Computing divisors and common multiples of quasi-linear ordinary differential equations (jointly with F. Schwarz)

Dima Grigoriev (Lille)

CNRS
10/09/2012, Berlin

Factoring ordinary differential equations

Definition

Ordinary differential equation $f\left(y^{(k)}, \ldots, y^{\prime}, y, x\right)=0$ is a generalized factor of $g\left(y^{(n)}, \ldots, y^{\prime}, y, x\right)=0$ if any solution of the former is a solution of the latter.

Factoring of a linear operator is not unique. Thus, the problem is to produce some factoring into irreducible factors. - Beke-Schlesinger (1894): An algorithm for factoring linear operators A with coefficients $a_{i} \in \overline{\mathbb{Q}}(x)$ (triple-exponential complexity); - G. (1987): An algorithm with double-exponential complexity. Conjecture: the sharp bound of complexity is exponential.; - Tsarev (1996): An algorithm to describe the variety of all the factorizations of an operator

Factoring ordinary differential equations

Definition

Ordinary differential equation $f\left(y^{(k)}, \ldots, y^{\prime}, y, x\right)=0$ is a generalized factor of $g\left(y^{(n)}, \ldots, y^{\prime}, y, x\right)=0$ if any solution of the former is a solution of the latter.

Factoring linear operators

A linear operator $A=\sum_{0 \leq i \leq k} a_{i} \cdot y^{(i)}$ is a (generalized) factor of a linear operator $B=\sum_{0 \leq j \leq n} b_{j} \cdot y^{(\bar{j})}$ iff $B=C A$ for a suitable linear operator C.

Factoring ordinary differential equations

Definition

Ordinary differential equation $f\left(y^{(k)}, \ldots, y^{\prime}, y, x\right)=0$ is a generalized factor of $g\left(y^{(n)}, \ldots, y^{\prime}, y, x\right)=0$ if any solution of the former is a solution of the latter.

Factoring linear operators

A linear operator $A=\sum_{0 \leq i \leq k} a_{i} \cdot y^{(i)}$ is a (generalized) factor of a linear operator $B=\sum_{0 \leq j \leq n} b_{j} \cdot y^{(j)}$ iff $B=C A$ for a suitable linear operator C. Factoring of a linear operator is not unique.

Factoring ordinary differential equations

Definition

Ordinary differential equation $f\left(y^{(k)}, \ldots, y^{\prime}, y, x\right)=0$ is a generalized factor of $g\left(y^{(n)}, \ldots, y^{\prime}, y, x\right)=0$ if any solution of the former is a solution of the latter.

Factoring linear operators

A linear operator $A=\sum_{0 \leq i \leq k} a_{i} \cdot y^{(i)}$ is a (generalized) factor of a linear operator $B=\sum_{0 \leq j \leq n} b_{j} \cdot y^{(\bar{j})}$ iff $B=C A$ for a suitable linear operator C. Factoring of a linear operator is not unique. Thus, the problem is to produce some factoring into irreducible factors.

Factoring ordinary differential equations

Definition

Ordinary differential equation $f\left(y^{(k)}, \ldots, y^{\prime}, y, x\right)=0$ is a generalized factor of $g\left(y^{(n)}, \ldots, y^{\prime}, y, x\right)=0$ if any solution of the former is a solution of the latter.

Factoring linear operators

A linear operator $A=\sum_{0 \leq i \leq k} a_{i} \cdot y^{(i)}$ is a (generalized) factor of a linear operator $B=\sum_{0 \leq j \leq n} b_{j} \cdot y^{(\bar{J})}$ iff $B=C A$ for a suitable linear operator C. Factoring of a linear operator is not unique. Thus, the problem is to produce some factoring into irreducible factors.

- Beke-Schlesinger (1894): An algorithm for factoring linear operators A with coefficients $a_{i} \in \mathbb{Q}(x)$ (triple-exponential complexity);

Factoring ordinary differential equations

Definition

Ordinary differential equation $f\left(y^{(k)}, \ldots, y^{\prime}, y, x\right)=0$ is a generalized factor of $g\left(y^{(n)}, \ldots, y^{\prime}, y, x\right)=0$ if any solution of the former is a solution of the latter.

Factoring linear operators

A linear operator $A=\sum_{0 \leq i \leq k} a_{i} \cdot y^{(i)}$ is a (generalized) factor of a linear operator $B=\sum_{0 \leq j \leq n} b_{j} \cdot y^{(\bar{j})}$ iff $B=C A$ for a suitable linear operator C. Factoring of a linear operator is not unique. Thus, the problem is to produce some factoring into irreducible factors.

- Beke-Schlesinger (1894): An algorithm for factoring linear operators A with coefficients $a_{i} \in \mathbb{Q}(x)$ (triple-exponential complexity);
- G. (1987): An algorithm with double-exponential complexity.

Factoring ordinary differential equations

Definition

Ordinary differential equation $f\left(y^{(k)}, \ldots, y^{\prime}, y, x\right)=0$ is a generalized factor of $g\left(y^{(n)}, \ldots, y^{\prime}, y, x\right)=0$ if any solution of the former is a solution of the latter.

Factoring linear operators

A linear operator $A=\sum_{0 \leq i \leq k} a_{i} \cdot y^{(i)}$ is a (generalized) factor of a linear operator $B=\sum_{0 \leq j \leq n} b_{j} \cdot y^{(\bar{j})}$ iff $B=C A$ for a suitable linear operator C. Factoring of a linear operator is not unique. Thus, the problem is to produce some factoring into irreducible factors.

- Beke-Schlesinger (1894): An algorithm for factoring linear operators A with coefficients $a_{i} \in \mathbb{Q}(x)$ (triple-exponential complexity);
- G. (1987): An algorithm with double-exponential complexity.

Conjecture: the sharp bound of complexity is exponential.;

Factoring ordinary differential equations

Definition

Ordinary differential equation $f\left(y^{(k)}, \ldots, y^{\prime}, y, x\right)=0$ is a generalized factor of $g\left(y^{(n)}, \ldots, y^{\prime}, y, x\right)=0$ if any solution of the former is a solution of the latter.

Factoring linear operators

A linear operator $A=\sum_{0 \leq i \leq k} a_{i} \cdot y^{(i)}$ is a (generalized) factor of a linear operator $B=\sum_{0 \leq j \leq n} b_{j} \cdot y^{(j)}$ iff $B=C A$ for a suitable linear operator C. Factoring of a linear operator is not unique. Thus, the problem is to produce some factoring into irreducible factors.

- Beke-Schlesinger (1894): An algorithm for factoring linear operators A with coefficients $a_{i} \in \mathbb{Q}(x)$ (triple-exponential complexity);
- G. (1987): An algorithm with double-exponential complexity. Conjecture: the sharp bound of complexity is exponential.;
- Tsarev (1996): An algorithm to describe the variety of all the factorizations of an operator.

