Polynomial complexity of solving systems of few algebraic equations with small degrees

Dima Grigoriev (Lille)

CNRS

11/09/2012, Berlin

Dima Grigoriev (CNRS)

Polynomial Complexity of Solving

11.9.12 1/8

Let a system of polynomial equations

$$f_1 = \dots = f_k = 0 \tag{1}$$

be given where $f_1, \ldots, f_k \in \mathbb{Z}[X_1, \ldots, X_n]$, degrees $\deg(f_i) \leq d, 1 \leq i \leq k$ and the absolute values of integer coefficients of polynomials f_1, \ldots, f_k do not exceed 2^M .

The algorithm (Chistov-G.) finds the irreducible components of the variety in \mathbb{C}^n given by system (1) within complexity polynomial in k, d^{n^2} , M.

A similar complexity bound $(k \cdot d)^{n^{O(1)}}$, *M* holds for the algorithm (G.-Vorobjov) which finds the connected components of the semialgebraic set in \mathbb{R}^n given by system of inequalities

$$f_1 \ge 0, \dots, f_k \ge 0. \tag{2}$$

Renegar: testing solvability of (2) (respectively, of (1)) within complexity polynomial in $(kd)^n$, M (respectively, k, d^n , M) and

Let a system of polynomial equations

$$f_1 = \dots = f_k = 0 \tag{1}$$

be given where $f_1, \ldots, f_k \in \mathbb{Z}[X_1, \ldots, X_n]$, degrees $\deg(f_i) \leq d, 1 \leq i \leq k$ and the absolute values of integer coefficients of polynomials f_1, \ldots, f_k do not exceed 2^M .

The algorithm (Chistov-G.) finds the irreducible components of the variety in \mathbb{C}^n given by system (1) within complexity polynomial in k, d^{n^2} , M.

A similar complexity bound $(k \cdot d)^{n^{O(1)}}$, *M* holds for the algorithm (G.-Vorobjov) which finds the connected components of the semialgebraic set in \mathbb{R}^n given by system of inequalities

$$f_1 \ge 0, \dots, f_k \ge 0. \tag{(}$$

Renegar: testing solvability of (2) (respectively, of (1)) within complexity polynomial in $(kd)^n$, M (respectively, k, d^n , M) and producing a solution in case it does exist.

Dima Grigoriev (CNRS)

Polynomial Complexity of Solving

11.9.12 2/8

Let a system of polynomial equations

$$f_1 = \dots = f_k = 0 \tag{1}$$

be given where $f_1, \ldots, f_k \in \mathbb{Z}[X_1, \ldots, X_n]$, degrees $\deg(f_i) \leq d, 1 \leq i \leq k$ and the absolute values of integer coefficients of polynomials f_1, \ldots, f_k do not exceed 2^M .

The algorithm (Chistov-G.) finds the irreducible components of the variety in \mathbb{C}^n given by system (1) within complexity polynomial in k, d^{n^2} , M.

A similar complexity bound $(k \cdot d)^{n^{O(1)}}$, *M* holds for the algorithm (G.-Vorobjov) which finds the connected components of the semialgebraic set in \mathbb{R}^n given by system of inequalities

$$f_1 \ge 0, \dots, f_k \ge 0. \tag{2}$$

Renegar: testing solvability of (2) (respectively, of (1)) within complexity polynomial in $(kd)^n$, M (respectively, k, d^n , M) and producing a solution in case it does exist.

11.9.12 2/8

Let a system of polynomial equations

$$f_1 = \dots = f_k = 0 \tag{1}$$

be given where $f_1, \ldots, f_k \in \mathbb{Z}[X_1, \ldots, X_n]$, degrees $\deg(f_i) \leq d, 1 \leq i \leq k$ and the absolute values of integer coefficients of polynomials f_1, \ldots, f_k do not exceed 2^M .

The algorithm (Chistov-G.) finds the irreducible components of the variety in \mathbb{C}^n given by system (1) within complexity polynomial in k, d^{n^2} , M.

A similar complexity bound $(k \cdot d)^{n^{O(1)}}$, *M* holds for the algorithm (G.-Vorobjov) which finds the connected components of the semialgebraic set in \mathbb{R}^n given by system of inequalities

$$f_1 \ge 0, \dots, f_k \ge 0. \tag{2}$$

Renegar: testing solvability of (2) (respectively, of (1)) within complexity polynomial in $(kd)^n$, M (respectively, k, d^n , M) and producing a solution in case it does exist.

Dima Grigoriev (CNRS)

Polynomial Complexity of Solving

11.9.12 2 / 8

G.-Pasechnik: for a system of guadratic inequalities $f_i \ge 0$, deg $(f_i) \le 2$, $1 \le i \le k$ the algorithm tests solvability within complexity polynomial in n^k , M, so it is polynomial when the number k

G.-Pasechnik: for a system of quadratic inequalities $f_i \ge 0$, deg $(f_i) \le 2$, $1 \le i \le k$ the algorithm tests solvability within complexity polynomial in n^k , M, so it is polynomial when the number k of inequalities is a constant.

G.-Pasechnik: for a system of guadratic inequalities $f_i \ge 0$, deg $(f_i) \le 2$, $1 \le i \le k$ the algorithm tests solvability within complexity polynomial in n^k , M, so it is polynomial when the number k of inequalities is a constant.

Question: does anything similar hold for equations over \mathbb{C} beyond quadratic polynomials?

G.-Pasechnik: for a system of quadratic inequalities $f_i \ge 0$, deg $(f_i) \le 2$, $1 \le i \le k$ the algorithm tests solvability within complexity polynomial in n^k , M, so it is polynomial when the number k of inequalities is a constant.

Question: does anything similar hold for equations over \mathbb{C} beyond quadratic polynomials?

Theorem

One can test solvability of a system of polynomial equations over $\mathbb C$ within complexity polynomial in $n^{d^{3k}}$, M and produce a solution if it does exist.

