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Ordinary differential equation f(y(%), ... y’,y, x) = 0 is a generalized

factorof g(y(",...,y’,y,x) = 0 if any solution of the former is a
solution of the latter.

Factoring linear operators

A linear operator A = 3", @i -y is a (generalized) factor of a linear
operator B = 3", b; - yV) iff B= CA for a suitable linear operator C.
Factoring of a linear operator is not unique. Thus, the problem is to
produce some factoring into irreducible factors.

e Beke-Schlesinger (1894): An algorithm for factoring linear operators
A with coefficients a; € Q(x) (triple-exponential complexity);

e G. (1987): An algorithm with double-exponential complexity.
Conjecture: the sharp bound of complexity is exponential.;

e Tsarev (1996): An algorithm to describe the variety of all the
factorizations of an operator.
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Quasi-linear generalized factors

The algebra of differential polynomials C{y} := C[x, y,y’,y",...]isa

module over the algebra C{ y}[%] of linear operators with coefficients
in C{y}.
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generalized factor of a differential polynomial p iff there exists a linear
operator H € C{y}[ L] such that H+ (y*+1) — f(y(®), ... y".y,x)) =p

Tsarev (1999), Gao-Zhang (2008) studied another concept of
decomposition of differential polynomials when in a differential
polynomial p (depending on several variables y4, ..., ym) some
differential polynomials py, ..., pm are substituted.
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module over the algebra C{y}[%] of linear operators with coefficients
in C{y}. For a differential polynomial p € C{y} and an operator

H e C{y}[Z] their action denote by H+ p € C{y}.

Lemma

A quasi-linear differential polynomial y<+') — f(y(&) v/ y x)is a
generalized factor of a differential polynomial p iff there exists a linear
operator H € C{y}[ L] such that H+ (y*+1) — f(y(®), ... y".y,x)) =p

Tsarev (1999), Gao-Zhang (2008) studied another concept of
decomposition of differential polynomials when in a differential
polynomial p (depending on several variables y4, ..., ym) some
differential polynomials py, ..., pm are substituted. This decomposition
differs from our notion of factoring. Tsarev, Gao-Zhang have designed
algorithms to decompose differential polynomials.
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Factoring a quasi-linear second-order equation
Theorem

1) If a first-order quasi-linear differential polynomial y' — p(y, x) is a
generalized factor of a second-order quasi-linear differential
polynomial y" — f(y', y, x) for polynomials

p(yax) € Q[y7x]7 f(Z,y,X) = Zogiglfi : (y,)l € Q[Zaan],
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or certifies that it does not exist.
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v

The algorithm from 2) solves a system of polynomial equations in the
indeterminate coefficients of polynomial p resulting from the equality

op op _ i
gTy'P‘FW—Zogiglf:'p
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Factoring a quasi-linear second-order equation

Theorem

1) If a first-order quasi-linear differential polynomial y' — p(y, x) is a
generalized factor of a second-order quasi-linear differential
polynomial y" — f(y’, y, x) for polynomials

p(y,X) € Q[yax]’ f(Z,y, X) = ZOS/SI fl ’ (y/)l € @[Z,y,X], then

deg, (p) < max{deg,(f), 1+deg,(fo)}, deg,(p) < max{deg,(f),deg, ()}
2) An algorithm is designed which for a second-order quasi-linear
differential polynomial y" — f(y', y, x) either produces some its
first-order generalized divisor y' — p(y, x) satisfying the bounds from 1)
or certifies that it does not exist.

The algorithm from 2) solves a system of polynomial equations in the
indeterminate coefficients of polynomial p resulting from the equality

oy ox o<i<i

which is equivalent to y’ — p(y, x) being a generalized factor of

y" —f(y’,y, x). Also from this equality one deduces 1) making use of
the relation p|(f, — 22).
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It would be interesting to extend the factoring algorithm from the
second to an arbitrary order and from quasi-linear to arbitrary
equations (perhaps, also from ordinary to partial differential equations).
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Example
Consider the equation

E=y"+(x+3y)y +y+x2 =0

According to the above Theorem 1) deg, £ < 1 and deg, E < 3.
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Example
Consider the equation

E=y"+(x+3y)y +y+x2 =0

According to the above Theorem 1) deg, £ < 1 and deg, E < 3.
Applying Theorem 2) two factors are obtained and the representations

E =/ +y?)+(y+x)(V+y?), E=(+y>+xy—1)+y(y'+y*+xy—1)

follow.
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It would be interesting to extend the factoring algorithm from the
second to an arbitrary order and from quasi-linear to arbitrary
equations (perhaps, also from ordinary to partial differential equations).

