Polynomial complexity of solving systems of few algebraic equations with small degrees

Dima Grigoriev (Lille)

CNRS

11/09/2012, Berlin

Complexity of solving polynomial systems
 Let a system of polynomial equations

$$
\begin{equation*}
f_{1}=\cdots=f_{k}=0 \tag{1}
\end{equation*}
$$

be given where $f_{1}, \ldots, f_{k} \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$, degrees $\operatorname{deg}\left(f_{i}\right) \leq d, 1 \leq i \leq k$ and the absolute values of integer coefficients of polynomials f_{1}, \ldots, f_{k} do not exceed 2^{M}.

Complexity of solving polynomial systems Let a system of polynomial equations

$$
\begin{equation*}
f_{1}=\cdots=f_{k}=0 \tag{1}
\end{equation*}
$$

be given where $f_{1}, \ldots, f_{k} \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$, degrees $\operatorname{deg}\left(f_{i}\right) \leq d, 1 \leq i \leq k$ and the absolute values of integer coefficients of polynomials f_{1}, \ldots, f_{k} do not exceed 2^{M}.
The algorithm (Chistov-G.) finds the irreducible components of the variety in \mathbb{C}^{n} given by system (1) within complexity polynomial in $k, d^{n^{2}}, M$.

Complexity of solving polynomial systems

 Let a system of polynomial equations$$
\begin{equation*}
f_{1}=\cdots=f_{k}=0 \tag{1}
\end{equation*}
$$

be given where $f_{1}, \ldots, f_{k} \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$, degrees $\operatorname{deg}\left(f_{i}\right) \leq d, 1 \leq i \leq k$ and the absolute values of integer coefficients of polynomials f_{1}, \ldots, f_{k} do not exceed 2^{M}.

The algorithm (Chistov-G.) finds the irreducible components of the variety in \mathbb{C}^{n} given by system (1) within complexity polynomial in $k, d^{n^{2}}, M$.
A similar complexity bound $(k \cdot d)^{n^{O(1)}}, M$ holds for the algorithm (G.-Vorobjov) which finds the connected components of the semialgebraic set in \mathbb{R}^{n} given by system of inequalities

$$
\begin{equation*}
f_{1} \geq 0, \ldots, f_{k} \geq 0 \tag{2}
\end{equation*}
$$

Complexity of solving polynomial systems

 Let a system of polynomial equations$$
\begin{equation*}
f_{1}=\cdots=f_{k}=0 \tag{1}
\end{equation*}
$$

be given where $f_{1}, \ldots, f_{k} \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$, degrees $\operatorname{deg}\left(f_{i}\right) \leq d, 1 \leq i \leq k$ and the absolute values of integer coefficients of polynomials f_{1}, \ldots, f_{k} do not exceed 2^{M}.

The algorithm (Chistov-G.) finds the irreducible components of the variety in \mathbb{C}^{n} given by system (1) within complexity polynomial in $k, d^{n^{2}}, M$.
A similar complexity bound $(k \cdot d)^{n^{O(1)}}, M$ holds for the algorithm (G.-Vorobjov) which finds the connected components of the semialgebraic set in \mathbb{R}^{n} given by system of inequalities

$$
\begin{equation*}
f_{1} \geq 0, \ldots, f_{k} \geq 0 \tag{2}
\end{equation*}
$$

Renegar: testing solvability of (2) (respectively, of (1)) within complexity polynomial in $(k d)^{n}, M$ (respectively, k, d^{n}, M) and producing a solution in case it does exist.

Polynomial systems with few equations

G.-Pasechnik: for a system of quadratic inequalities $f_{i} \geq 0, \operatorname{deg}\left(f_{i}\right) \leq 2,1 \leq i \leq k$ the algorithm tests solvability within complexity polynomial in n^{k}, M,

Question: does anything similar hold for equations over \mathbb{C} beyond

Polynomial systems with few equations

G.-Pasechnik: for a system of quadratic inequalities $f_{i} \geq 0, \operatorname{deg}\left(f_{i}\right) \leq 2,1 \leq i \leq k$ the algorithm tests solvability within complexity polynomial in n^{k}, M, so it is polynomial when the number k of inequalities is a constant.

Polynomial systems with few equations

G.-Pasechnik: for a system of quadratic inequalities
$f_{i} \geq 0, \operatorname{deg}\left(f_{i}\right) \leq 2,1 \leq i \leq k$ the algorithm tests solvability within complexity polynomial in n^{k}, M, so it is polynomial when the number k of inequalities is a constant.
Question: does anything similar hold for equations over \mathbb{C} beyond quadratic polynomials?

Polynomial systems with few equations

G.-Pasechnik: for a system of quadratic inequalities
$f_{i} \geq 0, \operatorname{deg}\left(f_{i}\right) \leq 2,1 \leq i \leq k$ the algorithm tests solvability within complexity polynomial in n^{k}, M, so it is polynomial when the number k of inequalities is a constant.
Question: does anything similar hold for equations over \mathbb{C} beyond quadratic polynomials?

Theorem

One can test solvability of a system of polynomial equations over \mathbb{C} within complexity polynomial in $n^{d^{3 k}}, M$ and produce a solution if it does exist.

