
Polynomial complexity of solving systems
of few algebraic equations with small degrees

Dima Grigoriev (Lille)

CNRS

11/09/2012, Berlin

Dima Grigoriev (CNRS) Polynomial Complexity of Solving 11.9.12 1 / 8



Complexity of solving polynomial systems
Let a system of polynomial equations

f1 = · · · = fk = 0 (1)

be given where f1, . . . , fk ∈ Z[X1, . . . ,Xn], degrees
deg(fi) ≤ d , 1 ≤ i ≤ k and the absolute values of integer coefficients of
polynomials f1, . . . , fk do not exceed 2M .

The algorithm (Chistov-G.) finds the irreducible components of the
variety in Cn given by system (1) within complexity polynomial in
k , dn2

, M.

A similar complexity bound (k · d)nO(1)
, M holds for the algorithm

(G.-Vorobjov) which finds the connected components of the
semialgebraic set in Rn given by system of inequalities

f1 ≥ 0, . . . , fk ≥ 0. (2)

Renegar: testing solvability of (2) (respectively, of (1)) within
complexity polynomial in (kd)n, M (respectively, k , dn, M) and
producing a solution in case it does exist.
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Polynomial systems with few equations
G.-Pasechnik: for a system of quadratic inequalities
fi ≥ 0, deg(fi) ≤ 2, 1 ≤ i ≤ k the algorithm tests solvability within
complexity polynomial in nk , M, so it is polynomial when the number k
of inequalities is a constant.
Question: does anything similar hold for equations over C beyond
quadratic polynomials?

Theorem
One can test solvability of a system of polynomial equations over C
within complexity polynomial in nd3k

, M and produce a solution if it
does exist.

In particular, the complexity is polynomial when k , d are both constant.
One can extend the Theorem to solvability over algebraically closed
fields of arbitrary characteristics (then M bounds the bit-size of the
coefficients of the polynomials).
For d = 2 and k = n + 1 the problem of solvability is NP-hard:
X 2

i = Xi , 1 ≤ i ≤ n, c1 · X1 + · · ·+ cn · Xn = c (KNAPSACK problem)
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Testing points for sparse polynomials

A polynomial f ∈ C[X1, . . . ,Xn] is called t-sparse if it contains at most t
monomials. Let pi denote the i-th prime and a point
sj = (pj

1, . . . ,p
j
n) ∈ Zn, j ≥ 0.

Lemma
For a t-sparse polynomial f there exists 0 ≤ j < t such that f (sj) 6= 0.

The proof follows from the observation that writing f =
∑

1≤l≤t al · X Il

where coefficients al ∈ C and X Il are monomials, the equations
f (sj) = 0, 0 ≤ j < t lead to a t × t linear system with Vandermonde
matrix and its solution (a1, . . . ,at). Since Vandermonde matrix is
nonsingular, the obtained contradiction proves the lemma.

Corollary

Let degf ≤ D. There exists 0 ≤ j <
(n+D

n

)
such that f (sj) 6= 0.
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Reduction of solvability to systems in few
variables
Let V ⊂ Cn be an irreducible (over Q) component of the variety
determined by (1). Then dimV =: m ≥ n − k and degV ≤ dn−m ≤ dk

due to Bezout inequality.
Let variables Xi1 , . . . ,Xim constitute a transcendental basis over C of
the field C(V ) of rational functions on V , clearly such i1, . . . , im do exist.
Then the degree of fields extension
e := [C(V ) : C(Xi1 , . . . ,Xim)] ≤ degV equals the typical (and at the
same time, the maximal) number of points in the intersections
V ∩ {Xi1 = c1, . . . ,Xim = cm} for different c1, . . . , cm ∈ C, provided that
this intersection being finite. Observe that for almost all vectors
(c1, . . . , cm) ∈ Cn the intersection is finite and consists of e points.
There exists a primitive element Y =

∑
i 6=i1,...,im bi · Xi of the extension

C(V ) of the field C(Xi1 , . . . ,Xim) for appropriate integers bi . Moreover,
there exist n −m linearly over C independent primitive elements
Y1, . . . ,Yn−m of this form. One can view Y1, . . . ,Yn−m,Xi1 , . . . ,Xim as
new coordinates.

