

0≤i<n ri · (zi+1 − q(i)) + q(n) equation y (n+1) = sn(y (n), . . . , y ′, y , x) is
a required quasi-linear common multiple.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 6 / 11

Quasi-linear common multiples
We say that a differential polynomial f ∈ C{y} is a common multiple of
differential polynomials f1, f2 if solutions of f = 0 contain solutions of
both f1 = 0 and f2 = 0.

Lemma

For polynomials p,q ∈ Q[y , x] there exists a quasi-linear common
multiple of the order n + 1 of a pair of first-order equations
y ′ = p(y , x), y ′ = q(y , x) iff n-th derivative
(p − q)(n) ∈ 〈p − q, (p − q)(1), . . . , (p − q)(n−1)〉
belongs to the ideal (in the algebra Q[y , x]) generated by first n − 1
derivatives of p − q.
More explicitly, if the latter relation holds, i. e.
(p − q)(n) =

∑
0≤i<n ri · (p − q)(i) for some polynomials

ri ∈ Q[y , x], 0 ≤ i < n then for polynomial
sn(zn, . . . , z1, y , x) :=

∑
0≤i<n ri · (zi+1 − p(i)) + p(n) =∑

0≤i<n ri · (zi+1 − q(i)) + q(n) equation y (n+1) = sn(y (n), . . . , y ′, y , x) is
a required quasi-linear common multiple.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 6 / 11

Quasi-linear common multiples
We say that a differential polynomial f ∈ C{y} is a common multiple of
differential polynomials f1, f2 if solutions of f = 0 contain solutions of
both f1 = 0 and f2 = 0.

Lemma

For polynomials p,q ∈ Q[y , x] there exists a quasi-linear common
multiple of the order n + 1 of a pair of first-order equations
y ′ = p(y , x), y ′ = q(y , x) iff n-th derivative
(p − q)(n) ∈ 〈p − q, (p − q)(1), . . . , (p − q)(n−1)〉
belongs to the ideal (in the algebra Q[y , x]) generated by first n − 1
derivatives of p − q.
More explicitly, if the latter relation holds, i. e.
(p − q)(n) =

∑
0≤i<n ri · (p − q)(i) for some polynomials

ri ∈ Q[y , x], 0 ≤ i < n then for polynomial
sn(zn, . . . , z1, y , x) :=

∑
0≤i<n ri · (zi+1 − p(i)) + p(n) =∑

0≤i<n ri · (zi+1 − q(i)) + q(n) equation y (n+1) = sn(y (n), . . . , y ′, y , x) is
a required quasi-linear common multiple.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 6 / 11

Quasi-linear common multiples
We say that a differential polynomial f ∈ C{y} is a common multiple of
differential polynomials f1, f2 if solutions of f = 0 contain solutions of
both f1 = 0 and f2 = 0.

Lemma

For polynomials p,q ∈ Q[y , x] there exists a quasi-linear common
multiple of the order n + 1 of a pair of first-order equations
y ′ = p(y , x), y ′ = q(y , x) iff n-th derivative
(p − q)(n) ∈ 〈p − q, (p − q)(1), . . . , (p − q)(n−1)〉
belongs to the ideal (in the algebra Q[y , x]) generated by first n − 1
derivatives of p − q.
More explicitly, if the latter relation holds, i. e.
(p − q)(n) =

∑
0≤i<n ri · (p − q)(i) for some polynomials

ri ∈ Q[y , x], 0 ≤ i < n then for polynomial
sn(zn, . . . , z1, y , x) :=

∑
0≤i<n ri · (zi+1 − p(i)) + p(n) =∑

0≤i<n ri · (zi+1 − q(i)) + q(n) equation y (n+1) = sn(y (n), . . . , y ′, y , x) is
a required quasi-linear common multiple.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 6 / 11

Existence of a quasi-linear common multiple

One can directly extend the lemma to a quasi-linear common multiple
of a pair of quasi-linear equations of an arbitrary order.
Employing Hilbert’s Idealbasissatz we obtain

Corollary
Any pair of ordinary quasi-linear differential equations has a
quasi-linear common multiple.

To formulate the complexity bound of an algorithm computing a
quasi-linear common multiple we need to recall Grzegorczyk’s classes
of primitive-recursive function

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 7 / 11

Existence of a quasi-linear common multiple

One can directly extend the lemma to a quasi-linear common multiple
of a pair of quasi-linear equations of an arbitrary order.
Employing Hilbert’s Idealbasissatz we obtain

Corollary
Any pair of ordinary quasi-linear differential equations has a
quasi-linear common multiple.