Quasi-linear generalized factors

The algebra of differential polynomials $\mathbb{C}\{y\}:=\mathbb{C}\left[x, y, y^{\prime}, y^{\prime \prime}, \ldots\right]$ is a module over the algebra $\mathbb{C}\{y\}\left[\frac{d}{d x}\right]$ of linear operators with coefficients in $\mathbb{C}\{y\}$.

Quasi-linear generalized factors

The algebra of differential polynomials $\mathbb{C}\{y\}:=\mathbb{C}\left[x, y, y^{\prime}, y^{\prime \prime}, \ldots\right]$ is a module over the algebra $\mathbb{C}\{y\}\left[\frac{d}{d x}\right]$ of linear operators with coefficients in $\mathbb{C}\{y\}$. For a differential polynomial $p \in \mathbb{C}\{y\}$ and an operator $H \in \mathbb{C}\{y\}\left[\frac{d}{d x}\right]$ their action denote by $H * p \in \mathbb{C}\{y\}$.

Quasi-linear generalized factors

The algebra of differential polynomials $\mathbb{C}\{y\}:=\mathbb{C}\left[x, y, y^{\prime}, y^{\prime \prime}, \ldots\right]$ is a module over the algebra $\mathbb{C}\{y\}\left[\frac{d}{d x}\right]$ of linear operators with coefficients in $\mathbb{C}\{y\}$. For a differential polynomial $p \in \mathbb{C}\{y\}$ and an operator $H \in \mathbb{C}\{y\}\left[\frac{d}{d x}\right]$ their action denote by $H * p \in \mathbb{C}\{y\}$.

Lemma

A quasi-linear differential polynomial $y^{(k+1)}-f\left(y^{(k)}, \ldots, y^{\prime}, y, x\right)$ is a generalized factor of a differential polynomial p iff there exists a linear operator $H \in \mathbb{C}\{y\}\left[\frac{d}{d x}\right]$ such that $H *\left(y^{(k+1)}-f\left(y^{(k)}, \ldots, y^{\prime}, y, x\right)\right)=p$

Quasi-linear generalized factors

The algebra of differential polynomials $\mathbb{C}\{y\}:=\mathbb{C}\left[x, y, y^{\prime}, y^{\prime \prime}, \ldots\right]$ is a module over the algebra $\mathbb{C}\{y\}\left[\frac{d}{d x}\right]$ of linear operators with coefficients in $\mathbb{C}\{y\}$. For a differential polynomial $p \in \mathbb{C}\{y\}$ and an operator $H \in \mathbb{C}\{y\}\left[\frac{d}{d x}\right]$ their action denote by $H * p \in \mathbb{C}\{y\}$.

Lemma

A quasi-linear differential polynomial $y^{(k+1)}-f\left(y^{(k)}, \ldots, y^{\prime}, y, x\right)$ is a generalized factor of a differential polynomial p iff there exists a linear operator $H \in \mathbb{C}\{y\}\left[\frac{d}{d x}\right]$ such that $H *\left(y^{(k+1)}-f\left(y^{(k)}, \ldots, y^{\prime}, y, x\right)\right)=p$

Tsarev (1999), Gao-Zhang (2008) studied another concept of decomposition of differential polynomials when in a differential polynomial p (depending on several variables y_{1}, \ldots, y_{m}) some differential polynomials p_{1}, \ldots, p_{m} are substituted.

Quasi-linear generalized factors

The algebra of differential polynomials $\mathbb{C}\{y\}:=\mathbb{C}\left[x, y, y^{\prime}, y^{\prime \prime}, \ldots\right]$ is a module over the algebra $\mathbb{C}\{y\}\left[\frac{d}{d x}\right]$ of linear operators with coefficients in $\mathbb{C}\{y\}$. For a differential polynomial $p \in \mathbb{C}\{y\}$ and an operator $H \in \mathbb{C}\{y\}\left[\frac{d}{d x}\right]$ their action denote by $H * p \in \mathbb{C}\{y\}$.

Lemma

A quasi-linear differential polynomial $y^{(k+1)}-f\left(y^{(k)}, \ldots, y^{\prime}, y, x\right)$ is a generalized factor of a differential polynomial p iff there exists a linear operator $H \in \mathbb{C}\{y\}\left[\frac{d}{d x}\right]$ such that $H *\left(y^{(k+1)}-f\left(y^{(k)}, \ldots, y^{\prime}, y, x\right)\right)=p$

Tsarev (1999), Gao-Zhang (2008) studied another concept of decomposition of differential polynomials when in a differential polynomial p (depending on several variables y_{1}, \ldots, y_{m}) some differential polynomials p_{1}, \ldots, p_{m} are substituted. This decomposition differs from our notion of factoring.

Quasi-linear generalized factors

The algebra of differential polynomials $\mathbb{C}\{y\}:=\mathbb{C}\left[x, y, y^{\prime}, y^{\prime \prime}, \ldots\right]$ is a module over the algebra $\mathbb{C}\{y\}\left[\frac{d}{d x}\right]$ of linear operators with coefficients in $\mathbb{C}\{y\}$. For a differential polynomial $p \in \mathbb{C}\{y\}$ and an operator $H \in \mathbb{C}\{y\}\left[\frac{d}{d x}\right]$ their action denote by $H * p \in \mathbb{C}\{y\}$.

Lemma

A quasi-linear differential polynomial $y^{(k+1)}-f\left(y^{(k)}, \ldots, y^{\prime}, y, x\right)$ is a generalized factor of a differential polynomial p iff there exists a linear operator $H \in \mathbb{C}\{y\}\left[\frac{d}{d x}\right]$ such that $H *\left(y^{(k+1)}-f\left(y^{(k)}, \ldots, y^{\prime}, y, x\right)\right)=p$

Tsarev (1999), Gao-Zhang (2008) studied another concept of decomposition of differential polynomials when in a differential polynomial p (depending on several variables y_{1}, \ldots, y_{m}) some differential polynomials p_{1}, \ldots, p_{m} are substituted. This decomposition differs from our notion of factoring. Tsarev, Gao-Zhang have designed algorithms to decompose differential polynomials.

Factoring a quasi-linear second-order equation

Theorem

1) If a first-order quasi-linear differential polynomial $y^{\prime}-p(y, x)$ is a generalized factor of a second-order quasi-linear differential polynomial $y^{\prime \prime}-f\left(y^{\prime}, y, x\right)$ for polynomials $p(y, x) \in \overline{\mathbb{Q}}[y, x], f(z, y, x)=\sum_{0 \leq i \leq 1} f_{i} \cdot\left(y^{\prime}\right)^{i} \in \overline{\mathbb{Q}}[z, y, x]$,

Factoring a quasi-linear second-order equation

Theorem

1) If a first-order quasi-linear differential polynomial $y^{\prime}-p(y, x)$ is a generalized factor of a second-order quasi-linear differential polynomial $y^{\prime \prime}-f\left(y^{\prime}, y, x\right)$ for polynomials $p(y, x) \in \overline{\mathbb{Q}}[y, x], f(z, y, x)=\sum_{0 \leq i \leq 1} f_{i} \cdot\left(y^{\prime}\right)^{i} \in \overline{\mathbb{Q}}[z, y, x]$, then $\operatorname{deg}_{x}(p) \leq \max \left\{\operatorname{deg}_{x}(f), 1+\operatorname{deg}_{x}\left(\bar{f}_{0}\right)\right\}, \operatorname{deg}_{y}(p) \leq \max \left\{\operatorname{deg}_{y}(f), \operatorname{deg}_{y}\left(f_{1}\right)\right\}$.