Dima Grigoriev (CNRS) Polynomial Complexity of Solving 11.9.12 5 / 8



Reduction of solvability to systems in few
variables
Let V ⊂ Cn be an irreducible (over Q) component of the variety
determined by (1). Then dimV =: m ≥ n − k and degV ≤ dn−m ≤ dk

due to Bezout inequality.
Let variables Xi1 , . . . ,Xim constitute a transcendental basis over C of
the field C(V ) of rational functions on V , clearly such i1, . . . , im do exist.
Then the degree of fields extension
e := [C(V ) : C(Xi1 , . . . ,Xim)] ≤ degV equals the typical (and at the
same time, the maximal) number of points in the intersections
V ∩ {Xi1 = c1, . . . ,Xim = cm} for different c1, . . . , cm ∈ C, provided that
this intersection being finite. Observe that for almost all vectors
(c1, . . . , cm) ∈ Cn the intersection is finite and consists of e points.
There exists a primitive element Y =

∑
i 6=i1,...,im bi · Xi of the extension

C(V ) of the field C(Xi1 , . . . ,Xim) for appropriate integers bi . Moreover,
there exist n −m linearly over C independent primitive elements
Y1, . . . ,Yn−m of this form. One can view Y1, . . . ,Yn−m,Xi1 , . . . ,Xim as
new coordinates.

Dima Grigoriev (CNRS) Polynomial Complexity of Solving 11.9.12 5 / 8



Reduction of solvability to systems in few
variables
Let V ⊂ Cn be an irreducible (over Q) component of the variety
determined by (1). Then dimV =: m ≥ n − k and degV ≤ dn−m ≤ dk

due to Bezout inequality.
Let variables Xi1 , . . . ,Xim constitute a transcendental basis over C of
the field C(V ) of rational functions on V , clearly such i1, . . . , im do exist.
Then the degree of fields extension
e := [C(V ) : C(Xi1 , . . . ,Xim)] ≤ degV equals the typical (and at the
same time, the maximal) number of points in the intersections
V ∩ {Xi1 = c1, . . . ,Xim = cm} for different c1, . . . , cm ∈ C, provided that
this intersection being finite. Observe that for almost all vectors
(c1, . . . , cm) ∈ Cn the intersection is finite and consists of e points.
There exists a primitive element Y =

∑
i 6=i1,...,im bi · Xi of the extension

C(V ) of the field C(Xi1 , . . . ,Xim) for appropriate integers bi . Moreover,
there exist n −m linearly over C independent primitive elements
Y1, . . . ,Yn−m of this form. One can view Y1, . . . ,Yn−m,Xi1 , . . . ,Xim as
new coordinates.

Dima Grigoriev (CNRS) Polynomial Complexity of Solving 11.9.12 5 / 8



Reduction of solvability to systems in few
variables
Let V ⊂ Cn be an irreducible (over Q) component of the variety
determined by (1). Then dimV =: m ≥ n − k and degV ≤ dn−m ≤ dk

due to Bezout inequality.
Let variables Xi1 , . . . ,Xim constitute a transcendental basis over C of
the field C(V ) of rational functions on V , clearly such i1, . . . , im do exist.
Then the degree of fields extension
e := [C(V ) : C(Xi1 , . . . ,Xim)] ≤ degV equals the typical (and at the
same time, the maximal) number of points in the intersections
V ∩ {Xi1 = c1, . . . ,Xim = cm} for different c1, . . . , cm ∈ C, provided that
this intersection being finite. Observe that for almost all vectors
(c1, . . . , cm) ∈ Cn the intersection is finite and consists of e points.
There exists a primitive element Y =

∑
i 6=i1,...,im bi · Xi of the extension

C(V ) of the field C(Xi1 , . . . ,Xim) for appropriate integers bi . Moreover,
there exist n −m linearly over C independent primitive elements
Y1, . . . ,Yn−m of this form. One can view Y1, . . . ,Yn−m,Xi1 , . . . ,Xim as
new coordinates.