To formulate the complexity bound of an algorithm computing a
quasi-linear common multiple we need to recall Grzegorczyk’s classes
of primitive-recursive function

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 7 / 11

Existence of a quasi-linear common multiple

One can directly extend the lemma to a quasi-linear common multiple
of a pair of quasi-linear equations of an arbitrary order.
Employing Hilbert’s Idealbasissatz we obtain

Corollary
Any pair of ordinary quasi-linear differential equations has a
quasi-linear common multiple.

To formulate the complexity bound of an algorithm computing a
quasi-linear common multiple we need to recall Grzegorczyk’s classes
of primitive-recursive function

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 7 / 11

Grzegorczyk’s classes of primitive-recursive functions

E l consist of functions Zs → Zt .

For the base of recursion

class E0 contains
• constant functions xk → c,
• shifts xk → xk + c,
• projections (x1, . . . , xn)→ xk ;

class E1 contains linear functions xk → c · xk and (xk1 , xk2)→ xk1 + xk2 ;

class E2 contains all the polynomials with integer coefficients.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 8 / 11

Grzegorczyk’s classes of primitive-recursive functions

E l consist of functions Zs → Zt .

For the base of recursion

class E0 contains
• constant functions xk → c,
• shifts xk → xk + c,
• projections (x1, . . . , xn)→ xk ;

class E1 contains linear functions xk → c · xk and (xk1 , xk2)→ xk1 + xk2 ;

class E2 contains all the polynomials with integer coefficients.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 8 / 11

Grzegorczyk’s classes of primitive-recursive functions

E l consist of functions Zs → Zt .

For the base of recursion

class E0 contains
• constant functions xk → c,
• shifts xk → xk + c,
• projections (x1, . . . , xn)→ xk ;

class E1 contains linear functions xk → c · xk and (xk1 , xk2)→ xk1 + xk2 ;

class E2 contains all the polynomials with integer coefficients.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 8 / 11

Grzegorczyk’s classes of primitive-recursive functions

E l consist of functions Zs → Zt .

For the base of recursion

class E0 contains
• constant functions xk → c,
• shifts xk → xk + c,
• projections (x1, . . . , xn)→ xk ;

class E1 contains linear functions xk → c · xk and (xk1 , xk2)→ xk1 + xk2 ;

class E2 contains all the polynomials with integer coefficients.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 8 / 11

Grzegorczyk’s classes of primitive-recursive functions

E l consist of functions Zs → Zt .

For the base of recursion

class E0 contains
• constant functions xk → c,
• shifts xk → xk + c,
• projections (x1, . . . , xn)→ xk ;

class E1 contains linear functions xk → c · xk and (xk1 , xk2)→ xk1 + xk2 ;

class E2 contains all the polynomials with integer coefficients.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 8 / 11

Grzegorczyk’s classes of primitive-recursive functions

E l consist of functions Zs → Zt .

For the base of recursion

class E0 contains
• constant functions xk → c,
• shifts xk → xk + c,
• projections (x1, . . . , xn)→ xk ;

class E1 contains linear functions xk → c · xk and (xk1 , xk2)→ xk1 + xk2 ;

class E2 contains all the polynomials with integer coefficients.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 8 / 11

Primitive and limited primitive recursion
Let l ≥ 2. For the inductive step of the definition, assume that functions
G(x1, . . . , xn),H(x1, . . . , xn, y , z) ∈ E l . Then the function
F (x1, . . . , xn, y) defined by the primitive recursion,

F (x1, . . . , xn,0) = G(x1, . . . , xn), (1)

F (x1, . . . , xn, y + 1) = H(x1, . . . , xn, y ,F (x1, . . . , xn, y)), (2)

belongs to E l+1.
To complete the definition of E l , l ≥ 0, take the closure with respect to
composition and the following limited primitive recursion:

Let G(x1, . . . , xn),H(x1, . . . , xn, y , z),Q(x1, . . . , xn, y) ∈ E l . Then
the function F (x1, . . . , xn, y) defined by (1),(2) also belongs to E l ,
provided that F (x1, . . . , xn, y) ≤ Q(x1, . . . , xn, y).