Factoring a quasi-linear second-order equation

Theorem

1) If a first-order quasi-linear differential polynomial $y^{\prime}-p(y, x)$ is a generalized factor of a second-order quasi-linear differential polynomial $y^{\prime \prime}-f\left(y^{\prime}, y, x\right)$ for polynomials $p(y, x) \in \overline{\mathbb{Q}}[y, x], f(z, y, x)=\sum_{0 \leq i \leq 1} f_{i} \cdot\left(y^{\prime}\right)^{i} \in \overline{\mathbb{Q}}[z, y, x]$, then $\operatorname{deg}_{x}(p) \leq \max \left\{\operatorname{deg}_{x}(f), 1+\operatorname{deg}_{x}\left(\overline{f_{0}}\right)\right\}, \operatorname{deg}_{y}(p) \leq \max \left\{\operatorname{deg}_{y}(f), \operatorname{deg}_{y}\left(f_{1}\right)\right\}$. 2) An algorithm is designed which for a second-order quasi-linear differential polynomial $y^{\prime \prime}-f\left(y^{\prime}, y, x\right)$ either produces some its first-order generalized divisor $y^{\prime}-p(y, x)$ satisfying the bounds from 1) or certifies that it does not exist.

Factoring a quasi-linear second-order equation

Theorem

1) If a first-order quasi-linear differential polynomial $y^{\prime}-p(y, x)$ is a generalized factor of a second-order quasi-linear differential polynomial $y^{\prime \prime}-f\left(y^{\prime}, y, x\right)$ for polynomials
$p(y, x) \in \overline{\mathbb{Q}}[y, x], f(z, y, x)=\sum_{0 \leq i \leq 1} f_{i} \cdot\left(y^{\prime}\right)^{i} \in \overline{\mathbb{Q}}[z, y, x]$, then $\operatorname{deg}_{x}(p) \leq \max \left\{\operatorname{deg}_{x}(f), 1+\operatorname{deg}_{x}\left(\bar{f}_{0}\right)\right\}, \operatorname{deg}_{y}(p) \leq \max \left\{\operatorname{deg}_{y}(f), \operatorname{deg}_{y}\left(f_{1}\right)\right\}$. 2) An algorithm is designed which for a second-order quasi-linear differential polynomial $y^{\prime \prime}-f\left(y^{\prime}, y, x\right)$ either produces some its first-order generalized divisor $y^{\prime}-p(y, x)$ satisfying the bounds from 1) or certifies that it does not exist.

The algorithm from 2) solves a system of polynomial equations in the indeterminate coefficients of polynomial p resulting from the equality $\frac{\partial p}{\partial y} \cdot p+\frac{\partial p}{\partial x}=\sum_{0 \leq i \leq 1} f_{i} \cdot p^{i}$

Factoring a quasi-linear second-order equation

Theorem

1) If a first-order quasi-linear differential polynomial $y^{\prime}-p(y, x)$ is a generalized factor of a second-order quasi-linear differential polynomial $y^{\prime \prime}-f\left(y^{\prime}, y, x\right)$ for polynomials
$p(y, x) \in \overline{\mathbb{Q}}[y, x], f(z, y, x)=\sum_{0 \leq i \leq 1} f_{i} \cdot\left(y^{\prime}\right)^{i} \in \overline{\mathbb{Q}}[z, y, x]$, then $\operatorname{deg}_{x}(p) \leq \max \left\{\operatorname{deg}_{x}(f), 1+\operatorname{deg}_{x}\left(\bar{f}_{0}\right)\right\}, \operatorname{deg}_{y}(p) \leq \max \left\{\operatorname{deg}_{y}(f), \operatorname{deg}_{y}\left(f_{1}\right)\right\}$. 2) An algorithm is designed which for a second-order quasi-linear differential polynomial $y^{\prime \prime}-f\left(y^{\prime}, y, x\right)$ either produces some its first-order generalized divisor $y^{\prime}-p(y, x)$ satisfying the bounds from 1) or certifies that it does not exist.

The algorithm from 2) solves a system of polynomial equations in the indeterminate coefficients of polynomial p resulting from the equality $\frac{\partial p}{\partial y} \cdot p+\frac{\partial p}{\partial x}=\sum_{0 \leq i \leq 1} f_{i} \cdot p^{i}$
which is equivalent to $y^{\prime}-p(y, x)$ being a generalized factor of $y^{\prime \prime}-f\left(y^{\prime}, y, x\right)$.

Factoring a quasi-linear second-order equation

Theorem

1) If a first-order quasi-linear differential polynomial $y^{\prime}-p(y, x)$ is a generalized factor of a second-order quasi-linear differential polynomial $y^{\prime \prime}-f\left(y^{\prime}, y, x\right)$ for polynomials
$p(y, x) \in \overline{\mathbb{Q}}[y, x], f(z, y, x)=\sum_{0 \leq i \leq 1} f_{i} \cdot\left(y^{\prime}\right)^{i} \in \overline{\mathbb{Q}}[z, y, x]$, then $\operatorname{deg}_{x}(p) \leq \max \left\{\operatorname{deg}_{x}(f), 1+\operatorname{deg}_{x}\left(\bar{f}_{0}\right)\right\}, \operatorname{deg}_{y}(p) \leq \max \left\{\operatorname{deg}_{y}(f), \operatorname{deg}_{y}\left(f_{1}\right)\right\}$. 2) An algorithm is designed which for a second-order quasi-linear differential polynomial $y^{\prime \prime}-f\left(y^{\prime}, y, x\right)$ either produces some its first-order generalized divisor $y^{\prime}-p(y, x)$ satisfying the bounds from 1) or certifies that it does not exist.

The algorithm from 2) solves a system of polynomial equations in the indeterminate coefficients of polynomial p resulting from the equality $\frac{\partial p}{\partial y} \cdot p+\frac{\partial p}{\partial x}=\sum_{0 \leq i \leq 1} f_{i} \cdot p^{i}$
which is equivalent to $y^{\prime}-p(y, x)$ being a generalized factor of $y^{\prime \prime}-f\left(y^{\prime}, y, x\right)$. Also from this equality one deduces 1) making use of the relation $p \left\lvert\,\left(f_{0}-\frac{\partial p}{\partial x}\right)\right.$.