Polynomial systems with few equations

G.-Pasechnik: for a system of quadratic inequalities
$f_{i} \geq 0, \operatorname{deg}\left(f_{i}\right) \leq 2,1 \leq i \leq k$ the algorithm tests solvability within complexity polynomial in n^{k}, M, so it is polynomial when the number k of inequalities is a constant.
Question: does anything similar hold for equations over \mathbb{C} beyond quadratic polynomials?

Theorem

One can test solvability of a system of polynomial equations over \mathbb{C} within complexity polynomial in $n^{d^{3 k}}, M$ and produce a solution if it does exist.

In particular, the complexity is polynomial when k, d are both constant.

Polynomial systems with few equations

G.-Pasechnik: for a system of quadratic inequalities
$f_{i} \geq 0, \operatorname{deg}\left(f_{i}\right) \leq 2,1 \leq i \leq k$ the algorithm tests solvability within complexity polynomial in n^{k}, M, so it is polynomial when the number k of inequalities is a constant.
Question: does anything similar hold for equations over \mathbb{C} beyond quadratic polynomials?

Theorem

One can test solvability of a system of polynomial equations over \mathbb{C} within complexity polynomial in $n^{d^{3 k}}, M$ and produce a solution if it does exist.

In particular, the complexity is polynomial when k, d are both constant. One can extend the Theorem to solvability over algebraically closed fields of arbitrary characteristics (then M bounds the bit-size of the coefficients of the polynomials).

Polynomial systems with few equations

G.-Pasechnik: for a system of quadratic inequalities
$f_{i} \geq 0, \operatorname{deg}\left(f_{i}\right) \leq 2,1 \leq i \leq k$ the algorithm tests solvability within complexity polynomial in n^{k}, M, so it is polynomial when the number k of inequalities is a constant.
Question: does anything similar hold for equations over \mathbb{C} beyond quadratic polynomials?

Theorem

One can test solvability of a system of polynomial equations over \mathbb{C} within complexity polynomial in $n^{d^{3 k}}, M$ and produce a solution if it does exist.

In particular, the complexity is polynomial when k, d are both constant.
One can extend the Theorem to solvability over algebraically closed fields of arbitrary characteristics (then M bounds the bit-size of the coefficients of the polynomials).
For $d=2$ and $k=n+1$ the problem of solvability is NP-hard:
$X_{i}^{2}=X_{i}, 1 \leq i \leq n, c_{1} \cdot X_{1}+\cdots+c_{n} \cdot X_{n}=c \quad$ (KNAPSACK problem)

Testing points for sparse polynomials

A polynomial $f \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ is called t-sparse if it contains at most t monomials.

Testing points for sparse polynomials

A polynomial $f \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ is called t-sparse if it contains at most t monomials. Let p_{i} denote the i-th prime and a point
$s_{j}=\left(p_{1}^{j}, \ldots, p_{n}^{j}\right) \in \mathbb{Z}^{n}, j \geq 0$.

Testing points for sparse polynomials

A polynomial $f \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ is called t-sparse if it contains at most t monomials. Let p_{i} denote the i-th prime and a point
$s_{j}=\left(p_{1}^{j}, \ldots, p_{n}^{j}\right) \in \mathbb{Z}^{n}, j \geq 0$.

Lemma

For a t-sparse polynomial f there exists $0 \leq j<t$ such that $f\left(s_{j}\right) \neq 0$.

Testing points for sparse polynomials

A polynomial $f \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ is called t-sparse if it contains at most t monomials. Let p_{i} denote the i-th prime and a point
$s_{j}=\left(p_{1}^{j}, \ldots, p_{n}^{j}\right) \in \mathbb{Z}^{n}, j \geq 0$.

Lemma

For a t-sparse polynomial f there exists $0 \leq j<t$ such that $f\left(s_{j}\right) \neq 0$.
The proof follows from the observation that writing $f=\sum_{1 \leq 1 \leq t} a_{l} \cdot X^{l_{l}}$ where coefficients $a_{l} \in \mathbb{C}$ and $X^{l_{l}}$ are monomials, the equations $f\left(s_{j}\right)=0,0 \leq j<t$ lead to a $t \times t$ linear system with Vandermonde matrix and its solution $\left(a_{1}, \ldots, a_{t}\right)$.

Testing points for sparse polynomials

A polynomial $f \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ is called t-sparse if it contains at most t monomials. Let p_{i} denote the i-th prime and a point
$s_{j}=\left(p_{1}^{j}, \ldots, p_{n}^{j}\right) \in \mathbb{Z}^{n}, j \geq 0$.

Lemma

For a t-sparse polynomial f there exists $0 \leq j<t$ such that $f\left(s_{j}\right) \neq 0$.
The proof follows from the observation that writing $f=\sum_{1 \leq 1 \leq t} a_{l} \cdot X^{l_{l}}$ where coefficients $a_{l} \in \mathbb{C}$ and $X^{l_{l}}$ are monomials, the equations $f\left(s_{j}\right)=0,0 \leq j<t$ lead to a $t \times t$ linear system with Vandermonde matrix and its solution $\left(a_{1}, \ldots, a_{t}\right)$. Since Vandermonde matrix is nonsingular, the obtained contradiction proves the lemma.

Testing points for sparse polynomials

A polynomial $f \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ is called t-sparse if it contains at most t monomials. Let p_{i} denote the i-th prime and a point
$s_{j}=\left(p_{1}^{j}, \ldots, p_{n}^{j}\right) \in \mathbb{Z}^{n}, j \geq 0$.