Clearly, E l+1 ⊃ E l .
Observe that E3 contains all towers of exponential functions.
Union ∪l<∞E l coincides with the set of all primitive-recursive functions.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 9 / 11

Primitive and limited primitive recursion
Let l ≥ 2. For the inductive step of the definition, assume that functions
G(x1, . . . , xn),H(x1, . . . , xn, y , z) ∈ E l . Then the function
F (x1, . . . , xn, y) defined by the primitive recursion,

F (x1, . . . , xn,0) = G(x1, . . . , xn), (1)

F (x1, . . . , xn, y + 1) = H(x1, . . . , xn, y ,F (x1, . . . , xn, y)), (2)

belongs to E l+1.
To complete the definition of E l , l ≥ 0, take the closure with respect to
composition and the following limited primitive recursion:

Let G(x1, . . . , xn),H(x1, . . . , xn, y , z),Q(x1, . . . , xn, y) ∈ E l . Then
the function F (x1, . . . , xn, y) defined by (1),(2) also belongs to E l ,
provided that F (x1, . . . , xn, y) ≤ Q(x1, . . . , xn, y).

Clearly, E l+1 ⊃ E l .
Observe that E3 contains all towers of exponential functions.
Union ∪l<∞E l coincides with the set of all primitive-recursive functions.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 9 / 11

Primitive and limited primitive recursion
Let l ≥ 2. For the inductive step of the definition, assume that functions
G(x1, . . . , xn),H(x1, . . . , xn, y , z) ∈ E l . Then the function
F (x1, . . . , xn, y) defined by the primitive recursion,

F (x1, . . . , xn,0) = G(x1, . . . , xn), (1)

F (x1, . . . , xn, y + 1) = H(x1, . . . , xn, y ,F (x1, . . . , xn, y)), (2)

belongs to E l+1.
To complete the definition of E l , l ≥ 0, take the closure with respect to
composition and the following limited primitive recursion:

Let G(x1, . . . , xn),H(x1, . . . , xn, y , z),Q(x1, . . . , xn, y) ∈ E l . Then
the function F (x1, . . . , xn, y) defined by (1),(2) also belongs to E l ,
provided that F (x1, . . . , xn, y) ≤ Q(x1, . . . , xn, y).

Clearly, E l+1 ⊃ E l .
Observe that E3 contains all towers of exponential functions.
Union ∪l<∞E l coincides with the set of all primitive-recursive functions.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 9 / 11

Primitive and limited primitive recursion
Let l ≥ 2. For the inductive step of the definition, assume that functions
G(x1, . . . , xn),H(x1, . . . , xn, y , z) ∈ E l . Then the function
F (x1, . . . , xn, y) defined by the primitive recursion,

F (x1, . . . , xn,0) = G(x1, . . . , xn), (1)

F (x1, . . . , xn, y + 1) = H(x1, . . . , xn, y ,F (x1, . . . , xn, y)), (2)

belongs to E l+1.
To complete the definition of E l , l ≥ 0, take the closure with respect to
composition and the following limited primitive recursion:

Let G(x1, . . . , xn),H(x1, . . . , xn, y , z),Q(x1, . . . , xn, y) ∈ E l . Then
the function F (x1, . . . , xn, y) defined by (1),(2) also belongs to E l ,
provided that F (x1, . . . , xn, y) ≤ Q(x1, . . . , xn, y).

Clearly, E l+1 ⊃ E l .
Observe that E3 contains all towers of exponential functions.
Union ∪l<∞E l coincides with the set of all primitive-recursive functions.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 9 / 11

Primitive and limited primitive recursion
Let l ≥ 2. For the inductive step of the definition, assume that functions
G(x1, . . . , xn),H(x1, . . . , xn, y , z) ∈ E l . Then the function
F (x1, . . . , xn, y) defined by the primitive recursion,

F (x1, . . . , xn,0) = G(x1, . . . , xn), (1)

F (x1, . . . , xn, y + 1) = H(x1, . . . , xn, y ,F (x1, . . . , xn, y)), (2)

belongs to E l+1.
To complete the definition of E l , l ≥ 0, take the closure with respect to
composition and the following limited primitive recursion:

Let G(x1, . . . , xn),H(x1, . . . , xn, y , z),Q(x1, . . . , xn, y) ∈ E l . Then
the function F (x1, . . . , xn, y) defined by (1),(2) also belongs to E l ,
provided that F (x1, . . . , xn, y) ≤ Q(x1, . . . , xn, y).