Dima Grigoriev (CNRS) Polynomial Complexity of Solving 11.9.12 5 / 8



Reduction of solvability to systems in few
variables
Let V ⊂ Cn be an irreducible (over Q) component of the variety
determined by (1). Then dimV =: m ≥ n − k and degV ≤ dn−m ≤ dk

due to Bezout inequality.
Let variables Xi1 , . . . ,Xim constitute a transcendental basis over C of
the field C(V ) of rational functions on V , clearly such i1, . . . , im do exist.
Then the degree of fields extension
e := [C(V ) : C(Xi1 , . . . ,Xim)] ≤ degV equals the typical (and at the
same time, the maximal) number of points in the intersections
V ∩ {Xi1 = c1, . . . ,Xim = cm} for different c1, . . . , cm ∈ C, provided that
this intersection being finite. Observe that for almost all vectors
(c1, . . . , cm) ∈ Cn the intersection is finite and consists of e points.
There exists a primitive element Y =

∑
i 6=i1,...,im bi · Xi of the extension

C(V ) of the field C(Xi1 , . . . ,Xim) for appropriate integers bi . Moreover,
there exist n −m linearly over C independent primitive elements
Y1, . . . ,Yn−m of this form. One can view Y1, . . . ,Yn−m,Xi1 , . . . ,Xim as
new coordinates.

Dima Grigoriev (CNRS) Polynomial Complexity of Solving 11.9.12 5 / 8



Reduction of solvability to systems in few
variables
Let V ⊂ Cn be an irreducible (over Q) component of the variety
determined by (1). Then dimV =: m ≥ n − k and degV ≤ dn−m ≤ dk

due to Bezout inequality.
Let variables Xi1 , . . . ,Xim constitute a transcendental basis over C of
the field C(V ) of rational functions on V , clearly such i1, . . . , im do exist.
Then the degree of fields extension
e := [C(V ) : C(Xi1 , . . . ,Xim)] ≤ degV equals the typical (and at the
same time, the maximal) number of points in the intersections
V ∩ {Xi1 = c1, . . . ,Xim = cm} for different c1, . . . , cm ∈ C, provided that
this intersection being finite. Observe that for almost all vectors
(c1, . . . , cm) ∈ Cn the intersection is finite and consists of e points.
There exists a primitive element Y =

∑
i 6=i1,...,im bi · Xi of the extension

C(V ) of the field C(Xi1 , . . . ,Xim) for appropriate integers bi . Moreover,
there exist n −m linearly over C independent primitive elements
Y1, . . . ,Yn−m of this form. One can view Y1, . . . ,Yn−m,Xi1 , . . . ,Xim as
new coordinates.

Dima Grigoriev (CNRS) Polynomial Complexity of Solving 11.9.12 5 / 8



Reduction of solvability to systems in few
variables: continued

Consider a linear projection πl : Cn → Cm+1 onto the coordinates
Yl ,Xi1 , . . . ,Xim , 1 ≤ l ≤ n −m. Then the closure πl(V ) ⊂ Cm+1 is an
irreducible hypersurface, so dimπl(V ) = m. Denote by
gl ∈ Q[Yl ,Xi1 , . . . ,Xim ] the minimal polynomial providing the equation of
πl(V ). Then deggl = degπl(V ) ≤ degV and degYl

gl = e, taking into
account that Yl is a primitive element.

Rewriting gl =
∑

q≤e Y q
l · hq, hq ∈ Q[Xi1 , . . . ,Xim ] as a polynomial in a

distinguished variable Yl , we denote
Hl := he · DiscYl (gl) ∈ Q[Xi1 , . . . ,Xim ], where DiscYl denotes the
discriminant with respect to the variable Yl (the discriminant does not
vanish identically since Yl is a primitive element). We have
degHl ≤ dk + d2k . Consider the product H :=

∏
1≤l≤n−m Hl , then

D := degH ≤ (n −m) · (dk + d2k ) ≤ d3k .

Dima Grigoriev (CNRS) Polynomial Complexity of Solving 11.9.12 6 / 8



Reduction of solvability to systems in few
variables: continued

Consider a linear projection πl : Cn → Cm+1 onto the coordinates
Yl ,Xi1 , . . . ,Xim , 1 ≤ l ≤ n −m. Then the closure πl(V ) ⊂ Cm+1 is an
irreducible hypersurface, so dimπl(V ) = m. Denote by
gl ∈ Q[Yl ,Xi1 , . . . ,Xim ] the minimal polynomial providing the equation of
πl(V ). Then deggl = degπl(V ) ≤ degV and degYl

gl = e, taking into
account that Yl is a primitive element.