G.-Pasechnik: for a system of quadratic inequalities $f_i \ge 0$, deg $(f_i) \le 2$, $1 \le i \le k$ the algorithm tests solvability within complexity polynomial in n^k , M, so it is polynomial when the number k of inequalities is a constant.

Question: does anything similar hold for equations over \mathbb{C} beyond quadratic polynomials?

Theorem

One can test solvability of a system of polynomial equations over $\mathbb C$ within complexity polynomial in $n^{d^{3k}}$, M and produce a solution if it does exist.

In particular, the complexity is polynomial when k, d are both constant.

G.-Pasechnik: for a system of quadratic inequalities $f_i \ge 0$, $\deg(f_i) \le 2$, $1 \le i \le k$ the algorithm tests solvability within complexity polynomial in n^k , M, so it is polynomial when the number k of inequalities is a constant.

Question: does anything similar hold for equations over \mathbb{C} beyond quadratic polynomials?

Theorem

One can test solvability of a system of polynomial equations over \mathbb{C} within complexity polynomial in $n^{d^{3k}}$, M and produce a solution if it does exist.

In particular, the complexity is polynomial when k, d are both constant.

One can extend the Theorem to solvability over algebraically closed fields of arbitrary characteristics (then M bounds the bit-size of the coefficients of the polynomials).

For d = 2 and k = n + 1 the problem of solvability is NP-hard: $X_i^2 = X_i$, 1 < i < n, $c_1 \cdot X_1 + \cdots + c_n \cdot X_n = c_n \cdot 4$ KNAPSACK problem (c)

G.-Pasechnik: for a system of quadratic inequalities $f_i \ge 0$, $\deg(f_i) \le 2$, $1 \le i \le k$ the algorithm tests solvability within complexity polynomial in n^k , M, so it is polynomial when the number k of inequalities is a constant.

Question: does anything similar hold for equations over \mathbb{C} beyond quadratic polynomials?

Theorem

One can test solvability of a system of polynomial equations over \mathbb{C} within complexity polynomial in $n^{d^{3k}}$, M and produce a solution if it does exist.

In particular, the complexity is polynomial when k, d are both constant.

One can extend the Theorem to solvability over algebraically closed fields of arbitrary characteristics (then *M* bounds the bit-size of the coefficients of the polynomials).

For d = 2 and k = n + 1 the problem of solvability is NP-hard: $X_i^2 = X_i, 1 \le i \le n, c_1 \cdot X_1 + \dots + c_n \cdot X_n = c$ (KNAPSACK problem)

Dima Grigoriev (CNRS)

11.9.12 3/8

A polynomial $f \in \mathbb{C}[X_1, ..., X_n]$ is called *t*-sparse if it contains at most *t* monomials. Let p_i denote the *i*-th prime and a point $s_j = (p'_1, ..., p'_n) \in \mathbb{Z}^n, j \ge 0.$

Lemma

For a *t*-sparse polynomial *f* there exists $0 \le j < t$ such that $f(s_j) \ne 0$.

The proof follows from the observation that writing $f = \sum_{1 \le l \le t} a_l \cdot X^l$ where coefficients $a_l \in \mathbb{C}$ and X^{l_l} are monomials, the equations $f(s_j) = 0, 0 \le j < t$ lead to a $t \times t$ linear system with Vandermonde matrix and its solution (a_1, \ldots, a_t) . Since Vandermonde matrix is nonsingular, the obtained contradiction proves the lemma.

Corollary

Let degf $\leq D$. There exists $0 \leq j < \binom{n+D}{n}$ such that $f(s_i) \neq 0$.

A polynomial $f \in \mathbb{C}[X_1, \ldots, X_n]$ is called *t*-sparse if it contains at most *t* monomials. Let p_i denote the *i*-th prime and a point $s_j = (p_1^j, \ldots, p_n^j) \in \mathbb{Z}^n, j \ge 0.$

Lemma

For a *t*-sparse polynomial *f* there exists $0 \le j < t$ such that $f(s_j) \ne 0$.

The proof follows from the observation that writing $f = \sum_{1 \le l \le t} a_l \cdot X^{l_l}$ where coefficients $a_l \in \mathbb{C}$ and X^{l_l} are monomials, the equations $f(s_j) = 0, 0 \le j < t$ lead to a $t \times t$ linear system with Vandermonde matrix and its solution (a_1, \ldots, a_t) . Since Vandermonde matrix is nonsingular, the obtained contradiction proves the lemma.

Corollary

Let $\deg f \leq D$. There exists $0 \leq j < \binom{n+D}{n}$ such that $f(s_i) \neq 0$.

A polynomial $f \in \mathbb{C}[X_1, \ldots, X_n]$ is called *t*-sparse if it contains at most *t* monomials. Let p_i denote the *i*-th prime and a point $s_j = (p_1^j, \ldots, p_n^j) \in \mathbb{Z}^n, j \ge 0.$

Lemma

For a *t*-sparse polynomial *f* there exists $0 \le j < t$ such that $f(s_j) \ne 0$.

The proof follows from the observation that writing $f = \sum_{1 \le l \le t} a_l \cdot X^l$ where coefficients $a_l \in \mathbb{C}$ and X^{l_l} are monomials, the equations $f(s_j) = 0, 0 \le j < t$ lead to a $t \times t$ linear system with Vandermonde matrix and its solution (a_1, \ldots, a_t) . Since Vandermonde matrix is nonsingular, the obtained contradiction proves the lemma.

Corollary

Let $\deg f \leq D$. There exists $0 \leq j < \binom{n+D}{n}$ such that $f(s_i) \neq 0$.

< ロ > < 同 > < 回 > < 回 > .