Lemma

For a t-sparse polynomial f there exists $0 \leq j<t$ such that $f\left(s_{j}\right) \neq 0$.
The proof follows from the observation that writing $f=\sum_{1 \leq I \leq t} a_{l} \cdot X^{l_{l}}$ where coefficients $a_{l} \in \mathbb{C}$ and $X^{l_{l}}$ are monomials, the equations $f\left(s_{j}\right)=0,0 \leq j<t$ lead to a $t \times t$ linear system with Vandermonde matrix and its solution $\left(a_{1}, \ldots, a_{t}\right)$. Since Vandermonde matrix is nonsingular, the obtained contradiction proves the lemma.

Corollary

Let $\operatorname{deg} f \leq D$. There exists $0 \leq j<\binom{n+D}{n}$ such that $f\left(s_{j}\right) \neq 0$.

Reduction of solvability to systems in few variables

Let $V \subset \mathbb{C}^{n}$ be an irreducible (over \mathbb{Q}) component of the variety determined by (1). Then $\operatorname{dim} V=: m \geq n-k$ and $\operatorname{deg} V \leq d^{n-m} \leq d^{k}$ due to Bezout inequality.

Reduction of solvability to systems in few variables

Let $V \subset \mathbb{C}^{n}$ be an irreducible (over \mathbb{Q}) component of the variety determined by (1). Then $\operatorname{dim} V=: m \geq n-k$ and $\operatorname{deg} V \leq d^{n-m} \leq d^{k}$ due to Bezout inequality.
Let variables $X_{i_{1}}, \ldots, X_{i_{m}}$ constitute a transcendental basis over \mathbb{C} of the field $\mathbb{C}(V)$ of rational functions on V, clearly such i_{1}, \ldots, i_{m} do exist.

Reduction of solvability to systems in few variables

Let $V \subset \mathbb{C}^{n}$ be an irreducible (over \mathbb{Q}) component of the variety determined by (1). Then $\operatorname{dim} V=: m \geq n-k$ and $\operatorname{deg} V \leq d^{n-m} \leq d^{k}$ due to Bezout inequality.
Let variables $X_{i_{1}}, \ldots, X_{i_{m}}$ constitute a transcendental basis over \mathbb{C} of the field $\mathbb{C}(V)$ of rational functions on V, clearly such i_{1}, \ldots, i_{m} do exist.
Then the degree of fields extension
$e:=\left[\mathbb{C}(V): \mathbb{C}\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)\right] \leq \operatorname{deg} V$ equals the typical (and at the same time, the maximal) number of points in the intersections $V \cap\left\{X_{i_{1}}=c_{1}, \ldots, X_{i_{m}}=c_{m}\right\}$ for different $c_{1}, \ldots, c_{m} \in \mathbb{C}$, provided that this intersection being finite.

Reduction of solvability to systems in few variables

Let $V \subset \mathbb{C}^{n}$ be an irreducible (over \mathbb{Q}) component of the variety determined by (1). Then $\operatorname{dim} V=: m \geq n-k$ and $\operatorname{deg} V \leq d^{n-m} \leq d^{k}$ due to Bezout inequality.
Let variables $X_{i_{1}}, \ldots, X_{i_{m}}$ constitute a transcendental basis over \mathbb{C} of the field $\mathbb{C}(V)$ of rational functions on V, clearly such i_{1}, \ldots, i_{m} do exist.
Then the degree of fields extension
$e:=\left[\mathbb{C}(V): \mathbb{C}\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)\right] \leq \operatorname{deg} V$ equals the typical (and at the same time, the maximal) number of points in the intersections $V \cap\left\{X_{i_{1}}=c_{1}, \ldots, X_{i_{m}}=c_{m}\right\}$ for different $c_{1}, \ldots, c_{m} \in \mathbb{C}$, provided that this intersection being finite. Observe that for almost all vectors $\left(c_{1}, \ldots, c_{m}\right) \in \mathbb{C}^{n}$ the intersection is finite and consists of e points.

Reduction of solvability to systems in few variables

Let $V \subset \mathbb{C}^{n}$ be an irreducible (over \mathbb{Q}) component of the variety determined by (1). Then $\operatorname{dim} V=: m \geq n-k$ and $\operatorname{deg} V \leq d^{n-m} \leq d^{k}$ due to Bezout inequality.
Let variables $X_{i_{1}}, \ldots, X_{i_{m}}$ constitute a transcendental basis over \mathbb{C} of the field $\mathbb{C}(V)$ of rational functions on V, clearly such i_{1}, \ldots, i_{m} do exist.
Then the degree of fields extension
$e:=\left[\mathbb{C}(V): \mathbb{C}\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)\right] \leq \operatorname{deg} V$ equals the typical (and at the same time, the maximal) number of points in the intersections $V \cap\left\{X_{i_{1}}=c_{1}, \ldots, X_{i_{m}}=c_{m}\right\}$ for different $c_{1}, \ldots, c_{m} \in \mathbb{C}$, provided that this intersection being finite. Observe that for almost all vectors $\left(c_{1}, \ldots, c_{m}\right) \in \mathbb{C}^{n}$ the intersection is finite and consists of e points.
There exists a primitive element $Y=\sum_{i \neq i_{1}, \ldots, i_{m}} b_{i} \cdot X_{i}$ of the extension $\mathbb{C}(V)$ of the field $\mathbb{C}\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)$ for appropriate integers b_{i}.