Clearly, E l+1 ⊃ E l .
Observe that E3 contains all towers of exponential functions.
Union ∪l<∞E l coincides with the set of all primitive-recursive functions.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 9 / 11

Primitive and limited primitive recursion
Let l ≥ 2. For the inductive step of the definition, assume that functions
G(x1, . . . , xn),H(x1, . . . , xn, y , z) ∈ E l . Then the function
F (x1, . . . , xn, y) defined by the primitive recursion,

F (x1, . . . , xn,0) = G(x1, . . . , xn), (1)

F (x1, . . . , xn, y + 1) = H(x1, . . . , xn, y ,F (x1, . . . , xn, y)), (2)

belongs to E l+1.
To complete the definition of E l , l ≥ 0, take the closure with respect to
composition and the following limited primitive recursion:

Let G(x1, . . . , xn),H(x1, . . . , xn, y , z),Q(x1, . . . , xn, y) ∈ E l . Then
the function F (x1, . . . , xn, y) defined by (1),(2) also belongs to E l ,
provided that F (x1, . . . , xn, y) ≤ Q(x1, . . . , xn, y).

Clearly, E l+1 ⊃ E l .
Observe that E3 contains all towers of exponential functions.
Union ∪l<∞E l coincides with the set of all primitive-recursive functions.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 9 / 11

Primitive and limited primitive recursion
Let l ≥ 2. For the inductive step of the definition, assume that functions
G(x1, . . . , xn),H(x1, . . . , xn, y , z) ∈ E l . Then the function
F (x1, . . . , xn, y) defined by the primitive recursion,

F (x1, . . . , xn,0) = G(x1, . . . , xn), (1)

F (x1, . . . , xn, y + 1) = H(x1, . . . , xn, y ,F (x1, . . . , xn, y)), (2)

belongs to E l+1.
To complete the definition of E l , l ≥ 0, take the closure with respect to
composition and the following limited primitive recursion:

Let G(x1, . . . , xn),H(x1, . . . , xn, y , z),Q(x1, . . . , xn, y) ∈ E l . Then
the function F (x1, . . . , xn, y) defined by (1),(2) also belongs to E l ,
provided that F (x1, . . . , xn, y) ≤ Q(x1, . . . , xn, y).

Clearly, E l+1 ⊃ E l .
Observe that E3 contains all towers of exponential functions.
Union ∪l<∞E l coincides with the set of all primitive-recursive functions.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 9 / 11

Primitive and limited primitive recursion
Let l ≥ 2. For the inductive step of the definition, assume that functions
G(x1, . . . , xn),H(x1, . . . , xn, y , z) ∈ E l . Then the function
F (x1, . . . , xn, y) defined by the primitive recursion,

F (x1, . . . , xn,0) = G(x1, . . . , xn), (1)

F (x1, . . . , xn, y + 1) = H(x1, . . . , xn, y ,F (x1, . . . , xn, y)), (2)

belongs to E l+1.
To complete the definition of E l , l ≥ 0, take the closure with respect to
composition and the following limited primitive recursion:

Let G(x1, . . . , xn),H(x1, . . . , xn, y , z),Q(x1, . . . , xn, y) ∈ E l . Then
the function F (x1, . . . , xn, y) defined by (1),(2) also belongs to E l ,
provided that F (x1, . . . , xn, y) ≤ Q(x1, . . . , xn, y).

Clearly, E l+1 ⊃ E l .
Observe that E3 contains all towers of exponential functions.
Union ∪l<∞E l coincides with the set of all primitive-recursive functions.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 9 / 11

Complexity of computing a quasi-linear common
multiple
From the explicit bound on the Idealbasissatz (due to Seidenberg) we
obtain the following complexity bound

Corollary
Any pair of ordinary quasi-linear differential equations
y (k) = pk (y (k−1), . . . , y , x), y (k) = qk (y (k−1), . . . , y , x)
of order k with polynomials of degrees deg(pk), deg(qk) ≤ d has a
quasi-linear common multiple of order g(d), where g belongs to the
class Ek+2 of Grzegorczyk’s hierarchy.
This provides also a complexity bound of the similar order of
magnitude of the algorithm which looks for a quasi-linear common
multiple by trying consecutively increasing orders n of a candidate and
solving the membership problem to an ideal generated by first n
derivatives (using Lemma above), say, with the help of Gröbner basis.