Example
Consider the equation

E=y"+(x+3y)y +y+x2 =0

According to the above Theorem 1) deg, £ < 1 and deg, E < 3.
Applying Theorem 2) two factors are obtained and the representations

E= /) +(y+x) (V' +y?), E=(/+y*+xy=1)+y(y'+y*+xy-1)
follow. They yield the two one-parameter solutions

1 1 1 exp (—3 1x?)

x+C’ y=x7 Xzfexp —fx2) ’2‘+C

y:

respectively.
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Quasi-linear common multiples

We say that a differential polynomial f € C{y} is a common multiple of

differential polynomials f;, f, if solutions of f = 0 contain solutions of
both ff =0and f, = 0.
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We say that a differential polynomial f € C{y} is a common multiple of
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Lemma

For polynomials p, q € Q[y, x] there exists a quasi-linear common
multiple of the order n + 1 of a pair of first-order equations

Yy =ply,x), ¥y =q(y,x)
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We say that a differential polynomial f € C{y} is a common multiple of
differential polynomials f;, f, if solutions of f = 0 contain solutions of
both i =0and , = 0.

Lemma

For polynomials p, q € Q[y, x] there exists a quasi-linear common
multiple of the order n + 1 of a pair of first-order equations

y' =py,x), ¥y = qly, x) iff n-th derivative

(p-q)Mep-q (P-q",... (0 g ")

belongs to the ideal (in the algebra Q|y, x]) generated by first n — 1
derivatives of p — q.

More explicitly, if the latter relation holds, i. e.

(p—q) =g inti- (p—q)) for some polynomials

ri € Qly, x], 0 <i < n then for polynomial

Sn(Zn, -+, 21,Y,X) == Eogi<n ri - (Zig1 — p(i)) + p(n) =

a required quasi-linear common multiple.

Dima Grigoriev (CNRS) 10.9.12 6/11




Existence of a quasi-linear common multiple

One can directly extend the lemma to a quasi-linear common multiple
of a pair of quasi-linear equations of an arbitrary order.
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Existence of a quasi-linear common multiple

One can directly extend the lemma to a quasi-linear common multiple
of a pair of quasi-linear equations of an arbitrary order.

Employing Hilbert’s Idealbasissatz we obtain
Corollary

Any pair of ordinary quasi-linear differential equations has a
quasi-linear common multiple.

Dima Grigoriev (CNRS) Computing divisors and common multiple: 10.9.12 7/11



Existence of a quasi-linear common multiple

One can directly extend the lemma to a quasi-linear common multiple
of a pair of quasi-linear equations of an arbitrary order.

Employing Hilbert’s Idealbasissatz we obtain

Corollary

Any pair of ordinary quasi-linear differential equations has a
quasi-linear common multiple.

To formulate the complexity bound of an algorithm computing a
quasi-linear common multiple we need to recall Grzegorczyk’s classes
of primitive-recursive function
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Grzegorczyk’s classes of primitive-recursive functions
&' consist of functions Z$ — Z.
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For the base of recursion

class £° contains
e constant functions x, — c,
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Grzegorczyk’s classes of primitive-recursive functions
&' consist of functions Z$ — Z.
For the base of recursion

class £° contains

e constant functions x, — ¢,

e shifts xx — xx + c,

e projections (X1, ..., Xn) — Xk;

class £ contains linear functions x, — ¢ - x, and (Xky > Xiy) = Xk, + Xiy

class £2 contains all the polynomials with integer coefficients.
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Primitive and limited primitive recursion

Let / > 2. For the inductive step of the definition, assume that functions
G(x1,...,Xp), H(x1,...,xn,y,2) € E.
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Primitive and limited primitive recursion

Let / > 2. For the inductive step of the definition, assume that functions
G(X1,...,Xn), H(X1,...,Xn, ¥, 2) € . Then the function

F(x1,...,Xn,y) defined by the primitive recursion,
F(X1,...,%2,0) = G(xq,...,Xn), (1)
F(Xt,...sXny+1)=H(X1, ..., Xn, ¥, F(X1,. .., Xn, ¥)), (2)

belongs to £1.
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Let / > 2. For the inductive step of the definition, assume that functions
G(X1,...,Xn), H(X1,...,Xn, ¥, 2) € . Then the function

F(x1,...,Xn,y) defined by the primitive recursion,
F(X1,...,%2,0) = G(xq,...,Xn), (1)
F(Xt,...sXny+1)=H(X1, ..., Xn, ¥, F(X1,. .., Xn, ¥)), (2)

belongs to £1.
To complete the definition of £/, | > 0, take the closure with respect to
composition and the following limited primitive recursion:

Let G(x1,...,Xn), H(X1,..., Xn, ¥,2), Q(Xq, ..., Xn,y) € E..
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Primitive and limited primitive recursion

Let / > 2. For the inductive step of the definition, assume that functions
G(X1,...,Xn), H(X1,...,Xn, ¥, 2) € . Then the function

F(x1,...,Xn,y) defined by the primitive recursion,
F(X1,...,%2,0) = G(xq,...,Xn), (1)
F(Xt,...sXny+1)=H(X1, ..., Xn, ¥, F(X1,. .., Xn, ¥)), (2)

belongs to £1.