Reduction of solvability to systems in few variables

Let $V \subset \mathbb{C}^{n}$ be an irreducible (over \mathbb{Q}) component of the variety determined by (1). Then $\operatorname{dim} V=: m \geq n-k$ and $\operatorname{deg} V \leq d^{n-m} \leq d^{k}$ due to Bezout inequality.
Let variables $X_{i_{1}}, \ldots, X_{i_{m}}$ constitute a transcendental basis over \mathbb{C} of the field $\mathbb{C}(V)$ of rational functions on V, clearly such i_{1}, \ldots, i_{m} do exist.
Then the degree of fields extension
$e:=\left[\mathbb{C}(V): \mathbb{C}\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)\right] \leq \operatorname{deg} V$ equals the typical (and at the same time, the maximal) number of points in the intersections $V \cap\left\{X_{i_{1}}=c_{1}, \ldots, X_{i_{m}}=c_{m}\right\}$ for different $c_{1}, \ldots, c_{m} \in \mathbb{C}$, provided that this intersection being finite. Observe that for almost all vectors $\left(c_{1}, \ldots, c_{m}\right) \in \mathbb{C}^{n}$ the intersection is finite and consists of e points. There exists a primitive element $Y=\sum_{i \neq i_{1}, \ldots, i_{m}} b_{i} \cdot X_{i}$ of the extension $\mathbb{C}(V)$ of the field $\mathbb{C}\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)$ for appropriate integers b_{i}. Moreover, there exist $n-m$ linearly over \mathbb{C} independent primitive elements Y_{1}, \ldots, Y_{n-m} of this form. One can view $Y_{1}, \ldots, Y_{n-m}, X_{i_{1}}, \ldots, X_{i_{m}}$ as new coordinates.

Reduction of solvability to systems in few variables: continued

Consider a linear projection $\pi_{l}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m+1}$ onto the coordinates $Y_{l}, X_{i_{1}}, \ldots, X_{i_{m}}, 1 \leq I \leq n-m$.

Reduction of solvability to systems in few variables: continued

Consider a linear projection $\pi_{l}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m+1}$ onto the coordinates $Y_{I}, X_{i_{1}}, \ldots, X_{i_{m}}, 1 \leq I \leq n-m$. Then the closure $\overline{\pi_{l}(V)} \subset \mathbb{C}^{m+1}$ is an irreducible hypersurface, so $\operatorname{dim} \overline{\pi_{l}(V)}=m$.

Reduction of solvability to systems in few variables: continued

Consider a linear projection $\pi_{I}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m+1}$ onto the coordinates $Y_{l}, X_{i}, \ldots, X_{i m}, 1 \leq I \leq n-m$. Then the closure $\overline{\pi_{l}(V)} \subset \mathbb{C}^{m+1}$ is an irreducible hypersurface, so $\operatorname{dim} \overline{\pi_{l}(V)}=m$. Denote by $g_{l} \in \mathbb{Q}\left[Y_{l}, X_{i_{1}}, \ldots, X_{i_{m}}\right]$ the minimal polynomial providing the equation of $\overline{\pi_{l}(V)}$.

Reduction of solvability to systems in few variables: continued

Consider a linear projection $\pi_{1}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m+1}$ onto the coordinates $Y_{I}, X_{i_{1}}, \ldots, X_{i m}, 1 \leq I \leq n-m$. Then the closure $\overline{\pi_{l}(V)} \subset \mathbb{C}^{m+1}$ is an irreducible hypersurface, so $\operatorname{dim} \overline{\pi_{l}(V)}=m$. Denote by $g_{l} \in \mathbb{Q}\left[Y_{l}, X_{i_{1}}, \ldots, X_{i_{m}}\right]$ the minimal polynomial providing the equation of $\overline{\pi_{l}(V)}$. Then $\operatorname{deg} g_{l}=\operatorname{deg} \overline{\pi_{l}(V)} \leq \operatorname{deg} V$ and $\operatorname{deg}_{\gamma_{l}} g_{l}=e$, taking into account that Y_{l} is a primitive element.

Reduction of solvability to systems in few variables: continued

Consider a linear projection $\pi_{l}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m+1}$ onto the coordinates $Y_{I}, X_{i_{1}}, \ldots, X_{i m}, 1 \leq I \leq n-m$. Then the closure $\overline{\pi_{l}(V)} \subset \mathbb{C}^{m+1}$ is an irreducible hypersurface, so $\operatorname{dim} \overline{\pi_{l}(V)}=m$. Denote by $g_{l} \in \mathbb{Q}\left[Y_{l}, X_{i_{1}}, \ldots, X_{i_{m}}\right]$ the minimal polynomial providing the equation of $\overline{\pi_{l}(V)}$. Then $\operatorname{deg} g_{l}=\operatorname{deg} \overline{\pi_{l}(V)} \leq \operatorname{deg} V$ and $\operatorname{deg}_{\gamma_{l}} g_{l}=e$, taking into account that $Y_{\text {l }}$ is a primitive element.
Rewriting $g_{l}=\sum_{q \leq e} Y_{l}^{q} \cdot h_{q}, h_{q} \in \mathbb{Q}\left[X_{i_{1}}, \ldots, X_{i_{m}}\right]$ as a polynomial in a distinguished variable Y_{l}, we denote $H_{l}:=h_{e} \cdot \operatorname{Disc}_{Y_{l}}\left(g_{l}\right) \in \mathbb{Q}\left[X_{i_{1}}, \ldots, X_{i_{m}}\right]$, where Disc $_{Y_{1}}$ denotes the discriminant with respect to the variable Y_{l}