In particular, in case of first-order equations (k = 1) function g(d)
grows exponentially.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 10 / 11

Complexity of computing a quasi-linear common
multiple
From the explicit bound on the Idealbasissatz (due to Seidenberg) we
obtain the following complexity bound

Corollary
Any pair of ordinary quasi-linear differential equations
y (k) = pk (y (k−1), . . . , y , x), y (k) = qk (y (k−1), . . . , y , x)
of order k with polynomials of degrees deg(pk), deg(qk) ≤ d has a
quasi-linear common multiple of order g(d), where g belongs to the
class Ek+2 of Grzegorczyk’s hierarchy.
This provides also a complexity bound of the similar order of
magnitude of the algorithm which looks for a quasi-linear common
multiple by trying consecutively increasing orders n of a candidate and
solving the membership problem to an ideal generated by first n
derivatives (using Lemma above), say, with the help of Gröbner basis.

In particular, in case of first-order equations (k = 1) function g(d)
grows exponentially.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 10 / 11

Complexity of computing a quasi-linear common
multiple
From the explicit bound on the Idealbasissatz (due to Seidenberg) we
obtain the following complexity bound

Corollary
Any pair of ordinary quasi-linear differential equations
y (k) = pk (y (k−1), . . . , y , x), y (k) = qk (y (k−1), . . . , y , x)
of order k with polynomials of degrees deg(pk), deg(qk) ≤ d has a
quasi-linear common multiple of order g(d), where g belongs to the
class Ek+2 of Grzegorczyk’s hierarchy.
This provides also a complexity bound of the similar order of
magnitude of the algorithm which looks for a quasi-linear common
multiple by trying consecutively increasing orders n of a candidate and
solving the membership problem to an ideal generated by first n
derivatives (using Lemma above), say, with the help of Gröbner basis.

In particular, in case of first-order equations (k = 1) function g(d)
grows exponentially.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 10 / 11

Complexity of computing a quasi-linear common
multiple
From the explicit bound on the Idealbasissatz (due to Seidenberg) we
obtain the following complexity bound

Corollary
Any pair of ordinary quasi-linear differential equations
y (k) = pk (y (k−1), . . . , y , x), y (k) = qk (y (k−1), . . . , y , x)
of order k with polynomials of degrees deg(pk), deg(qk) ≤ d has a
quasi-linear common multiple of order g(d), where g belongs to the
class Ek+2 of Grzegorczyk’s hierarchy.
This provides also a complexity bound of the similar order of
magnitude of the algorithm which looks for a quasi-linear common
multiple by trying consecutively increasing orders n of a candidate and
solving the membership problem to an ideal generated by first n
derivatives (using Lemma above), say, with the help of Gröbner basis.

In particular, in case of first-order equations (k = 1) function g(d)
grows exponentially.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 10 / 11

Example

Let E1 ≡ y ′ + y2 = 0 and E2 ≡ y ′ + y = 0. A common multiple of order
2 does not exist; however, our algorithm yields the following common
multiple of order 3 involving a parameter C:
E3 ≡ y ′′′+(C−4)yy ′′+(C+1)y ′′+(2C−2)y ′2+(2C+2)yy ′+Cy ′+Cy2.
For C = 0 it simplifies to E0 ≡ y ′′′ + 4yy ′′ + y ′′ − 2y ′2 + 2yy ′ = 0. Our
factorization algorithm yields factors y ′ + y2, y ′ + y and y ′ of E0.

Example

Let E1 ≡ y ′ + y2 = 0 and E2 ≡ y ′ = 0 with solutions y = 1
x+C and

y = C respectively. The common multiple algorithm for E1 and E2
yields y ′′ + 2yy ′ = 0. Its general solution is y = C1 tan(C2 − C1x).

Remark
The general solution of the second-order equation in the preceding
example may also be written as y = C1 tanh(C2 + C1x). From the
latter representation the constant solution may be obtained by taking
the limit C2 →∞.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 11 / 11

Example

Let E1 ≡ y ′ + y2 = 0 and E2 ≡ y ′ + y = 0. A common multiple of order
2 does not exist; however, our algorithm yields the following common
multiple of order 3 involving a parameter C:
E3 ≡ y ′′′+(C−4)yy ′′+(C+1)y ′′+(2C−2)y ′2+(2C+2)yy ′+Cy ′+Cy2.
For C = 0 it simplifies to E0 ≡ y ′′′ + 4yy ′′ + y ′′ − 2y ′2 + 2yy ′ = 0. Our
factorization algorithm yields factors y ′ + y2, y ′ + y and y ′ of E0.