A polynomial $f \in \mathbb{C}[X_1, \ldots, X_n]$ is called *t*-sparse if it contains at most *t* monomials. Let p_i denote the *i*-th prime and a point $s_j = (p_1^j, \ldots, p_n^j) \in \mathbb{Z}^n, j \ge 0.$

Lemma

For a *t*-sparse polynomial *f* there exists $0 \le j < t$ such that $f(s_j) \ne 0$.

The proof follows from the observation that writing $f = \sum_{1 \le l \le t} a_l \cdot X^{l_l}$ where coefficients $a_l \in \mathbb{C}$ and X^{l_l} are monomials, the equations $f(s_j) = 0, 0 \le j < t$ lead to a $t \times t$ linear system with Vandermonde matrix and its solution (a_1, \ldots, a_t) . Since Vandermonde matrix is nonsingular, the obtained contradiction proves the lemma.

Corollary

Let degf $\leq D$. There exists $0 \leq j < \binom{n+D}{n}$ such that $f(s_i) \neq 0$.

イロン イボン イヨン イヨン

A polynomial $f \in \mathbb{C}[X_1, \ldots, X_n]$ is called *t*-sparse if it contains at most *t* monomials. Let p_i denote the *i*-th prime and a point $s_j = (p_1^j, \ldots, p_n^j) \in \mathbb{Z}^n, j \ge 0.$

Lemma

For a *t*-sparse polynomial *f* there exists $0 \le j < t$ such that $f(s_j) \ne 0$.

The proof follows from the observation that writing $f = \sum_{1 \le l \le t} a_l \cdot X^{l_l}$ where coefficients $a_l \in \mathbb{C}$ and X^{l_l} are monomials, the equations $f(s_j) = 0, 0 \le j < t$ lead to a $t \times t$ linear system with Vandermonde matrix and its solution (a_1, \ldots, a_t) . Since Vandermonde matrix is nonsingular, the obtained contradiction proves the lemma.

Corollary

Let $\deg f \leq D$. There exists $0 \leq j < \binom{n+D}{n}$ such that $f(s_i)
eq 0$.

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

A polynomial $f \in \mathbb{C}[X_1, \ldots, X_n]$ is called *t*-sparse if it contains at most *t* monomials. Let p_i denote the *i*-th prime and a point $s_j = (p_1^j, \ldots, p_n^j) \in \mathbb{Z}^n, j \ge 0.$

Lemma

For a *t*-sparse polynomial *f* there exists $0 \le j < t$ such that $f(s_j) \ne 0$.

The proof follows from the observation that writing $f = \sum_{1 \le l \le t} a_l \cdot X^{l_l}$ where coefficients $a_l \in \mathbb{C}$ and X^{l_l} are monomials, the equations $f(s_j) = 0, 0 \le j < t$ lead to a $t \times t$ linear system with Vandermonde matrix and its solution (a_1, \ldots, a_t) . Since Vandermonde matrix is nonsingular, the obtained contradiction proves the lemma.

Corollary

Let deg $f \leq D$. There exists $0 \leq j < \binom{n+D}{n}$ such that $f(s_j) \neq 0$.

< ロ > < 同 > < 回 > < 回 > < - > <

Let $V \subset \mathbb{C}^n$ be an irreducible (over \mathbb{Q}) component of the variety determined by (1). Then dim $V =: m \ge n - k$ and deg $V \le d^{n-m} \le d^k$ due to Bezout inequality.

Let variables X_{i_1}, \ldots, X_{i_m} constitute a transcendental basis over \mathbb{C} of the field $\mathbb{C}(V)$ of rational functions on V, clearly such i_1, \ldots, i_m do exist. Then the degree of fields extension

Let $V \subset \mathbb{C}^n$ be an irreducible (over \mathbb{Q}) component of the variety determined by (1). Then dim $V =: m \ge n - k$ and deg $V \le d^{n-m} \le d^k$ due to Bezout inequality.

Let variables X_{i_1}, \ldots, X_{i_m} constitute a transcendental basis over \mathbb{C} of the field $\mathbb{C}(V)$ of rational functions on V, clearly such i_1, \ldots, i_m do exist. Then the degree of fields extension

 $e := [\mathbb{C}(V) : \mathbb{C}(X_{i_1}, \ldots, X_{i_m})] \le \deg V$ equals the typical (and at the same time, the maximal) number of points in the intersections $V \cap \{X_{i_1} = c_1, \ldots, X_{i_m} = c_m\}$ for different $c_1, \ldots, c_m \in \mathbb{C}$, provided that this intersection being finite. Observe that for almost all vectors $(c_1, \ldots, c_m) \in \mathbb{C}^n$ the intersection is finite and consists of *e* points.

There exists a primitive element $Y = \sum_{i \neq i_1,...,i_m} b_i \cdot X_i$ of the extension $\mathbb{C}(V)$ of the field $\mathbb{C}(X_{i_1},...,X_{i_m})$ for appropriate integers b_i . Moreover, there exist n - m linearly over \mathbb{C} independent primitive elements $Y_1,...,Y_{n-m}$ of this form. One can view $Y_1,...,Y_{n-m},X_{i_1},...,X_{i_m}$ as new coordinates.

Let $V \subset \mathbb{C}^n$ be an irreducible (over \mathbb{Q}) component of the variety determined by (1). Then dim $V =: m \ge n - k$ and deg $V \le d^{n-m} \le d^k$ due to Bezout inequality.

Let variables X_{i_1}, \ldots, X_{i_m} constitute a transcendental basis over \mathbb{C} of the field $\mathbb{C}(V)$ of rational functions on V, clearly such i_1, \ldots, i_m do exist. Then the degree of fields extension

 $e := [\mathbb{C}(V) : \mathbb{C}(X_{i_1}, \ldots, X_{i_m})] \le \deg V$ equals the typical (and at the same time, the maximal) number of points in the intersections $V \cap \{X_{i_1} = c_1, \ldots, X_{i_m} = c_m\}$ for different $c_1, \ldots, c_m \in \mathbb{C}$, provided that this intersection being finite. Observe that for almost all vectors 4 🗇 X 4 🖻 X 4 🖻 X

Let $V \subset \mathbb{C}^n$ be an irreducible (over \mathbb{Q}) component of the variety determined by (1). Then dim V =: m > n - k and deg $V < d^{n-m} < d^k$ due to Bezout inequality.