Reduction of solvability to systems in few variables: continued

Consider a linear projection $\pi_{l}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m+1}$ onto the coordinates $Y_{I}, X_{i_{1}}, \ldots, X_{i m}, 1 \leq I \leq n-m$. Then the closure $\overline{\pi_{l}(V)} \subset \mathbb{C}^{m+1}$ is an irreducible hypersurface, so $\operatorname{dim} \overline{\pi_{l}(V)}=m$. Denote by $g_{l} \in \mathbb{Q}\left[Y_{l}, X_{i_{1}}, \ldots, X_{i_{m}}\right]$ the minimal polynomial providing the equation of $\overline{\pi_{l}(V)}$. Then $\operatorname{deg} g_{l}=\operatorname{deg} \overline{\pi_{l}(V)} \leq \operatorname{deg} V$ and $\operatorname{deg}_{Y_{l}} g_{l}=e$, taking into account that Y_{l} is a primitive element.
Rewriting $g_{l}=\sum_{q \leq e} Y_{l}^{q} \cdot h_{q}, h_{q} \in \mathbb{Q}\left[X_{i_{1}}, \ldots, X_{i_{m}}\right]$ as a polynomial in a distinguished variable Y_{l}, we denote $H_{l}:=h_{e} \cdot \operatorname{Disc}_{Y_{l}}\left(g_{l}\right) \in \mathbb{Q}\left[X_{i_{1}}, \ldots, X_{i_{m}}\right]$, where Disc $y_{y_{l}}$ denotes the discriminant with respect to the variable Y_{l} (the discriminant does not vanish identically since Y_{l} is a primitive element).

Reduction of solvability to systems in few variables: continued

Consider a linear projection $\pi_{l}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m+1}$ onto the coordinates $Y_{I}, X_{i_{1}}, \ldots, X_{i m}, 1 \leq I \leq n-m$. Then the closure $\overline{\pi_{l}(V)} \subset \mathbb{C}^{m+1}$ is an irreducible hypersurface, so $\operatorname{dim} \overline{\pi_{l}(V)}=m$. Denote by $g_{l} \in \mathbb{Q}\left[Y_{l}, X_{i_{1}}, \ldots, X_{i_{m}}\right]$ the minimal polynomial providing the equation of $\overline{\pi_{l}(V)}$. Then $\operatorname{deg} g_{l}=\operatorname{deg} \overline{\pi_{l}(V)} \leq \operatorname{deg} V$ and $\operatorname{deg}_{Y_{l}} g_{l}=e$, taking into account that $Y_{\text {l }}$ is a primitive element.
Rewriting $g_{l}=\sum_{q \leq e} Y_{l}^{q} \cdot h_{q}, h_{q} \in \mathbb{Q}\left[X_{i_{1}}, \ldots, X_{i_{m}}\right]$ as a polynomial in a distinguished variable Y_{l}, we denote $H_{l}:=h_{e} \cdot \operatorname{Disc}_{Y_{l}}\left(g_{l}\right) \in \mathbb{Q}\left[X_{i_{1}}, \ldots, X_{i_{m}}\right]$, where Disc $y_{y_{l}}$ denotes the discriminant with respect to the variable Y_{l} (the discriminant does not vanish identically since Y_{l} is a primitive element). We have $\operatorname{deg} H_{l} \leq d^{k}+d^{2 k}$.

Reduction of solvability to systems in few variables: continued

Consider a linear projection $\pi_{l}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m+1}$ onto the coordinates $Y_{I}, X_{i_{1}}, \ldots, X_{i m}, 1 \leq I \leq n-m$. Then the closure $\overline{\pi_{l}(V)} \subset \mathbb{C}^{m+1}$ is an irreducible hypersurface, so $\operatorname{dim} \overline{\pi_{l}(V)}=m$. Denote by $g_{l} \in \mathbb{Q}\left[Y_{l}, X_{i_{1}}, \ldots, X_{i_{m}}\right]$ the minimal polynomial providing the equation of $\overline{\pi_{l}(V)}$. Then $\operatorname{deg} g_{l}=\operatorname{deg} \overline{\pi_{l}(V)} \leq \operatorname{deg} V$ and $\operatorname{deg}_{\gamma_{1}} g_{l}=e$, taking into account that $Y_{\text {l }}$ is a primitive element.
Rewriting $g_{l}=\sum_{q \leq e} Y_{l}^{q} \cdot h_{q}, h_{q} \in \mathbb{Q}\left[X_{i_{1}}, \ldots, X_{i_{m}}\right]$ as a polynomial in a distinguished variable Y_{l}, we denote $H_{l}:=h_{e} \cdot \operatorname{Disc}_{Y_{l}}\left(g_{l}\right) \in \mathbb{Q}\left[X_{i_{1}}, \ldots, X_{i_{m}}\right]$, where Disc $_{Y_{,}}$denotes the discriminant with respect to the variable Y_{l} (the discriminant does not vanish identically since Y_{l} is a primitive element). We have $\operatorname{deg} H_{l} \leq d^{k}+d^{2 k}$. Consider the product $H:=\prod_{1 \leq I \leq n-m} H_{l}$, then $D:=\operatorname{deg} H \leq(n-m) \cdot\left(d^{k}+d^{2 k}\right) \leq d^{3 k}$.