To complete the definition of £/, | > 0, take the closure with respect to

composition and the following limited primitive recursion:
Let G(Xy,...,Xn), H(Xq, ..., Xn, ¥, 2), Q(X1, ..., Xn,y) € E. Then
the function F(xq, ..., X, y) defined by (1),(2) also belongs to &/,
provided that F(xq,...,Xn, ¥Y) < Q(X1,...,Xn, ¥).

Clearly, &1 > &/,

Observe that £3 contains all towers of exponential functions.
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Primitive and limited primitive recursion

Let / > 2. For the inductive step of the definition, assume that functions
G(X1,...,Xn), H(X1,...,Xn, ¥, 2) € . Then the function

F(x1,...,Xn,y) defined by the primitive recursion,
F(X1,...,%2,0) = G(xq,...,Xn), (1)
F(Xt,...sXny+1)=H(X1, ..., Xn, ¥, F(X1,. .., Xn, ¥)), (2)

belongs to £1.

To complete the definition of £/, | > 0, take the closure with respect to

composition and the following limited primitive recursion:
Let G(Xy,...,Xn), H(Xq, ..., Xn, ¥, 2), Q(X1, ..., Xn,y) € E. Then
the function F(xq, ..., X, y) defined by (1),(2) also belongs to &/,
provided that F(xq,...,Xn, ¥Y) < Q(X1,...,Xn, ¥).

Clearly, &1 > &/,

Observe that £3 contains all towers of exponential functions.

Union U, ..&’ coincides with the set of all primitive-recursive functions.




Complexity of computing a quasi-linear common

multiple
From the explicit bound on the Idealbasissatz (due to Seidenberg) we
obtain the following complexity bound
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Complexity of computing a quasi-linear common
multiple

From the explicit bound on the Idealbasissatz (due to Seidenberg) we
obtain the following complexity bound

Corollary

Any pair of ordinary quasi-linear differential equations

Y9 = pe(y*D, Ly x), Y0 = gy, Ly, x)

of order k with polynomials of degrees deg(px), deg(qx) < d has a
quasi-linear common multiple of order g(d), where g belongs to the
class k12 of Grzegorczyk’s hierarchy.
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Complexity of computing a quasi-linear common
multiple

From the explicit bound on the Idealbasissatz (due to Seidenberg) we
obtain the following complexity bound

Corollary

Any pair of ordinary quasi-linear differential equations

y(k) = pk(y(k_1)7 RS £ X)7 y(k) = qk(y(k_1)7 e Y X)

of order k with polynomials of degrees deg(px), deg(qx) < d has a
quasi-linear common multiple of order g(d), where g belongs to the
class £¥+2 of Grzegorczyk’s hierarchy.

This provides also a complexity bound of the similar order of
magnitude of the algorithm which looks for a quasi-linear common
multiple by trying consecutively increasing orders n of a candidate and
solving the membership problem to an ideal generated by first n
derivatives (using Lemma above), say, with the help of Grobner basis.

v
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From the explicit bound on the Idealbasissatz (due to Seidenberg) we
obtain the following complexity bound

Corollary

Any pair of ordinary quasi-linear differential equations

y(k) = pk(y(k_1)7 RS £ X)7 y(k) = qk(y(k_1)7 e Y X)

of order k with polynomials of degrees deg(px), deg(qx) < d has a
quasi-linear common multiple of order g(d), where g belongs to the
class £¥+2 of Grzegorczyk’s hierarchy.

This provides also a complexity bound of the similar order of
magnitude of the algorithm which looks for a quasi-linear common
multiple by trying consecutively increasing orders n of a candidate and
solving the membership problem to an ideal generated by first n
derivatives (using Lemma above), say, with the help of Grobner basis.

v

In particular, in case of first-order equations (k = 1) function g(d)

grows exponentially.
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Example
LetE; =y +y?=0and E, =y’ +y = 0.
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Example

Let E; =y +y?>=0and E; =y’ + y = 0. A common multiple of order
2 does not exist; however, our algorithm yields the following common
multiple of order 3 involving a parameter C:

Es =y"+(C—4)yy"+(C+1)y"+(2C—2)y*+(2C+2)yy'+Cy'+Cy>.
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Example

Let Ey =y’ +y?>=0and E; = y' + y = 0. A common multiple of order
2 does not exist; however, our algorithm yields the following common
multiple of order 3 involving a parameter C:
Es=y"+(C—4)yy"+(C+1)y"+(2C-2)y?+(2C+2)yy'+ Cy' + Cy>.
For C = 0 it simplifies to Eq = y" + 4yy” + y" — 2y’?> + 2yy’ = 0.
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Example