Rewriting gl =
∑

q≤e Y q
l · hq, hq ∈ Q[Xi1 , . . . ,Xim ] as a polynomial in a

distinguished variable Yl , we denote
Hl := he · DiscYl (gl) ∈ Q[Xi1 , . . . ,Xim ], where DiscYl denotes the
discriminant with respect to the variable Yl (the discriminant does not
vanish identically since Yl is a primitive element). We have
degHl ≤ dk + d2k . Consider the product H :=

∏
1≤l≤n−m Hl , then

D := degH ≤ (n −m) · (dk + d2k ) ≤ d3k .

Dima Grigoriev (CNRS) Polynomial Complexity of Solving 11.9.12 6 / 8



Reduction of solvability to systems in few
variables: continued

Consider a linear projection πl : Cn → Cm+1 onto the coordinates
Yl ,Xi1 , . . . ,Xim , 1 ≤ l ≤ n −m. Then the closure πl(V ) ⊂ Cm+1 is an
irreducible hypersurface, so dimπl(V ) = m. Denote by
gl ∈ Q[Yl ,Xi1 , . . . ,Xim ] the minimal polynomial providing the equation of
πl(V ). Then deggl = degπl(V ) ≤ degV and degYl

gl = e, taking into
account that Yl is a primitive element.

Rewriting gl =
∑

q≤e Y q
l · hq, hq ∈ Q[Xi1 , . . . ,Xim ] as a polynomial in a
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Reduction of solvability to systems in few
variables: testing points
Due to testing points for sparse polynomials there exists
0 ≤ j <

(D+m
D

)
≤ md3k

such that H(sj) = H(pj
1, . . . ,p

j
m) 6= 0. Observe

that the projective intersection V ∩ {Xi1 = pj
1 · X0, · · · ,Xim = pj

m · X0} in
the projective space PCn ⊃ Cn with the coordinates [X0 : X1 : · · · : Xn]
consists of e points, where V denotes the projective closure of V . On
the other hand, coordinate Yl of the points of the affine intersection
V ∩ {Xi1 = pj

1, . . . ,Xim = pj
m} attains e different values, taking into

account that Hl(sj) 6= 0, 1 ≤ l ≤ n −m. Therefore, all e points from the
projective intersection lie in the affine chart Cn. Consequently, the
intersection V ∩ {Xi1 = pj

1, . . . ,Xim = pj
m} is not empty.

Corollary
For an irreducible component V ⊂ Cn of dim(V ) = m of the variety
given by a system of equations f1 = · · · = fk = 0 there exist
0 ≤ j < md2k

and 1 ≤ i1, . . . , im ≤ n such that intersection
V ∩ {Xi1 = pj

1, . . . ,Xim = pj
m} is not empty.
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Test of solvability and its complexity
To test solvability of system f1 = · · · = fk = 0 the algorithm chooses all
possible subsets {i1, . . . , im} ⊂ {1, . . . ,n} with m ≥ n − k treating
Xi1 , . . . ,Xim as a candidate for a transcendental basis of some
irreducible component V of the variety determined by this system.
After that for each 0 ≤ j <

(D+m
D

)
where D ≤ d3k , the algorithm

substitutes Xi1 = pj
1, . . . ,Xim = pj

m into polynomials f1, . . . , fk and solves
the resulting system of polynomial equations in n −m ≤ k variables
applying the algorithm by Chistov-G. The complexity of each of these
applications does not exceed a polynomial in M ·

(D+m
D

)
· d (n−m)2

, i. e. a
polynomial in M · nd3k

. Moreover, our algorithm yields a solution of a
system, provided that it does exist. Summarizing

Theorem
One can test solvability over C of a system of k polynomials
f1, . . . , fk ∈ Z[X1, . . . ,Xn] with degrees d within complexity polynomial
in M ·

(n+d3k

n

)
≤ M · nd3k

. If the system is solvable then the algorithm
yields one of its solutions.
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