Reduction of solvability to systems in few variables: testing points

Due to testing points for sparse polynomials there exists $0 \leq j<\binom{D+m}{D} \leq m^{d^{3 k}}$ such that $H\left(s_{j}\right)=H\left(p_{1}^{j}, \ldots, p_{m}^{j}\right) \neq 0$.

Reduction of solvability to systems in few variables: testing points

Due to testing points for sparse polynomials there exists $0 \leq j<\binom{D+m}{D} \leq m^{d^{3 k}}$ such that $H\left(s_{j}\right)=H\left(p_{1}^{j}, \ldots, p_{m}^{j}\right) \neq 0$. Observe that the projective intersection $\bar{V} \cap\left\{X_{i_{1}}=p_{1}^{j} \cdot X_{0}, \cdots, X_{i_{m}}=p_{m}^{j} \cdot X_{0}\right\}$ in the projective space $\mathbb{P} \mathbb{C}^{n} \supset \mathbb{C}^{n}$ with the coordinates $\left[X_{0}: X_{1}: \cdots: X_{n}\right]$ consists of e points, where \bar{V} denotes the projective closure of V.

Reduction of solvability to systems in few variables: testing points

Due to testing points for sparse polynomials there exists $0 \leq j<\binom{D+m}{D} \leq m^{d^{3 k}}$ such that $H\left(s_{j}\right)=H\left(p_{1}^{j}, \ldots, p_{m}^{j}\right) \neq 0$. Observe that the projective intersection $\bar{V} \cap\left\{X_{i_{1}}=p_{1}^{j} \cdot X_{0}, \cdots, X_{i_{m}}=p_{m}^{j} \cdot X_{0}\right\}$ in the projective space $\mathbb{P} \mathbb{C}^{n} \supset \mathbb{C}^{n}$ with the coordinates $\left[X_{0}: X_{1}: \cdots: X_{n}\right]$ consists of e points, where \bar{V} denotes the projective closure of V. On the other hand, coordinate Y_{l} of the points of the affine intersection $V \cap\left\{X_{i_{1}}=p_{1}^{j}, \ldots, X_{i_{m}}=p_{m}^{j}\right\}$ attains e different values, taking into account that $H_{l}\left(s_{j}\right) \neq 0,1 \leq I \leq n-m$.

Reduction of solvability to systems in few variables: testing points

Due to testing points for sparse polynomials there exists $0 \leq j<\binom{D+m}{D} \leq m^{d^{3 k}}$ such that $H\left(s_{j}\right)=H\left(p_{1}^{j}, \ldots, p_{m}^{j}\right) \neq 0$. Observe that the projective intersection $\bar{V} \cap\left\{X_{i_{1}}=p_{1}^{j} \cdot X_{0}, \cdots, X_{i_{m}}=p_{m}^{j} \cdot X_{0}\right\}$ in the projective space $\mathbb{P} \mathbb{C}^{n} \supset \mathbb{C}^{n}$ with the coordinates $\left[X_{0}: X_{1}: \cdots: X_{n}\right]$ consists of e points, where \bar{V} denotes the projective closure of V. On the other hand, coordinate Y_{l} of the points of the affine intersection $V \cap\left\{X_{i_{1}}=p_{1}^{j}, \ldots, X_{i_{m}}=p_{m}^{j}\right\}$ attains e different values, taking into account that $H_{l}\left(s_{j}\right) \neq 0,1 \leq I \leq n-m$. Therefore, all e points from the projective intersection lie in the affine chart \mathbb{C}^{n}.

Reduction of solvability to systems in few variables: testing points

Due to testing points for sparse polynomials there exists $0 \leq j<\binom{D+m}{D} \leq m^{d^{3 k}}$ such that $H\left(s_{j}\right)=H\left(p_{1}^{j}, \ldots, p_{m}^{j}\right) \neq 0$. Observe that the projective intersection $\bar{V} \cap\left\{X_{i_{1}}=p_{1}^{j} \cdot X_{0}, \cdots, X_{i_{m}}=p_{m}^{j} \cdot X_{0}\right\}$ in the projective space $\mathbb{P} \mathbb{C}^{n} \supset \mathbb{C}^{n}$ with the coordinates $\left[X_{0}: X_{1}: \cdots: X_{n}\right]$ consists of e points, where \bar{V} denotes the projective closure of V. On the other hand, coordinate Y_{l} of the points of the affine intersection $V \cap\left\{X_{i_{1}}=p_{1}^{j}, \ldots, X_{i_{m}}=p_{m}^{j}\right\}$ attains e different values, taking into account that $H_{l}\left(s_{j}\right) \neq 0,1 \leq I \leq n-m$. Therefore, all e points from the projective intersection lie in the affine chart \mathbb{C}^{n}. Consequently, the intersection $V \cap\left\{X_{i_{1}}=p_{1}^{j}, \ldots, X_{i_{m}}=p_{m}^{j}\right\}$ is not empty.