Let variables X_{i_1}, \ldots, X_{i_m} constitute a transcendental basis over \mathbb{C} of the field $\mathbb{C}(V)$ of rational functions on V, clearly such i_1, \ldots, i_m do exist. Then the degree of fields extension

 $e := [\mathbb{C}(V) : \mathbb{C}(X_{i_1}, \ldots, X_{i_m})] \le \deg V$ equals the typical (and at the same time, the maximal) number of points in the intersections $V \cap \{X_{i_1} = c_1, \ldots, X_{i_m} = c_m\}$ for different $c_1, \ldots, c_m \in \mathbb{C}$, provided that this intersection being finite. Observe that for almost all vectors $(c_1, \ldots, c_m) \in \mathbb{C}^n$ the intersection is finite and consists of *e* points.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ Dima Grigoriev (CNRS)

Let $V \subset \mathbb{C}^n$ be an irreducible (over \mathbb{Q}) component of the variety determined by (1). Then dim $V =: m \ge n - k$ and deg $V \le d^{n-m} \le d^k$ due to Bezout inequality.

Let variables X_{i_1}, \ldots, X_{i_m} constitute a transcendental basis over \mathbb{C} of the field $\mathbb{C}(V)$ of rational functions on V, clearly such i_1, \ldots, i_m do exist. Then the degree of fields extension

 $e := [\mathbb{C}(V) : \mathbb{C}(X_{i_1}, \ldots, X_{i_m})] \leq \deg V$ equals the typical (and at the same time, the maximal) number of points in the intersections $V \cap \{X_{i_1} = c_1, \ldots, X_{i_m} = c_m\}$ for different $c_1, \ldots, c_m \in \mathbb{C}$, provided that this intersection being finite. Observe that for almost all vectors $(c_1, \ldots, c_m) \in \mathbb{C}^n$ the intersection is finite and consists of *e* points. There exists a primitive element $Y = \sum_{i \neq i_1, \dots, i_m} b_i \cdot X_i$ of the extension $\mathbb{C}(V)$ of the field $\mathbb{C}(X_{i_1},\ldots,X_{i_m})$ for appropriate integers b_i . Moreover, (日) (日) (日)

Let $V \subset \mathbb{C}^n$ be an irreducible (over \mathbb{Q}) component of the variety determined by (1). Then dim $V =: m \ge n - k$ and deg $V \le d^{n-m} \le d^k$ due to Bezout inequality.

Let variables X_{i_1}, \ldots, X_{i_m} constitute a transcendental basis over \mathbb{C} of the field $\mathbb{C}(V)$ of rational functions on V, clearly such i_1, \ldots, i_m do exist. Then the degree of fields extension

 $e := [\mathbb{C}(V) : \mathbb{C}(X_{i_1}, \ldots, X_{i_m})] \leq \deg V$ equals the typical (and at the same time, the maximal) number of points in the intersections $V \cap \{X_{i_1} = c_1, \ldots, X_{i_m} = c_m\}$ for different $c_1, \ldots, c_m \in \mathbb{C}$, provided that this intersection being finite. Observe that for almost all vectors $(c_1, \ldots, c_m) \in \mathbb{C}^n$ the intersection is finite and consists of *e* points. There exists a primitive element $Y = \sum_{i \neq i_1, \dots, i_m} b_i \cdot X_i$ of the extension $\mathbb{C}(V)$ of the field $\mathbb{C}(X_{i_1},\ldots,X_{i_m})$ for appropriate integers b_i . Moreover, there exist n - m linearly over \mathbb{C} independent primitive elements Y_1, \ldots, Y_{n-m} of this form. One can view $Y_1, \ldots, Y_{n-m}, X_{i_1}, \ldots, X_{i_m}$ as new coordinates.

Consider a linear projection $\pi_I : \mathbb{C}^n \to \mathbb{C}^{m+1}$ onto the coordinates $Y_l, X_{i_1}, \ldots, X_{i_m}, 1 \le l \le n-m$. Then the closure $\pi_l(V) \subset \mathbb{C}^{m+1}$ is an irreducible hypersurface, so $\dim \pi_l(V) = m$. Denote by $g_l \in \mathbb{Q}[Y_l, X_{i_1}, \ldots, X_{i_m}]$ the minimal polynomial providing the equation of $\pi_l(V)$. Then $\deg g_l = \deg \pi_l(V) \le \deg V$ and $\deg_{Y_l} g_l = e$, taking into account that Y_l is a primitive element.

Rewriting $g_l = \sum_{q \le e} Y_l^q \cdot h_q$, $h_q \in \mathbb{Q}[X_{i_1}, \dots, X_{i_m}]$ as a polynomial in a distinguished variable Y_l , we denote $H_l := h_e \cdot \operatorname{Disc}_{Y_l}(g_l) \in \mathbb{Q}[X_{i_1}, \dots, X_{i_m}]$, where $\operatorname{Disc}_{Y_l}$ denotes the discriminant with respect to the variable Y_l (the discriminant does not vanish identically since Y_l is a primitive element). We have $\deg H_l \le d^k + d^{2k}$. Consider the product $H := \prod_{1 \le l \le n-m} H_l$, then $D := \deg H \le (n-m) \cdot (d^k + d^{2k}) \le d^{3k}$.