It would be interesting to extend the factoring algorithm from the second to an arbitrary order and from quasi-linear to arbitrary equations (perhaps, also from ordinary to partial differential equations).

Consider the equation

Applying Theorem 2) two factors are obtained and the representations

follow. They yield the two one-parameter solutions

It would be interesting to extend the factoring algorithm from the second to an arbitrary order and from quasi-linear to arbitrary equations (perhaps, also from ordinary to partial differential equations).

Example

Consider the equation

$$
E \equiv y^{\prime \prime}+(x+3 y) y^{\prime}+y^{3}+x y^{2}=0
$$

According to the above Theorem 1) $\operatorname{deg}_{x} E \leq 1$ and $\operatorname{deg}_{y} E \leq 3$.

It would be interesting to extend the factoring algorithm from the second to an arbitrary order and from quasi-linear to arbitrary equations (perhaps, also from ordinary to partial differential equations).

Example

Consider the equation

$$
E \equiv y^{\prime \prime}+(x+3 y) y^{\prime}+y^{3}+x y^{2}=0
$$

According to the above Theorem 1) $\operatorname{deg}_{x} E \leq 1$ and $\operatorname{deg}_{y} E \leq 3$.
Applying Theorem 2) two factors are obtained and the representations
$E \equiv\left(y^{\prime}+y^{2}\right)^{\prime}+(y+x)\left(y^{\prime}+y^{2}\right), \quad E=\left(y^{\prime}+y^{2}+x y-1\right)^{\prime}+y\left(y^{\prime}+y^{2}+x y-1\right)$
follow.

It would be interesting to extend the factoring algorithm from the second to an arbitrary order and from quasi-linear to arbitrary equations (perhaps, also from ordinary to partial differential equations).

Example

Consider the equation

$$
E \equiv y^{\prime \prime}+(x+3 y) y^{\prime}+y^{3}+x y^{2}=0
$$

According to the above Theorem 1) $\operatorname{deg}_{x} E \leq 1$ and $\operatorname{deg}_{y} E \leq 3$.
Applying Theorem 2) two factors are obtained and the representations
$E \equiv\left(y^{\prime}+y^{2}\right)^{\prime}+(y+x)\left(y^{\prime}+y^{2}\right), \quad E=\left(y^{\prime}+y^{2}+x y-1\right)^{\prime}+y\left(y^{\prime}+y^{2}+x y-1\right)$
follow. They yield the two one-parameter solutions

$$
y=\frac{1}{x+C}, \quad y=\frac{1}{x}+\frac{1}{x^{2}} \frac{\exp \left(-\frac{1}{2} x^{2}\right)}{\int \exp \left(-\frac{1}{2} x^{2}\right) \frac{d x}{x^{2}}+C}
$$

respectively.

Quasi-linear common multiples

We say that a differential polynomial $f \in \mathbb{C}\{y\}$ is a common multiple of differential polynomials f_{1}, f_{2} if solutions of $f=0$ contain solutions of both $f_{1}=0$ and $f_{2}=0$.

Quasi-linear common multiples

We say that a differential polynomial $f \in \mathbb{C}\{y\}$ is a common multiple of differential polynomials f_{1}, f_{2} if solutions of $f=0$ contain solutions of both $f_{1}=0$ and $f_{2}=0$.

Lemma

For polynomials $p, q \in \mathbb{Q}[y, x]$ there exists a quasi-linear common multiple of the order $n+1$ of a pair of first-order equations $y^{\prime}=p(y, x), y^{\prime}=q(y, x)$

Quasi-linear common multiples

We say that a differential polynomial $f \in \mathbb{C}\{y\}$ is a common multiple of differential polynomials f_{1}, f_{2} if solutions of $f=0$ contain solutions of both $f_{1}=0$ and $f_{2}=0$.

Lemma

For polynomials $p, q \in \mathbb{Q}[y, x]$ there exists a quasi-linear common multiple of the order $n+1$ of a pair of first-order equations $y^{\prime}=p(y, x), y^{\prime}=q(y, x)$ iff n-th derivative $(p-q)^{(n)} \in\left\langle p-q,(p-q)^{(1)}, \ldots,(p-q)^{(n-1)}\right\rangle$ belongs to the ideal (in the algebra $\mathbb{Q}[y, x]$) generated by first $n-1$ derivatives of $p-q$.

Quasi-linear common multiples

We say that a differential polynomial $f \in \mathbb{C}\{y\}$ is a common multiple of differential polynomials f_{1}, f_{2} if solutions of $f=0$ contain solutions of both $f_{1}=0$ and $f_{2}=0$.

Lemma

For polynomials $p, q \in \mathbb{Q}[y, x]$ there exists a quasi-linear common multiple of the order $n+1$ of a pair of first-order equations $y^{\prime}=p(y, x), y^{\prime}=q(y, x)$ iff n-th derivative
$(p-q)^{(n)} \in\left\langle p-q,(p-q)^{(1)}, \ldots,(p-q)^{(n-1)}\right\rangle$
belongs to the ideal (in the algebra $\mathbb{Q}[y, x]$) generated by first $n-1$ derivatives of $p-q$.
More explicitly, if the latter relation holds, i. e.
$(p-q)^{(n)}=\sum_{0 \leq i<n} r_{i} \cdot(p-q)^{(i)}$ for some polynomials $r_{i} \in \mathbb{Q}[y, x], 0 \leq i<n$

Quasi-linear common multiples

We say that a differential polynomial $f \in \mathbb{C}\{y\}$ is a common multiple of differential polynomials f_{1}, f_{2} if solutions of $f=0$ contain solutions of both $f_{1}=0$ and $f_{2}=0$.

Lemma

For polynomials $p, q \in \mathbb{Q}[y, x]$ there exists a quasi-linear common multiple of the order $n+1$ of a pair of first-order equations $y^{\prime}=p(y, x), y^{\prime}=q(y, x)$ iff n-th derivative
$(p-q)^{(n)} \in\left\langle p-q,(p-q)^{(1)}, \ldots,(p-q)^{(n-1)}\right\rangle$
belongs to the ideal (in the algebra $\mathbb{Q}[y, x]$) generated by first $n-1$ derivatives of $p-q$.
More explicitly, if the latter relation holds, i. e.
$(p-q)^{(n)}=\sum_{0 \leq i<n} r_{i} \cdot(p-q)^{(i)}$ for some polynomials
$r_{i} \in \mathbb{Q}[y, x], 0 \leq i<n$ then for polynomial
$s_{n}\left(z_{n}, \ldots, z_{1}, y, x\right):=\sum_{0 \leq i<n} r_{i} \cdot\left(z_{i+1}-p^{(i)}\right)+p^{(n)}=$
$\sum_{0 \leq i<n} r_{i} \cdot\left(z_{i+1}-q^{(i)}\right)+q^{(n)}$ equation $y^{(n+1)}=s_{n}\left(y^{(n)}, \ldots, y^{\prime}, y, x\right)$ is a required quasi-linear common multiple.