Example

Let E1 ≡ y ′ + y2 = 0 and E2 ≡ y ′ = 0 with solutions y = 1
x+C and

y = C respectively. The common multiple algorithm for E1 and E2
yields y ′′ + 2yy ′ = 0. Its general solution is y = C1 tan(C2 − C1x).

Remark
The general solution of the second-order equation in the preceding
example may also be written as y = C1 tanh(C2 + C1x). From the
latter representation the constant solution may be obtained by taking
the limit C2 →∞.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 11 / 11

Example

Let E1 ≡ y ′ + y2 = 0 and E2 ≡ y ′ + y = 0. A common multiple of order
2 does not exist; however, our algorithm yields the following common
multiple of order 3 involving a parameter C:
E3 ≡ y ′′′+(C−4)yy ′′+(C+1)y ′′+(2C−2)y ′2+(2C+2)yy ′+Cy ′+Cy2.
For C = 0 it simplifies to E0 ≡ y ′′′ + 4yy ′′ + y ′′ − 2y ′2 + 2yy ′ = 0. Our
factorization algorithm yields factors y ′ + y2, y ′ + y and y ′ of E0.

Example

Let E1 ≡ y ′ + y2 = 0 and E2 ≡ y ′ = 0 with solutions y = 1
x+C and

y = C respectively. The common multiple algorithm for E1 and E2
yields y ′′ + 2yy ′ = 0. Its general solution is y = C1 tan(C2 − C1x).

Remark
The general solution of the second-order equation in the preceding
example may also be written as y = C1 tanh(C2 + C1x). From the
latter representation the constant solution may be obtained by taking
the limit C2 →∞.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 11 / 11

Example

Let E1 ≡ y ′ + y2 = 0 and E2 ≡ y ′ + y = 0. A common multiple of order
2 does not exist; however, our algorithm yields the following common
multiple of order 3 involving a parameter C:
E3 ≡ y ′′′+(C−4)yy ′′+(C+1)y ′′+(2C−2)y ′2+(2C+2)yy ′+Cy ′+Cy2.
For C = 0 it simplifies to E0 ≡ y ′′′ + 4yy ′′ + y ′′ − 2y ′2 + 2yy ′ = 0. Our
factorization algorithm yields factors y ′ + y2, y ′ + y and y ′ of E0.

Example

Let E1 ≡ y ′ + y2 = 0 and E2 ≡ y ′ = 0 with solutions y = 1
x+C and

y = C respectively. The common multiple algorithm for E1 and E2
yields y ′′ + 2yy ′ = 0. Its general solution is y = C1 tan(C2 − C1x).

Remark
The general solution of the second-order equation in the preceding
example may also be written as y = C1 tanh(C2 + C1x). From the
latter representation the constant solution may be obtained by taking
the limit C2 →∞.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 11 / 11

Example

Let E1 ≡ y ′ + y2 = 0 and E2 ≡ y ′ + y = 0. A common multiple of order
2 does not exist; however, our algorithm yields the following common
multiple of order 3 involving a parameter C:
E3 ≡ y ′′′+(C−4)yy ′′+(C+1)y ′′+(2C−2)y ′2+(2C+2)yy ′+Cy ′+Cy2.
For C = 0 it simplifies to E0 ≡ y ′′′ + 4yy ′′ + y ′′ − 2y ′2 + 2yy ′ = 0. Our
factorization algorithm yields factors y ′ + y2, y ′ + y and y ′ of E0.

Example

Let E1 ≡ y ′ + y2 = 0 and E2 ≡ y ′ = 0 with solutions y = 1
x+C and

y = C respectively. The common multiple algorithm for E1 and E2
yields y ′′ + 2yy ′ = 0. Its general solution is y = C1 tan(C2 − C1x).

Remark
The general solution of the second-order equation in the preceding
example may also be written as y = C1 tanh(C2 + C1x). From the
latter representation the constant solution may be obtained by taking
the limit C2 →∞.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 11 / 11

Example

Let E1 ≡ y ′ + y2 = 0 and E2 ≡ y ′ + y = 0. A common multiple of order
2 does not exist; however, our algorithm yields the following common
multiple of order 3 involving a parameter C:
E3 ≡ y ′′′+(C−4)yy ′′+(C+1)y ′′+(2C−2)y ′2+(2C+2)yy ′+Cy ′+Cy2.
For C = 0 it simplifies to E0 ≡ y ′′′ + 4yy ′′ + y ′′ − 2y ′2 + 2yy ′ = 0. Our
factorization algorithm yields factors y ′ + y2, y ′ + y and y ′ of E0.