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

Consider a linear projection $\pi_I : \mathbb{C}^n \to \mathbb{C}^{m+1}$ onto the coordinates $Y_l, X_{i_1}, \ldots, X_{i_m}, 1 \le l \le n - m$. Then the closure $\overline{\pi_I(V)} \subset \mathbb{C}^{m+1}$ is an irreducible hypersurface, so $\dim \overline{\pi_I(V)} = m$. Denote by

 $g_l \in \mathbb{Q}[Y_l, X_{i_1}, \ldots, X_{i_m}]$ the minimal polynomial providing the equation of $\pi_l(V)$. Then $\deg g_l = \deg \pi_l(V) \leq \deg V$ and $\deg_{Y_l} g_l = e$, taking into account that Y_l is a primitive element.

Rewriting $g_l = \sum_{q \le e} Y_l^q \cdot h_q$, $h_q \in \mathbb{Q}[X_{i_1}, \ldots, X_{i_m}]$ as a polynomial in a distinguished variable Y_l , we denote $H_l := h_e \cdot \operatorname{Disc}_{Y_l}(g_l) \in \mathbb{Q}[X_{i_1}, \ldots, X_{i_m}]$, where $\operatorname{Disc}_{Y_l}$ denotes the discriminant with respect to the variable Y_l (the discriminant does not vanish identically since Y_l is a primitive element). We have $\deg H_l \le d^k + d^{2k}$. Consider the product $H := \prod_{1 \le l \le n-m} H_l$, then $D := \deg H \le (n-m) \cdot (d^k + d^{2k}) \le d^{3k}$.

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Consider a linear projection $\pi_l : \mathbb{C}^n \to \mathbb{C}^{m+1}$ onto the coordinates $Y_l, X_{i_1}, \ldots, X_{i_m}, 1 \le l \le n-m$. Then the closure $\overline{\pi_l(V)} \subset \mathbb{C}^{m+1}$ is an irreducible hypersurface, so $\dim \overline{\pi_l(V)} = m$. Denote by $g_l \in \mathbb{Q}[Y_l, X_{i_1}, \ldots, X_{i_m}]$ the minimal polynomial providing the equation of $\overline{\pi_l(V)}$. Then $\deg g_l = \deg \overline{\pi_l(V)} \le \deg V$ and $\deg_{Y_l} g_l = e$, taking into account that Y_l is a primitive element.

Rewriting $g_l = \sum_{q \leq e} Y_l^q \cdot h_q$, $h_q \in \mathbb{Q}[X_{i_1}, \dots, X_{i_m}]$ as a polynomial in a distinguished variable Y_l , we denote $H_l := h_e \cdot \operatorname{Disc}_{Y_l}(g_l) \in \mathbb{Q}[X_{i_1}, \dots, X_{i_m}]$, where $\operatorname{Disc}_{Y_l}$ denotes the discriminant with respect to the variable Y_l (the discriminant does not vanish identically since Y_l is a primitive element). We have $\deg H_l \leq d^k + d^{2k}$. Consider the product $H := \prod_{1 \leq l \leq n-m} H_l$, then $D := \deg H \leq (n-m) \cdot (d^k + d^{2k}) \leq d^{3k}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Consider a linear projection $\pi_l : \mathbb{C}^n \to \mathbb{C}^{m+1}$ onto the coordinates $Y_l, X_{i_1}, \ldots, X_{i_m}, 1 \leq l \leq n-m$. Then the closure $\overline{\pi_l(V)} \subset \mathbb{C}^{m+1}$ is an irreducible hypersurface, so $\dim \overline{\pi_l(V)} = m$. Denote by $g_l \in \mathbb{Q}[Y_l, X_{i_1}, \ldots, X_{i_m}]$ the minimal polynomial providing the equation of $\overline{\pi_l(V)}$. Then $\deg g_l = \deg \overline{\pi_l(V)} \leq \deg V$ and $\deg_{Y_l} g_l = e$, taking into account that Y_l is a primitive element.

Rewriting $g_l = \sum_{q \le e} Y_l^q \cdot h_q$, $h_q \in \mathbb{Q}[X_{i_1}, \ldots, X_{i_m}]$ as a polynomial in a distinguished variable Y_l , we denote $H_l := h_e \cdot \operatorname{Disc}_{Y_l}(g_l) \in \mathbb{Q}[X_{i_1}, \ldots, X_{i_m}]$, where $\operatorname{Disc}_{Y_l}$ denotes the discriminant with respect to the variable Y_l (the discriminant does not vanish identically since Y_l is a primitive element). We have $\deg H_l \le d^k + d^{2k}$. Consider the product $H := \prod_{1 \le l \le n-m} H_l$, then $D := \deg H \le (n-m) \cdot (d^k + d^{2k}) \le d^{3k}$.

Consider a linear projection $\pi_l : \mathbb{C}^n \to \mathbb{C}^{m+1}$ onto the coordinates $Y_l, X_{i_1}, \ldots, X_{i_m}, 1 \leq l \leq n-m$. Then the closure $\overline{\pi_l(V)} \subset \mathbb{C}^{m+1}$ is an irreducible hypersurface, so $\dim \overline{\pi_l(V)} = m$. Denote by $g_l \in \mathbb{Q}[Y_l, X_{i_1}, \ldots, X_{i_m}]$ the minimal polynomial providing the equation of $\overline{\pi_l(V)}$. Then $\deg g_l = \deg \overline{\pi_l(V)} \leq \deg V$ and $\deg_{Y_l} g_l = e$, taking into account that Y_l is a primitive element.

Rewriting $g_l = \sum_{q \le e} Y_l^q \cdot h_q$, $h_q \in \mathbb{Q}[X_{i_1}, \dots, X_{i_m}]$ as a polynomial in a distinguished variable Y_l , we denote $H_l := h_e \cdot \operatorname{Disc}_{Y_l}(g_l) \in \mathbb{Q}[X_{i_1}, \dots, X_{i_m}]$, where $\operatorname{Disc}_{Y_l}$ denotes the discriminant with respect to the variable Y_l (the discriminant does not vanish identically since Y_l is a primitive element). We have $\deg H_l \le d^k + d^{2k}$. Consider the product $H := \prod_{1 \le l \le n-m} H_l$ then $D := \deg H \le (n-m) \cdot (d^k + d^{2k}) \le d^{2k}$.