Existence of a quasi-linear common multiple

One can directly extend the lemma to a quasi-linear common multiple of a pair of quasi-linear equations of an arbitrary order.
Employing Hilbert's Idealbasissatz we obtain

Any pair of ordinary quasi-linear differential equations has a
quasi-linear common multiple.
To formulate the complexity bound of an algorithm computing a quasi-linear common multiple we need to recall Grzegorczyk's classes of primitive-recursive function

Existence of a quasi-linear common multiple

One can directly extend the lemma to a quasi-linear common multiple of a pair of quasi-linear equations of an arbitrary order.
Employing Hilbert's Idealbasissatz we obtain

Corollary

Any pair of ordinary quasi-linear differential equations has a quasi-linear common multiple.

Existence of a quasi-linear common multiple

One can directly extend the lemma to a quasi-linear common multiple of a pair of quasi-linear equations of an arbitrary order.
Employing Hilbert's Idealbasissatz we obtain

Corollary

Any pair of ordinary quasi-linear differential equations has a quasi-linear common multiple.

To formulate the complexity bound of an algorithm computing a quasi-linear common multiple we need to recall Grzegorczyk's classes of primitive-recursive function

Grzegorczyk's classes of primitive-recursive functions

\mathcal{E}^{l} consist of functions $\mathbb{Z}^{s} \rightarrow \mathbb{Z}^{t}$.

For the base of recursion
chass en contains

- constant functions $x_{k} \rightarrow C$,

Grzegorczyk's classes of primitive-recursive functions

\mathcal{E}^{l} consist of functions $\mathbb{Z}^{s} \rightarrow \mathbb{Z}^{t}$.

For the base of recursion
class \mathcal{E}^{0} contains

- constant functions $x_{k} \rightarrow C$,

Grzegorczyk's classes of primitive-recursive functions

\mathcal{E}^{l} consist of functions $\mathbb{Z}^{s} \rightarrow \mathbb{Z}^{t}$.

For the base of recursion
class \mathcal{E}^{0} contains

- constant functions $x_{k} \rightarrow c$,
- shifts $x_{k} \rightarrow x_{k}+c$,

Grzegorczyk's classes of primitive-recursive functions

\mathcal{E}^{l} consist of functions $\mathbb{Z}^{s} \rightarrow \mathbb{Z}^{t}$.

For the base of recursion
class \mathcal{E}^{0} contains

- constant functions $x_{k} \rightarrow c$,
- shifts $x_{k} \rightarrow x_{k}+c$,
- projections $\left(x_{1}, \ldots, x_{n}\right) \rightarrow x_{k}$;

Grzegorczyk's classes of primitive-recursive functions

\mathcal{E}^{l} consist of functions $\mathbb{Z}^{s} \rightarrow \mathbb{Z}^{t}$.

For the base of recursion
class \mathcal{E}^{0} contains

- constant functions $x_{k} \rightarrow c$,
- shifts $x_{k} \rightarrow x_{k}+c$,
- projections $\left(x_{1}, \ldots, x_{n}\right) \rightarrow x_{k}$;
class \mathcal{E}^{1} contains linear functions $x_{k} \rightarrow c \cdot x_{k}$ and $\left(x_{k_{1}}, x_{k_{2}}\right) \rightarrow x_{k_{1}}+x_{k_{2}}$;
class \mathcal{E}^{2} contains all the polynomials with integer coefficients.

Grzegorczyk's classes of primitive-recursive functions

\mathcal{E}^{l} consist of functions $\mathbb{Z}^{s} \rightarrow \mathbb{Z}^{t}$.

For the base of recursion
class \mathcal{E}^{0} contains

- constant functions $x_{k} \rightarrow c$,
- shifts $x_{k} \rightarrow x_{k}+c$,
- projections $\left(x_{1}, \ldots, x_{n}\right) \rightarrow x_{k}$;
class \mathcal{E}^{1} contains linear functions $x_{k} \rightarrow c \cdot x_{k}$ and $\left(x_{k_{1}}, x_{k_{2}}\right) \rightarrow x_{k_{1}}+x_{k_{2}}$; class \mathcal{E}^{2} contains all the polynomials with integer coefficients.

Primitive and limited primitive recursion

Let $I \geq 2$. For the inductive step of the definition, assume that functions $G\left(x_{1}, \ldots, x_{n}\right), H\left(x_{1}, \ldots, x_{n}, y, z\right) \in \mathcal{E}^{\prime}$.

Primitive and limited primitive recursion

Let $I \geq 2$. For the inductive step of the definition, assume that functions $G\left(x_{1}, \ldots, x_{n}\right), H\left(x_{1}, \ldots, x_{n}, y, z\right) \in \mathcal{E}^{\prime}$. Then the function $F\left(x_{1}, \ldots, x_{n}, y\right)$ defined by the primitive recursion,

$$
\begin{gather*}
F\left(x_{1}, \ldots, x_{n}, 0\right)=G\left(x_{1}, \ldots, x_{n}\right), \tag{1}\\
F\left(x_{1}, \ldots, x_{n}, y+1\right)=H\left(x_{1}, \ldots, x_{n}, y, F\left(x_{1}, \ldots, x_{n}, y\right)\right), \tag{2}
\end{gather*}
$$

belongs to \mathcal{E}^{I+1}.
composition and the following limited primitive recursion:

Primitive and limited primitive recursion

Let $I \geq 2$. For the inductive step of the definition, assume that functions $G\left(x_{1}, \ldots, x_{n}\right), H\left(x_{1}, \ldots, x_{n}, y, z\right) \in \mathcal{E}^{\prime}$. Then the function $F\left(x_{1}, \ldots, x_{n}, y\right)$ defined by the primitive recursion,

$$
\begin{gather*}
F\left(x_{1}, \ldots, x_{n}, 0\right)=G\left(x_{1}, \ldots, x_{n}\right), \tag{1}\\
F\left(x_{1}, \ldots, x_{n}, y+1\right)=H\left(x_{1}, \ldots, x_{n}, y, F\left(x_{1}, \ldots, x_{n}, y\right)\right), \tag{2}
\end{gather*}
$$

belongs to \mathcal{E}^{I+1}.
To complete the definition of $\mathcal{E}^{\prime}, I \geq 0$, take the closure with respect to composition