there exist

Reduction of solvability to systems in few variables: testing points

Due to testing points for sparse polynomials there exists $0 \leq j<\binom{D+m}{D} \leq m^{d^{3 k}}$ such that $H\left(s_{j}\right)=H\left(p_{1}^{j}, \ldots, p_{m}^{j}\right) \neq 0$. Observe that the projective intersection $\bar{V} \cap\left\{X_{i_{1}}=p_{1}^{j} \cdot X_{0}, \cdots, X_{i_{m}}=p_{m}^{j} \cdot X_{0}\right\}$ in the projective space $\mathbb{P} \mathbb{C}^{n} \supset \mathbb{C}^{n}$ with the coordinates $\left[X_{0}: X_{1}: \cdots: X_{n}\right]$ consists of e points, where \bar{V} denotes the projective closure of V. On the other hand, coordinate Y_{l} of the points of the affine intersection $V \cap\left\{X_{i_{1}}=p_{1}^{j}, \ldots, X_{i_{m}}=p_{m}^{j}\right\}$ attains e different values, taking into account that $H_{l}\left(s_{j}\right) \neq 0,1 \leq I \leq n-m$. Therefore, all e points from the projective intersection lie in the affine chart \mathbb{C}^{n}. Consequently, the intersection $V \cap\left\{X_{i_{1}}=p_{1}^{j}, \ldots, X_{i_{m}}=p_{m}^{j}\right\}$ is not empty.

Corollary

For an irreducible component $V \subset \mathbb{C}^{n}$ of $\operatorname{dim}(V)=m$ of the variety given by a system of equations $f_{1}=\cdots=f_{k}=0$

Reduction of solvability to systems in few variables: testing points

Due to testing points for sparse polynomials there exists $0 \leq j<\binom{D+m}{D} \leq m^{d^{3 k}}$ such that $H\left(s_{j}\right)=H\left(p_{1}^{j}, \ldots, p_{m}^{j}\right) \neq 0$. Observe that the projective intersection $\bar{V} \cap\left\{X_{i_{1}}=p_{1}^{j} \cdot X_{0}, \cdots, X_{i_{m}}=p_{m}^{j} \cdot X_{0}\right\}$ in the projective space $\mathbb{P}^{n} \supset \mathbb{C}^{n}$ with the coordinates $\left[X_{0}: X_{1}: \cdots: X_{n}\right]$ consists of e points, where \bar{V} denotes the projective closure of V. On the other hand, coordinate Y_{l} of the points of the affine intersection $V \cap\left\{X_{i_{1}}=p_{1}^{j}, \ldots, X_{i_{m}}=p_{m}^{j}\right\}$ attains e different values, taking into account that $H_{l}\left(s_{j}\right) \neq 0,1 \leq I \leq n-m$. Therefore, all e points from the projective intersection lie in the affine chart \mathbb{C}^{n}. Consequently, the intersection $V \cap\left\{X_{i_{1}}=p_{1}^{j}, \ldots, X_{i_{m}}=p_{m}^{j}\right\}$ is not empty.

Corollary

For an irreducible component $V \subset \mathbb{C}^{n}$ of $\operatorname{dim}(V)=m$ of the variety given by a system of equations $f_{1}=\cdots=f_{k}=0$ there exist
$0 \leq j<m^{d^{2 k}}$ and $1 \leq i_{1}, \ldots, i_{m} \leq n$

Reduction of solvability to systems in few variables: testing points

Due to testing points for sparse polynomials there exists $0 \leq j<\binom{D+m}{D} \leq m^{d^{3 k}}$ such that $H\left(s_{j}\right)=H\left(p_{1}^{j}, \ldots, p_{m}^{j}\right) \neq 0$. Observe that the projective intersection $\bar{V} \cap\left\{X_{i_{1}}=p_{1}^{j} \cdot X_{0}, \cdots, X_{i_{m}}=p_{m}^{j} \cdot X_{0}\right\}$ in the projective space $\mathbb{P} \mathbb{C}^{n} \supset \mathbb{C}^{n}$ with the coordinates $\left[X_{0}: X_{1}: \cdots: X_{n}\right]$ consists of e points, where \bar{V} denotes the projective closure of V. On the other hand, coordinate Y_{l} of the points of the affine intersection $V \cap\left\{X_{i_{1}}=p_{1}^{j}, \ldots, X_{i_{m}}=p_{m}^{j}\right\}$ attains e different values, taking into account that $H_{l}\left(s_{j}\right) \neq 0,1 \leq I \leq n-m$. Therefore, all e points from the projective intersection lie in the affine chart \mathbb{C}^{n}. Consequently, the intersection $V \cap\left\{X_{i_{1}}=p_{1}^{j}, \ldots, X_{i_{m}}=p_{m}^{j}\right\}$ is not empty.

Corollary

For an irreducible component $V \subset \mathbb{C}^{n}$ of $\operatorname{dim}(V)=m$ of the variety given by a system of equations $f_{1}=\cdots=f_{k}=0$ there exist $0 \leq j<m^{d^{2 k}}$ and $1 \leq i_{1}, \ldots, i_{m} \leq n$ such that intersection $V \cap\left\{X_{i_{1}}=p_{1}^{j}, \ldots, X_{i_{m}}=p_{m}^{j}\right\}$ is not empty.

Test of solvability and its complexity

To test solvability of system $f_{1}=\cdots=f_{k}=0$ the algorithm chooses all possible subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subset\{1, \ldots, n\}$ with $m \geq n-k$ treating $X_{i_{1}}, \ldots, X_{i_{m}}$ as a candidate for a transcendental basis of some irreducible component V of the variety determined by this system.