Consider a linear projection $\pi_l : \mathbb{C}^n \to \mathbb{C}^{m+1}$ onto the coordinates $Y_l, X_{i_1}, \ldots, X_{i_m}, 1 \leq l \leq n-m$. Then the closure $\overline{\pi_l(V)} \subset \mathbb{C}^{m+1}$ is an irreducible hypersurface, so $\dim \overline{\pi_l(V)} = m$. Denote by $g_l \in \mathbb{Q}[Y_l, X_{i_1}, \ldots, X_{i_m}]$ the minimal polynomial providing the equation of $\overline{\pi_l(V)}$. Then $\deg g_l = \deg \overline{\pi_l(V)} \leq \deg V$ and $\deg_{Y_l} g_l = e$, taking into account that Y_l is a primitive element.

Rewriting $g_l = \sum_{q \le e} Y_l^q \cdot h_q$, $h_q \in \mathbb{Q}[X_{i_1}, \ldots, X_{i_m}]$ as a polynomial in a distinguished variable Y_l , we denote $H_l := h_e \cdot \operatorname{Disc}_{Y_l}(g_l) \in \mathbb{Q}[X_{i_1}, \ldots, X_{i_m}]$, where $\operatorname{Disc}_{Y_l}$ denotes the discriminant with respect to the variable Y_l (the discriminant does not vanish identically since Y_l is a primitive element). We have

 $\deg H_l \leq d^k + d^{2k}$. Consider the product $H := \prod_{1 \leq l \leq n-m} H_l$, then $D := \deg H \leq (n-m) \cdot (d^k + d^{2k}) \leq d^{3k}$.

◆ロ → ◆母 → ◆母 → ◆母 → ○母 →

Consider a linear projection $\pi_l : \mathbb{C}^n \to \mathbb{C}^{m+1}$ onto the coordinates $Y_l, X_{i_1}, \ldots, X_{i_m}, 1 \le l \le n-m$. Then the closure $\overline{\pi_l(V)} \subset \mathbb{C}^{m+1}$ is an irreducible hypersurface, so $\dim \overline{\pi_l(V)} = m$. Denote by $g_l \in \mathbb{Q}[Y_l, X_{i_1}, \ldots, X_{i_m}]$ the minimal polynomial providing the equation of $\overline{\pi_l(V)}$. Then $\deg g_l = \deg \overline{\pi_l(V)} \le \deg V$ and $\deg_{Y_l} g_l = e$, taking into account that Y_l is a primitive element.

Rewriting $g_l = \sum_{q \le e} Y_l^q \cdot h_q$, $h_q \in \mathbb{Q}[X_{i_1}, \ldots, X_{i_m}]$ as a polynomial in a distinguished variable Y_l , we denote $H_l := h_e \cdot \operatorname{Disc}_{Y_l}(g_l) \in \mathbb{Q}[X_{i_1}, \ldots, X_{i_m}]$, where $\operatorname{Disc}_{Y_l}$ denotes the discriminant with respect to the variable Y_l (the discriminant does not vanish identically since Y_l is a primitive element). We have $\deg H_l \le d^k + d^{2k}$. Consider the product $H := \prod_{1 \le l \le n-m} H_l$, then $D := \deg H \le (n-m) \cdot (d^k + d^{2k}) \le d^{3k}$.

・ロン ・回 と ・ ヨン ・ ヨー

Consider a linear projection $\pi_l : \mathbb{C}^n \to \mathbb{C}^{m+1}$ onto the coordinates $Y_l, X_{i_1}, \ldots, X_{i_m}, 1 \leq l \leq n-m$. Then the closure $\overline{\pi_l(V)} \subset \mathbb{C}^{m+1}$ is an irreducible hypersurface, so $\dim \overline{\pi_l(V)} = m$. Denote by $g_l \in \mathbb{Q}[Y_l, X_{i_1}, \ldots, X_{i_m}]$ the minimal polynomial providing the equation of $\overline{\pi_l(V)}$. Then $\deg g_l = \deg \overline{\pi_l(V)} \leq \deg V$ and $\deg_{Y_l} g_l = e$, taking into account that Y_l is a primitive element.

Rewriting $g_l = \sum_{q \leq e} Y_l^q \cdot h_q$, $h_q \in \mathbb{Q}[X_{i_1}, \ldots, X_{i_m}]$ as a polynomial in a distinguished variable Y_l , we denote $H_l := h_e \cdot \operatorname{Disc}_{Y_l}(g_l) \in \mathbb{Q}[X_{i_1}, \ldots, X_{i_m}]$, where $\operatorname{Disc}_{Y_l}$ denotes the discriminant with respect to the variable Y_l (the discriminant does not vanish identically since Y_l is a primitive element). We have $\deg H_l \leq d^k + d^{2k}$. Consider the product $H := \prod_{1 \leq l \leq n-m} H_l$, then $D := \deg H \leq (n-m) \cdot (d^k + d^{2k}) \leq d^{3k}$.