Primitive and limited primitive recursion

Let $I \geq 2$. For the inductive step of the definition, assume that functions $G\left(x_{1}, \ldots, x_{n}\right), H\left(x_{1}, \ldots, x_{n}, y, z\right) \in \mathcal{E}^{\prime}$. Then the function $F\left(x_{1}, \ldots, x_{n}, y\right)$ defined by the primitive recursion,

$$
\begin{gather*}
F\left(x_{1}, \ldots, x_{n}, 0\right)=G\left(x_{1}, \ldots, x_{n}\right), \tag{1}\\
F\left(x_{1}, \ldots, x_{n}, y+1\right)=H\left(x_{1}, \ldots, x_{n}, y, F\left(x_{1}, \ldots, x_{n}, y\right)\right), \tag{2}
\end{gather*}
$$

belongs to \mathcal{E}^{I+1}.
To complete the definition of $\mathcal{E}^{\prime}, I \geq 0$, take the closure with respect to composition and the following limited primitive recursion:

$$
\text { Let } G\left(x_{1}, \ldots, x_{n}\right), H\left(x_{1}, \ldots, x_{n}, y, z\right), Q\left(x_{1}, \ldots, x_{n}, y\right) \in \mathcal{E}^{\prime}
$$

Primitive and limited primitive recursion

Let $I \geq 2$. For the inductive step of the definition, assume that functions $G\left(x_{1}, \ldots, x_{n}\right), H\left(x_{1}, \ldots, x_{n}, y, z\right) \in \mathcal{E}^{\prime}$. Then the function $F\left(x_{1}, \ldots, x_{n}, y\right)$ defined by the primitive recursion,

$$
\begin{gather*}
F\left(x_{1}, \ldots, x_{n}, 0\right)=G\left(x_{1}, \ldots, x_{n}\right), \tag{1}\\
F\left(x_{1}, \ldots, x_{n}, y+1\right)=H\left(x_{1}, \ldots, x_{n}, y, F\left(x_{1}, \ldots, x_{n}, y\right)\right), \tag{2}
\end{gather*}
$$

belongs to \mathcal{E}^{I+1}.
To complete the definition of $\mathcal{E}^{\prime}, I \geq 0$, take the closure with respect to composition and the following limited primitive recursion:

$$
\begin{aligned}
& \text { Let } G\left(x_{1}, \ldots, x_{n}\right), H\left(x_{1}, \ldots, x_{n}, y, z\right), Q\left(x_{1}, \ldots, x_{n}, y\right) \in \mathcal{E}^{\prime} \text {. Then } \\
& \text { the function } F\left(x_{1}, \ldots, x_{n}, y\right) \text { defined by }(1),(2) \text { also belongs to } \mathcal{E}^{\prime} \text {, } \\
& \text { provided that } F\left(x_{1}, \ldots, x_{n}, y\right) \leq Q\left(x_{1}, \ldots, x_{n}, y\right) \text {. }
\end{aligned}
$$

Primitive and limited primitive recursion

Let $I \geq 2$. For the inductive step of the definition, assume that functions $G\left(x_{1}, \ldots, x_{n}\right), H\left(x_{1}, \ldots, x_{n}, y, z\right) \in \mathcal{E}^{\prime}$. Then the function $F\left(x_{1}, \ldots, x_{n}, y\right)$ defined by the primitive recursion,

$$
\begin{gather*}
F\left(x_{1}, \ldots, x_{n}, 0\right)=G\left(x_{1}, \ldots, x_{n}\right), \tag{1}\\
F\left(x_{1}, \ldots, x_{n}, y+1\right)=H\left(x_{1}, \ldots, x_{n}, y, F\left(x_{1}, \ldots, x_{n}, y\right)\right), \tag{2}
\end{gather*}
$$

belongs to \mathcal{E}^{I+1}.
To complete the definition of $\mathcal{E}^{\prime}, I \geq 0$, take the closure with respect to composition and the following limited primitive recursion:

$$
\begin{aligned}
& \text { Let } G\left(x_{1}, \ldots, x_{n}\right), H\left(x_{1}, \ldots, x_{n}, y, z\right), Q\left(x_{1}, \ldots, x_{n}, y\right) \in \mathcal{E}^{\prime} \text {. Then } \\
& \text { the function } F\left(x_{1}, \ldots, x_{n}, y\right) \text { defined by }(1),(2) \text { also belongs to } \mathcal{E}^{\prime} \text {, } \\
& \text { provided that } F\left(x_{1}, \ldots, x_{n}, y\right) \leq Q\left(x_{1}, \ldots, x_{n}, y\right) \text {. }
\end{aligned}
$$

Clearly, $\mathcal{E}^{I+1} \supset \mathcal{E}^{l}$.

Primitive and limited primitive recursion

Let $I \geq 2$. For the inductive step of the definition, assume that functions $G\left(x_{1}, \ldots, x_{n}\right), H\left(x_{1}, \ldots, x_{n}, y, z\right) \in \mathcal{E}^{\prime}$. Then the function $F\left(x_{1}, \ldots, x_{n}, y\right)$ defined by the primitive recursion,

$$
\begin{gather*}
F\left(x_{1}, \ldots, x_{n}, 0\right)=G\left(x_{1}, \ldots, x_{n}\right), \tag{1}\\
F\left(x_{1}, \ldots, x_{n}, y+1\right)=H\left(x_{1}, \ldots, x_{n}, y, F\left(x_{1}, \ldots, x_{n}, y\right)\right), \tag{2}
\end{gather*}
$$

belongs to \mathcal{E}^{I+1}.
To complete the definition of $\mathcal{E}^{\prime}, I \geq 0$, take the closure with respect to composition and the following limited primitive recursion:

$$
\begin{aligned}
& \text { Let } G\left(x_{1}, \ldots, x_{n}\right), H\left(x_{1}, \ldots, x_{n}, y, z\right), Q\left(x_{1}, \ldots, x_{n}, y\right) \in \mathcal{E}^{\prime} \text {. Then } \\
& \text { the function } F\left(x_{1}, \ldots, x_{n}, y\right) \text { defined by }(1),(2) \text { also belongs to } \mathcal{E}^{\prime} \text {, } \\
& \text { provided that } F\left(x_{1}, \ldots, x_{n}, y\right) \leq Q\left(x_{1}, \ldots, x_{n}, y\right) \text {. }
\end{aligned}
$$

Clearly, $\mathcal{E}^{\prime+1} \supset \mathcal{E}^{\prime}$.
Observe that \mathcal{E}^{3} contains all towers of exponential functions.