Test of solvability and its complexity

To test solvability of system $f_{1}=\cdots=f_{k}=0$ the algorithm chooses all possible subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subset\{1, \ldots, n\}$ with $m \geq n-k$ treating $X_{i_{1}}, \ldots, X_{i_{m}}$ as a candidate for a transcendental basis of some irreducible component V of the variety determined by this system. After that for each $0 \leq j<\binom{D+m}{D}$ where $D \leq d^{3 k}$, the algorithm substitutes $X_{i_{1}}=p_{1}^{j}, \ldots, X_{i_{m}}=p_{m}^{j}$ into polynomials f_{1}, \ldots, f_{k} and solves the resulting system of polynomial equations in $n-m \leq k$ variables applying the algorithm by Chistov-G.

Test of solvability and its complexity

To test solvability of system $f_{1}=\cdots=f_{k}=0$ the algorithm chooses all possible subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subset\{1, \ldots, n\}$ with $m \geq n-k$ treating $X_{i_{1}}, \ldots, X_{i_{m}}$ as a candidate for a transcendental basis of some irreducible component V of the variety determined by this system. After that for each $0 \leq j<\binom{D+m}{D}$ where $D \leq d^{3 k}$, the algorithm substitutes $X_{i_{1}}=p_{1}^{j}, \ldots, X_{i_{m}}=p_{m}^{j}$ into polynomials f_{1}, \ldots, f_{k} and solves the resulting system of polynomial equations in $n-m \leq k$ variables applying the algorithm by Chistov-G. The complexity of each of these applications does not exceed a polynomial in $M \cdot\binom{D+m}{D} \cdot d^{(n-m)^{2}}$, i. e. a polynomial in $M \cdot n^{d^{3 k}}$.

Test of solvability and its complexity

To test solvability of system $f_{1}=\cdots=f_{k}=0$ the algorithm chooses all possible subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subset\{1, \ldots, n\}$ with $m \geq n-k$ treating $X_{i_{1}}, \ldots, X_{i_{m}}$ as a candidate for a transcendental basis of some irreducible component V of the variety determined by this system. After that for each $0 \leq j<\binom{D+m}{D}$ where $D \leq d^{3 k}$, the algorithm substitutes $X_{i_{1}}=p_{1}^{j}, \ldots, X_{i_{m}}=p_{m}^{j}$ into polynomials f_{1}, \ldots, f_{k} and solves the resulting system of polynomial equations in $n-m \leq k$ variables applying the algorithm by Chistov-G. The complexity of each of these applications does not exceed a polynomial in $M \cdot\binom{D+m}{D} \cdot d^{(n-m)^{2}}$, i. e. a polynomial in $M \cdot n^{d^{3 k}}$. Moreover, our algorithm yields a solution of a system, provided that it does exist.
If the system is solvable then the algorithm
yields one of its solutions.

Test of solvability and its complexity

To test solvability of system $f_{1}=\cdots=f_{k}=0$ the algorithm chooses all possible subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subset\{1, \ldots, n\}$ with $m \geq n-k$ treating $X_{i_{1}}, \ldots, X_{i_{m}}$ as a candidate for a transcendental basis of some irreducible component V of the variety determined by this system. After that for each $0 \leq j<\binom{D+m}{D}$ where $D \leq d^{3 k}$, the algorithm substitutes $X_{i_{1}}=p_{1}^{j}, \ldots, X_{i_{m}}=p_{m}^{j}$ into polynomials f_{1}, \ldots, f_{k} and solves the resulting system of polynomial equations in $n-m \leq k$ variables applying the algorithm by Chistov-G. The complexity of each of these applications does not exceed a polynomial in $M \cdot\binom{D+m}{D} \cdot d^{(n-m)^{2}}$, i. e. a polynomial in $M \cdot n^{d^{3 k}}$. Moreover, our algorithm yields a solution of a system, provided that it does exist. Summarizing

Theorem

One can test solvability over \mathbb{C} of a system of k polynomials $f_{1}, \ldots, f_{k} \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ with degrees d within complexity polynomial in $M \cdot\binom{n+d^{2 k}}{n} \leq M \cdot n^{d^{3 k}}$.

Test of solvability and its complexity

To test solvability of system $f_{1}=\cdots=f_{k}=0$ the algorithm chooses all possible subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subset\{1, \ldots, n\}$ with $m \geq n-k$ treating $X_{i_{1}}, \ldots, X_{i_{m}}$ as a candidate for a transcendental basis of some irreducible component V of the variety determined by this system. After that for each $0 \leq j<\binom{D+m}{D}$ where $D \leq d^{3 k}$, the algorithm substitutes $X_{i_{1}}=p_{1}^{j}, \ldots, X_{i_{m}}=p_{m}^{j}$ into polynomials f_{1}, \ldots, f_{k} and solves the resulting system of polynomial equations in $n-m \leq k$ variables applying the algorithm by Chistov-G. The complexity of each of these applications does not exceed a polynomial in $M \cdot\binom{D+m}{D} \cdot d^{(n-m)^{2}}$, i. e. a polynomial in $M \cdot n^{d^{3 k}}$. Moreover, our algorithm yields a solution of a system, provided that it does exist. Summarizing

Theorem

One can test solvability over \mathbb{C} of a system of k polynomials $f_{1}, \ldots, f_{k} \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ with degrees d within complexity polynomial in $M \cdot\binom{n+d^{3 k}}{n} \leq M \cdot n^{d^{3 k}}$. If the system is solvable then the algorithm yields one of its solutions.