・ロン ・回 と ・ ヨン ・ ヨー

Due to testing points for sparse polynomials there exists $0 \leq j < \binom{D+m}{D} \leq m^{d^{3k}}$ such that $H(s_i) = H(p_1^j, \dots, p_m^j) \neq 0$. Observe

Corollary

Due to testing points for sparse polynomials there exists $0 \leq j < \binom{D+m}{D} \leq m^{d^{3k}}$ such that $H(s_i) = H(p_1^j, \dots, p_m^j) \neq 0$. Observe that the projective intersection $\overline{V} \cap \{X_{i_1} = p'_1 \cdot X_0, \cdots, X_{i_m} = p'_m \cdot X_0\}$ in the projective space $\mathbb{PC}^n \supset \mathbb{C}^n$ with the coordinates $[X_0 : X_1 : \cdots : X_n]$ consists of *e* points, where \overline{V} denotes the projective closure of V. On

Corollary

Due to testing points for sparse polynomials there exists $0 \leq j < \binom{D+m}{D} \leq m^{d^{3k}}$ such that $H(s_i) = H(p_1^j, \dots, p_m^j) \neq 0$. Observe that the projective intersection $\overline{V} \cap \{X_{i_1} = p'_1 \cdot X_0, \cdots, X_{i_m} = p'_m \cdot X_0\}$ in the projective space $\mathbb{PC}^n \supset \mathbb{C}^n$ with the coordinates $[X_0 : X_1 : \cdots : X_n]$ consists of *e* points, where \overline{V} denotes the projective closure of *V*. On the other hand, coordinate Y_l of the points of the affine intersection $V \cap \{X_{i_1} = p_1^j, \dots, X_{i_m} = p_m^j\}$ attains *e* different values, taking into account that $H_l(s_i) \neq 0, 1 \leq l \leq n - m$. Therefore, all *e* points from the

Corollary

Due to testing points for sparse polynomials there exists $0 \leq j < \binom{D+m}{D} \leq m^{d^{3k}}$ such that $H(s_i) = H(p_1^j, \dots, p_m^j) \neq 0$. Observe that the projective intersection $\overline{V} \cap \{X_{i_1} = p'_1 \cdot X_0, \cdots, X_{i_m} = p'_m \cdot X_0\}$ in the projective space $\mathbb{PC}^n \supset \mathbb{C}^n$ with the coordinates $[X_0 : X_1 : \cdots : X_n]$ consists of *e* points, where \overline{V} denotes the projective closure of V. On the other hand, coordinate Y_l of the points of the affine intersection $V \cap \{X_{i_1} = p_1^j, \dots, X_{i_m} = p_m^j\}$ attains *e* different values, taking into account that $H_l(s_i) \neq 0, 1 \leq l \leq n - m$. Therefore, all *e* points from the projective intersection lie in the affine chart \mathbb{C}^n . Consequently, the

Corollary

Due to testing points for sparse polynomials there exists $0 \leq j < \binom{D+m}{D} \leq m^{d^{3k}}$ such that $H(s_i) = H(p_1^j, \dots, p_m^j) \neq 0$. Observe that the projective intersection $\overline{V} \cap \{X_{i_1} = p'_1 \cdot X_0, \cdots, X_{i_m} = p'_m \cdot X_0\}$ in the projective space $\mathbb{PC}^n \supset \mathbb{C}^n$ with the coordinates $[X_0 : X_1 : \cdots : X_n]$ consists of *e* points, where \overline{V} denotes the projective closure of V. On the other hand, coordinate Y_l of the points of the affine intersection $V \cap \{X_{i} = p_1^j, \dots, X_{i_m} = p_m^j\}$ attains *e* different values, taking into account that $H_l(s_i) \neq 0$, $1 \leq l \leq n - m$. Therefore, all *e* points from the projective intersection lie in the affine chart \mathbb{C}^n . Consequently, the intersection $V \cap \{X_{i_1} = p'_1, \dots, X_{i_m} = p'_m\}$ is not empty.

Corollary

Due to testing points for sparse polynomials there exists $0 \leq j < \binom{D+m}{D} \leq m^{d^{3k}}$ such that $H(s_i) = H(p_1^j, \dots, p_m^j) \neq 0$. Observe that the projective intersection $\overline{V} \cap \{X_{i_1} = p'_1 \cdot X_0, \cdots, X_{i_m} = p'_m \cdot X_0\}$ in the projective space $\mathbb{PC}^n \supset \mathbb{C}^n$ with the coordinates $[X_0 : X_1 : \cdots : X_n]$ consists of *e* points, where \overline{V} denotes the projective closure of V. On the other hand, coordinate Y_l of the points of the affine intersection $V \cap \{X_{i} = p_1^j, \dots, X_{i_m} = p_m^j\}$ attains *e* different values, taking into account that $H_l(s_i) \neq 0$, $1 \leq l \leq n - m$. Therefore, all *e* points from the projective intersection lie in the affine chart \mathbb{C}^n . Consequently, the intersection $V \cap \{X_{i_1} = p_1^{j_1}, \dots, X_{i_m} = p_m^{j_m}\}$ is not empty.

Corollary

For an irreducible component $V \subset \mathbb{C}^n$ of dim(V) = m of the variety given by a system of equations $f_1 = \cdots = f_k = 0$ there exist $0 \le j < m^{d^{2k}}$ and $1 \le i_1, \dots, i_m \le n$ such that intersection

Due to testing points for sparse polynomials there exists $0 \leq j < \binom{D+m}{D} \leq m^{d^{3k}}$ such that $H(s_i) = H(p_1^j, \dots, p_m^j) \neq 0$. Observe that the projective intersection $\overline{V} \cap \{X_{i_1} = p'_1 \cdot X_0, \cdots, X_{i_m} = p'_m \cdot X_0\}$ in the projective space $\mathbb{PC}^n \supset \mathbb{C}^n$ with the coordinates $[X_0 : X_1 : \cdots : X_n]$ consists of *e* points, where \overline{V} denotes the projective closure of V. On the other hand, coordinate Y_l of the points of the affine intersection $V \cap \{X_{i} = p_1^j, \dots, X_{i_m} = p_m^j\}$ attains *e* different values, taking into account that $H_l(s_i) \neq 0$, $1 \leq l \leq n - m$. Therefore, all *e* points from the projective intersection lie in the affine chart \mathbb{C}^n . Consequently, the intersection $V \cap \{X_{i_1} = p'_1, \dots, X_{i_m} = p'_m\}$ is not empty.