Primitive and limited primitive recursion

Let $I \geq 2$. For the inductive step of the definition, assume that functions $G\left(x_{1}, \ldots, x_{n}\right), H\left(x_{1}, \ldots, x_{n}, y, z\right) \in \mathcal{E}^{\prime}$. Then the function $F\left(x_{1}, \ldots, x_{n}, y\right)$ defined by the primitive recursion,

$$
\begin{gather*}
F\left(x_{1}, \ldots, x_{n}, 0\right)=G\left(x_{1}, \ldots, x_{n}\right), \tag{1}\\
F\left(x_{1}, \ldots, x_{n}, y+1\right)=H\left(x_{1}, \ldots, x_{n}, y, F\left(x_{1}, \ldots, x_{n}, y\right)\right), \tag{2}
\end{gather*}
$$

belongs to \mathcal{E}^{I+1}.
To complete the definition of $\mathcal{E}^{\prime}, I \geq 0$, take the closure with respect to composition and the following limited primitive recursion:

$$
\begin{aligned}
& \text { Let } G\left(x_{1}, \ldots, x_{n}\right), H\left(x_{1}, \ldots, x_{n}, y, z\right), Q\left(x_{1}, \ldots, x_{n}, y\right) \in \mathcal{E}^{\prime} \text {. Then } \\
& \text { the function } F\left(x_{1}, \ldots, x_{n}, y\right) \text { defined by }(1),(2) \text { also belongs to } \mathcal{E}^{\prime} \text {, } \\
& \text { provided that } F\left(x_{1}, \ldots, x_{n}, y\right) \leq Q\left(x_{1}, \ldots, x_{n}, y\right) \text {. }
\end{aligned}
$$

Clearly, $\mathcal{E}^{\prime+1} \supset \mathcal{E}^{\prime}$.
Observe that \mathcal{E}^{3} contains all towers of exponential functions.
Union $\cup_{/<\infty} \mathcal{E}^{\prime}$ coincides with the set of all primitive-recursive functions.

Complexity of computing a quasi-linear common multiple

From the explicit bound on the Idealbasissatz (due to Seidenberg) we obtain the following complexity bound

This provides also a complexity bound of the similar order of magnitude of the algorithm which looks for a quasi-linear common multiple by trying consecutively increasing orders n of a candidate and solving the membership problem to an ideal generated by first n derivatives (using Lemma above), say, with the help of Gröbner basis.

Complexity of computing a quasi-linear common multiple

From the explicit bound on the Idealbasissatz (due to Seidenberg) we obtain the following complexity bound

Corollary

Any pair of ordinary quasi-linear differential equations $y^{(k)}=p_{k}\left(y^{(k-1)}, \ldots, y, x\right), \quad y^{(k)}=q_{k}\left(y^{(k-1)}, \ldots, y, x\right)$ of order k with polynomials of degrees $\operatorname{deg}\left(p_{k}\right), \operatorname{deg}\left(q_{k}\right) \leq d$ has a quasi-linear common multiple of order $g(d)$, where g belongs to the class \mathcal{E}^{k+2} of Grzegorczyk's hierarchy.

Complexity of computing a quasi-linear common multiple

From the explicit bound on the Idealbasissatz (due to Seidenberg) we obtain the following complexity bound

Corollary

Any pair of ordinary quasi-linear differential equations
$y^{(k)}=p_{k}\left(y^{(k-1)}, \ldots, y, x\right), \quad y^{(k)}=q_{k}\left(y^{(k-1)}, \ldots, y, x\right)$ of order k with polynomials of degrees $\operatorname{deg}\left(p_{k}\right), \operatorname{deg}\left(q_{k}\right) \leq d$ has a quasi-linear common multiple of order $g(d)$, where g belongs to the class \mathcal{E}^{k+2} of Grzegorczyk's hierarchy.
This provides also a complexity bound of the similar order of magnitude of the algorithm which looks for a quasi-linear common multiple by trying consecutively increasing orders n of a candidate and solving the membership problem to an ideal generated by first n derivatives (using Lemma above), say, with the help of Gröbner basis.

Complexity of computing a quasi-linear common multiple

From the explicit bound on the Idealbasissatz (due to Seidenberg) we obtain the following complexity bound

Corollary

Any pair of ordinary quasi-linear differential equations
$y^{(k)}=p_{k}\left(y^{(k-1)}, \ldots, y, x\right), \quad y^{(k)}=q_{k}\left(y^{(k-1)}, \ldots, y, x\right)$
of order k with polynomials of degrees $\operatorname{deg}\left(p_{k}\right), \operatorname{deg}\left(q_{k}\right) \leq d$ has a quasi-linear common multiple of order $g(d)$, where g belongs to the class \mathcal{E}^{k+2} of Grzegorczyk's hierarchy.
This provides also a complexity bound of the similar order of magnitude of the algorithm which looks for a quasi-linear common multiple by trying consecutively increasing orders n of a candidate and solving the membership problem to an ideal generated by first n derivatives (using Lemma above), say, with the help of Gröbner basis.

In particular, in case of first-order equations $(k=1)$ function $g(d)$ grows exponentially.

Example

Let $E_{1} \equiv y^{\prime}+y^{2}=0$ and $E_{2} \equiv y^{\prime}+y=0$. A common multiple of order
2 does not exist; however, our algorithm yields the following common multiple of order 3 involving a parameter C :

$$
\text { The common multiple algorithm for } E_{1} \text { and } E_{2}
$$ yields $y^{\prime \prime}+2 y y^{\prime}=0$. Its general solution is $y=C_{1} \tan \left(C_{2}-C_{1} x\right)$.

Example

Let $E_{1} \equiv y^{\prime}+y^{2}=0$ and $E_{2} \equiv y^{\prime}+y=0$. A common multiple of order 2 does not exist; however, our algorithm yields the following common multiple of order 3 involving a parameter C :
$E_{3} \equiv y^{\prime \prime \prime}+(C-4) y y^{\prime \prime}+(C+1) y^{\prime \prime}+(2 C-2) y^{\prime 2}+(2 C+2) y y^{\prime}+C y^{\prime}+C y^{2}$.
latter representation the constant solution may be obtained by taking

Example

Let $E_{1} \equiv y^{\prime}+y^{2}=0$ and $E_{2} \equiv y^{\prime}+y=0$. A common multiple of order 2 does not exist; however, our algorithm yields the following common multiple of order 3 involving a parameter C :
$E_{3} \equiv y^{\prime \prime \prime}+(C-4) y y^{\prime \prime}+(C+1) y^{\prime \prime}+(2 C-2) y^{\prime 2}+(2 C+2) y y^{\prime}+C y^{\prime}+C y^{2}$. For $C=0$ it simplifies to $E_{0} \equiv y^{\prime \prime \prime}+4 y y^{\prime \prime}+y^{\prime \prime}-2 y^{\prime 2}+2 y y^{\prime}=0$.