Let Ey =y’ +y?>=0and E; = y' + y = 0. A common multiple of order
2 does not exist; however, our algorithm yields the following common
multiple of order 3 involving a parameter C:
Es=y"+(C—4)yy"+(C+1)y"+(2C-2)y?+(2C+2)yy'+ Cy' + Cy>.
For C = 0 it simplifies to Ey =y’ + 4yy” + y" — 2y’? +2yy’ = 0. Our
factorization algorithm yields factors y’ + y2, y’ + y and y’ of E,.
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Example

Let Ey =y’ +y?>=0and E; = y' + y = 0. A common multiple of order
2 does not exist; however, our algorithm yields the following common
multiple of order 3 involving a parameter C:
Es=y"+(C—4)yy"+(C+1)y"+(2C-2)y?+(2C+2)yy'+ Cy' + Cy>.
For C = 0 it simplifies to Ey =y’ + 4yy” + y" — 2y’? +2yy’ = 0. Our
factorization algorithm yields factors y’ + y2, y’ + y and y’ of E,.

Example

Let Ey =y’ + y? =0 and E; = y’ = 0 with solutions y = .~ and
y = C respectively.
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Example

Let E; =y +y?>=0and E; =y’ + y = 0. A common multiple of order
2 does not exist; however, our algorithm yields the following common
multiple of order 3 involving a parameter C:

Es = y"+(C-4)yy"+(C+1)y"+(2C-2)y"*+(2C+2)yy'+ Cy'+ Cy?.
For C = 0 it simplifies to Ey =y’ + 4yy” + y" — 2y’? +2yy’ = 0. Our
factorization algorithm yields factors y’ + y2, y’ + y and y’ of Ej.

Example

Let Ey =y’ + y? =0 and E; = y’ = 0 with solutions y = .~ and
y = C respectively. The common multiple algorithm for E; and E»
yields y” +2yy’ = 0.
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Example

Let E; =y +y?>=0and E; =y’ + y = 0. A common multiple of order
2 does not exist; however, our algorithm yields the following common
multiple of order 3 involving a parameter C:

Es = y"+(C-4)yy"+(C+1)y"+(2C-2)y"*+(2C+2)yy'+ Cy'+ Cy?.
For C = 0 it simplifies to Ey =y’ + 4yy” + y" — 2y’? +2yy’ = 0. Our
factorization algorithm yields factors y’ + y2, y’ + y and y’ of Ej.

Example

Let Ey =y’ + y? =0 and E; = y’ = 0 with solutions y = .~ and
y = C respectively. The common multiple algorithm for E; and E»
yields y” + 2yy’ = 0. Its general solution is y = Cy tan(Cz — C1x).
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Example

Let E; =y +y?>=0and E; =y’ + y = 0. A common multiple of order
2 does not exist; however, our algorithm yields the following common
multiple of order 3 involving a parameter C:

Es = y"+(C-4)yy"+(C+1)y"+(2C-2)y"*+(2C+2)yy'+ Cy'+ Cy?.
For C = 0 it simplifies to Ey =y’ + 4yy” + y" — 2y’? +2yy’ = 0. Our
factorization algorithm yields factors y’ + y2, y’ + y and y’ of Ej.

Example

Let Ey =y’ + y? =0 and E; = y’ = 0 with solutions y = .~ and
y = C respectively. The common multiple algorithm for E; and E;
yields y” + 2yy’ = 0. Its general solution is y = Cy tan(Cz — C1x).

Remark

The general solution of the second-order equation in the preceding
example may also be written as y = Cq tanh(Cs + Cqx).

y
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Example

LetEy =y +y2=0and E; = y' + y = 0. A common multiple of order
2 does not exist; however, our algorithm yields the following common
multiple of order 3 involving a parameter C:

Es = y"+(C-4)yy"+(C+1)y"+(2C-2)y"*+(2C+2)yy'+ Cy'+ Cy?.
For C = 0 it simplifies to Ey =y’ + 4yy” + y" — 2y’? +2yy’ = 0. Our
factorization algorithm yields factors y’ + y2, y’ + y and y’ of Ej.

Example

Let Ey =y’ + y? =0 and E; = y’ = 0 with solutions y = .~ and
y = C respectively. The common multiple algorithm for E; and E;
yields y” + 2yy’ = 0. Its general solution is y = Cy tan(Cz — C1x).

Remark

The general solution of the second-order equation in the preceding
example may also be written as y = C;tanh(Cs + Cyx). From the
latter representation the constant solution may be obtained by taking
the limit Co — ~c.
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