Example

Let E1 ≡ y ′ + y2 = 0 and E2 ≡ y ′ = 0 with solutions y = 1
x+C and

y = C respectively. The common multiple algorithm for E1 and E2
yields y ′′ + 2yy ′ = 0. Its general solution is y = C1 tan(C2 − C1x).

Remark
The general solution of the second-order equation in the preceding
example may also be written as y = C1 tanh(C2 + C1x). From the
latter representation the constant solution may be obtained by taking
the limit C2 →∞.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 11 / 11

Example

Let E1 ≡ y ′ + y2 = 0 and E2 ≡ y ′ + y = 0. A common multiple of order
2 does not exist; however, our algorithm yields the following common
multiple of order 3 involving a parameter C:
E3 ≡ y ′′′+(C−4)yy ′′+(C+1)y ′′+(2C−2)y ′2+(2C+2)yy ′+Cy ′+Cy2.
For C = 0 it simplifies to E0 ≡ y ′′′ + 4yy ′′ + y ′′ − 2y ′2 + 2yy ′ = 0. Our
factorization algorithm yields factors y ′ + y2, y ′ + y and y ′ of E0.

Example

Let E1 ≡ y ′ + y2 = 0 and E2 ≡ y ′ = 0 with solutions y = 1
x+C and

y = C respectively. The common multiple algorithm for E1 and E2
yields y ′′ + 2yy ′ = 0. Its general solution is y = C1 tan(C2 − C1x).

Remark
The general solution of the second-order equation in the preceding
example may also be written as y = C1 tanh(C2 + C1x). From the
latter representation the constant solution may be obtained by taking
the limit C2 →∞.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 11 / 11

Example

Let E1 ≡ y ′ + y2 = 0 and E2 ≡ y ′ + y = 0. A common multiple of order
2 does not exist; however, our algorithm yields the following common
multiple of order 3 involving a parameter C:
E3 ≡ y ′′′+(C−4)yy ′′+(C+1)y ′′+(2C−2)y ′2+(2C+2)yy ′+Cy ′+Cy2.
For C = 0 it simplifies to E0 ≡ y ′′′ + 4yy ′′ + y ′′ − 2y ′2 + 2yy ′ = 0. Our
factorization algorithm yields factors y ′ + y2, y ′ + y and y ′ of E0.

Example

Let E1 ≡ y ′ + y2 = 0 and E2 ≡ y ′ = 0 with solutions y = 1
x+C and

y = C respectively. The common multiple algorithm for E1 and E2
yields y ′′ + 2yy ′ = 0. Its general solution is y = C1 tan(C2 − C1x).

Remark
The general solution of the second-order equation in the preceding
example may also be written as y = C1 tanh(C2 + C1x). From the
latter representation the constant solution may be obtained by taking
the limit C2 →∞.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 11 / 11

Example

Let E1 ≡ y ′ + y2 = 0 and E2 ≡ y ′ + y = 0. A common multiple of order
2 does not exist; however, our algorithm yields the following common
multiple of order 3 involving a parameter C:
E3 ≡ y ′′′+(C−4)yy ′′+(C+1)y ′′+(2C−2)y ′2+(2C+2)yy ′+Cy ′+Cy2.
For C = 0 it simplifies to E0 ≡ y ′′′ + 4yy ′′ + y ′′ − 2y ′2 + 2yy ′ = 0. Our
factorization algorithm yields factors y ′ + y2, y ′ + y and y ′ of E0.

Example

Let E1 ≡ y ′ + y2 = 0 and E2 ≡ y ′ = 0 with solutions y = 1
x+C and

y = C respectively. The common multiple algorithm for E1 and E2
yields y ′′ + 2yy ′ = 0. Its general solution is y = C1 tan(C2 − C1x).

Remark
The general solution of the second-order equation in the preceding
example may also be written as y = C1 tanh(C2 + C1x). From the
latter representation the constant solution may be obtained by taking
the limit C2 →∞.

Dima Grigoriev (CNRS) Computing divisors and common multiples 10.9.12 11 / 11