> latter representation the constant solution may be obtained by taking

Example

Let $E_{1} \equiv y^{\prime}+y^{2}=0$ and $E_{2} \equiv y^{\prime}+y=0$. A common multiple of order 2 does not exist; however, our algorithm yields the following common multiple of order 3 involving a parameter C :
$E_{3} \equiv y^{\prime \prime \prime}+(C-4) y y^{\prime \prime}+(C+1) y^{\prime \prime}+(2 C-2) y^{\prime 2}+(2 C+2) y y^{\prime}+C y^{\prime}+C y^{2}$. For $C=0$ it simplifies to $E_{0} \equiv y^{\prime \prime \prime}+4 y y^{\prime \prime}+y^{\prime \prime}-2 y^{\prime 2}+2 y y^{\prime}=0$. Our factorization algorithm yields factors $y^{\prime}+y^{2}, y^{\prime}+y$ and y^{\prime} of E_{0}.

latter representation the constant solution may be obtained by taking

Example

Let $E_{1} \equiv y^{\prime}+y^{2}=0$ and $E_{2} \equiv y^{\prime}+y=0$. A common multiple of order 2 does not exist; however, our algorithm yields the following common multiple of order 3 involving a parameter C :
$E_{3} \equiv y^{\prime \prime \prime}+(C-4) y y^{\prime \prime}+(C+1) y^{\prime \prime}+(2 C-2) y^{\prime 2}+(2 C+2) y y^{\prime}+C y^{\prime}+C y^{2}$. For $C=0$ it simplifies to $E_{0} \equiv y^{\prime \prime \prime}+4 y y^{\prime \prime}+y^{\prime \prime}-2 y^{\prime 2}+2 y y^{\prime}=0$. Our factorization algorithm yields factors $y^{\prime}+y^{2}, y^{\prime}+y$ and y^{\prime} of E_{0}.

Example

Let $E_{1} \equiv y^{\prime}+y^{2}=0$ and $E_{2} \equiv y^{\prime}=0$ with solutions $y=\frac{1}{x+C}$ and $y=C$ respectively.
latter representation the constant solution may be obtained by taking

Example

Let $E_{1} \equiv y^{\prime}+y^{2}=0$ and $E_{2} \equiv y^{\prime}+y=0$. A common multiple of order 2 does not exist; however, our algorithm yields the following common multiple of order 3 involving a parameter C :
$E_{3} \equiv y^{\prime \prime \prime}+(C-4) y y^{\prime \prime}+(C+1) y^{\prime \prime}+(2 C-2) y^{\prime 2}+(2 C+2) y y^{\prime}+C y^{\prime}+C y^{2}$. For $C=0$ it simplifies to $E_{0} \equiv y^{\prime \prime \prime}+4 y y^{\prime \prime}+y^{\prime \prime}-2 y^{\prime 2}+2 y y^{\prime}=0$. Our factorization algorithm yields factors $y^{\prime}+y^{2}, y^{\prime}+y$ and y^{\prime} of E_{0}.

Example

Let $E_{1} \equiv y^{\prime}+y^{2}=0$ and $E_{2} \equiv y^{\prime}=0$ with solutions $y=\frac{1}{x+C}$ and $y=C$ respectively. The common multiple algorithm for E_{1} and E_{2} yields $y^{\prime \prime}+2 y y^{\prime}=0$.

Example

Let $E_{1} \equiv y^{\prime}+y^{2}=0$ and $E_{2} \equiv y^{\prime}+y=0$. A common multiple of order 2 does not exist; however, our algorithm yields the following common multiple of order 3 involving a parameter C :
$E_{3} \equiv y^{\prime \prime \prime}+(C-4) y y^{\prime \prime}+(C+1) y^{\prime \prime}+(2 C-2) y^{\prime 2}+(2 C+2) y y^{\prime}+C y^{\prime}+C y^{2}$. For $C=0$ it simplifies to $E_{0} \equiv y^{\prime \prime \prime}+4 y y^{\prime \prime}+y^{\prime \prime}-2 y^{\prime 2}+2 y y^{\prime}=0$. Our factorization algorithm yields factors $y^{\prime}+y^{2}, y^{\prime}+y$ and y^{\prime} of E_{0}.

Example

Let $E_{1} \equiv y^{\prime}+y^{2}=0$ and $E_{2} \equiv y^{\prime}=0$ with solutions $y=\frac{1}{x+C}$ and $y=C$ respectively. The common multiple algorithm for E_{1} and E_{2} yields $y^{\prime \prime}+2 y y^{\prime}=0$. Its general solution is $y=C_{1} \tan \left(C_{2}-C_{1} x\right)$.
\square latter representation the constant solution may be obtained by taking

Example

Let $E_{1} \equiv y^{\prime}+y^{2}=0$ and $E_{2} \equiv y^{\prime}+y=0$. A common multiple of order 2 does not exist; however, our algorithm yields the following common multiple of order 3 involving a parameter C :
$E_{3} \equiv y^{\prime \prime \prime}+(C-4) y y^{\prime \prime}+(C+1) y^{\prime \prime}+(2 C-2) y^{\prime 2}+(2 C+2) y y^{\prime}+C y^{\prime}+C y^{2}$. For $C=0$ it simplifies to $E_{0} \equiv y^{\prime \prime \prime}+4 y y^{\prime \prime}+y^{\prime \prime}-2 y^{\prime 2}+2 y y^{\prime}=0$. Our factorization algorithm yields factors $y^{\prime}+y^{2}, y^{\prime}+y$ and y^{\prime} of E_{0}.

Example

Let $E_{1} \equiv y^{\prime}+y^{2}=0$ and $E_{2} \equiv y^{\prime}=0$ with solutions $y=\frac{1}{x+C}$ and $y=C$ respectively. The common multiple algorithm for E_{1} and E_{2} yields $y^{\prime \prime}+2 y y^{\prime}=0$. Its general solution is $y=C_{1} \tan \left(C_{2}-C_{1} x\right)$.

Remark

The general solution of the second-order equation in the preceding example may also be written as $y=C_{1} \tanh \left(C_{2}+C_{1} x\right)$.

Example

Let $E_{1} \equiv y^{\prime}+y^{2}=0$ and $E_{2} \equiv y^{\prime}+y=0$. A common multiple of order 2 does not exist; however, our algorithm yields the following common multiple of order 3 involving a parameter C :
$E_{3} \equiv y^{\prime \prime \prime}+(C-4) y y^{\prime \prime}+(C+1) y^{\prime \prime}+(2 C-2) y^{\prime 2}+(2 C+2) y y^{\prime}+C y^{\prime}+C y^{2}$. For $C=0$ it simplifies to $E_{0} \equiv y^{\prime \prime \prime}+4 y y^{\prime \prime}+y^{\prime \prime}-2 y^{\prime 2}+2 y y^{\prime}=0$. Our factorization algorithm yields factors $y^{\prime}+y^{2}, y^{\prime}+y$ and y^{\prime} of E_{0}.

Example

Let $E_{1} \equiv y^{\prime}+y^{2}=0$ and $E_{2} \equiv y^{\prime}=0$ with solutions $y=\frac{1}{x+C}$ and $y=C$ respectively. The common multiple algorithm for E_{1} and E_{2} yields $y^{\prime \prime}+2 y y^{\prime}=0$. Its general solution is $y=C_{1} \tan \left(C_{2}-C_{1} x\right)$.

Remark

The general solution of the second-order equation in the preceding example may also be written as $y=C_{1} \tanh \left(C_{2}+C_{1} x\right)$. From the latter representation the constant solution may be obtained by taking the limit $C_{2} \rightarrow \infty$.