Corollary

For an irreducible component $V \subset \mathbb{C}^n$ of dim(V) = m of the variety given by a system of equations $f_1 = \cdots = f_k = 0$ there exist $0 \le j < m^{d^{2k}}$ and $1 \le i_1, \ldots, i_m \le n$ such that intersection

Due to testing points for sparse polynomials there exists $0 \leq j < \binom{D+m}{D} \leq m^{d^{3k}}$ such that $H(s_i) = H(p_1^j, \dots, p_m^j) \neq 0$. Observe that the projective intersection $\overline{V} \cap \{X_{i_1} = p'_1 \cdot X_0, \cdots, X_{i_m} = p'_m \cdot X_0\}$ in the projective space $\mathbb{PC}^n \supset \mathbb{C}^n$ with the coordinates $[X_0 : X_1 : \cdots : X_n]$ consists of *e* points, where \overline{V} denotes the projective closure of V. On the other hand, coordinate Y_l of the points of the affine intersection $V \cap \{X_{i} = p_1^j, \dots, X_{i_m} = p_m^j\}$ attains *e* different values, taking into account that $H_l(s_i) \neq 0$, $1 \leq l \leq n - m$. Therefore, all *e* points from the projective intersection lie in the affine chart \mathbb{C}^n . Consequently, the intersection $V \cap \{X_{i_1} = p_1^{j_1}, \dots, X_{i_m} = p_m^{j_m}\}$ is not empty.

Corollary

For an irreducible component $V \subset \mathbb{C}^n$ of $\dim(V) = m$ of the variety given by a system of equations $f_1 = \cdots = f_k = 0$ there exist $0 \leq j < m^{d^{2k}}$ and $1 \leq i_1, \ldots, i_m \leq n$ such that intersection $V \cap \{X_{i_1} = p_1^j, \ldots, X_{i_m} = p_m^j\}$ is not empty.

To test solvability of system $f_1 = \cdots = f_k = 0$ the algorithm chooses all possible subsets $\{i_1, \ldots, i_m\} \subset \{1, \ldots, n\}$ with $m \ge n - k$ treating X_{i_1}, \ldots, X_{i_m} as a candidate for a transcendental basis of some irreducible component V of the variety determined by this system.

Theorem

One can test solvability over \mathbb{C} of a system of k polynomials $f_1, \ldots, f_k \in \mathbb{Z}[X_1, \ldots, X_n]$ with degrees d within complexity polynomial in $M \cdot \binom{n+d^{3k}}{n} \leq M \cdot n^{d^{3k}}$. If the system is solvable then the algorithm yields one of its solutions.

To test solvability of system $f_1 = \cdots = f_k = 0$ the algorithm chooses all possible subsets $\{i_1, \ldots, i_m\} \subset \{1, \ldots, n\}$ with $m \ge n - k$ treating X_{i_1}, \ldots, X_{i_m} as a candidate for a transcendental basis of some irreducible component V of the variety determined by this system. After that for each $0 \le j < \binom{D+m}{D}$ where $D \le d^{3k}$, the algorithm substitutes $X_{i_1} = p_{i_1}^{j_1}, \ldots, X_{i_m} = p_m^{j_m}$ into polynomials f_1, \ldots, f_k and solves the resulting system of polynomial equations in n - m < k variables applying the algorithm by Chistov-G. The complexity of each of these applications does not exceed a polynomial in $M \cdot \binom{D+m}{D} \cdot d^{(n-m)^2}$, i. e. a

Theorem

One can test solvability over \mathbb{C} of a system of k polynomials $f_1, \ldots, f_k \in \mathbb{Z}[X_1, \ldots, X_n]$ with degrees d within complexity polynomial in $M \cdot \binom{n+d^{3k}}{n} \leq M \cdot n^{d^{3k}}$. If the system is solvable then the algorithm yields one of its solutions.

To test solvability of system $f_1 = \cdots = f_k = 0$ the algorithm chooses all possible subsets $\{i_1, \ldots, i_m\} \subset \{1, \ldots, n\}$ with $m \ge n - k$ treating X_{i_1}, \ldots, X_{i_m} as a candidate for a transcendental basis of some irreducible component V of the variety determined by this system. After that for each $0 \le j < \binom{D+m}{D}$ where $D \le d^{3k}$, the algorithm substitutes $X_{i_1} = p_1^{j_1}, \ldots, X_{j_m} = p_m^{j_m}$ into polynomials f_1, \ldots, f_k and solves the resulting system of polynomial equations in n - m < k variables applying the algorithm by Chistov-G. The complexity of each of these applications does not exceed a polynomial in $M \cdot {\binom{D+m}{D}} \cdot d^{(n-m)^2}$, i. e. a polynomial in $M \cdot n^{d^{3k}}$. Moreover, our algorithm yields a solution of a

Theorem

To test solvability of system $f_1 = \cdots = f_k = 0$ the algorithm chooses all possible subsets $\{i_1, \ldots, i_m\} \subset \{1, \ldots, n\}$ with $m \ge n - k$ treating X_{i_1}, \ldots, X_{i_m} as a candidate for a transcendental basis of some irreducible component V of the variety determined by this system. After that for each $0 \le j < \binom{D+m}{D}$ where $D \le d^{3k}$, the algorithm substitutes $X_{i_1} = p_1^{j_1}, \ldots, X_{j_m} = p_m^{j_m}$ into polynomials f_1, \ldots, f_k and solves the resulting system of polynomial equations in n - m < k variables applying the algorithm by Chistov-G. The complexity of each of these applications does not exceed a polynomial in $M \cdot {\binom{D+m}{D}} \cdot d^{(n-m)^2}$, i. e. a polynomial in $M \cdot n^{d^{3k}}$. Moreover, our algorithm yields a solution of a system, provided that it does exist. Summarizing

Theorem

To test solvability of system $f_1 = \cdots = f_k = 0$ the algorithm chooses all possible subsets $\{i_1, \ldots, i_m\} \subset \{1, \ldots, n\}$ with $m \ge n - k$ treating X_{i_1}, \ldots, X_{i_m} as a candidate for a transcendental basis of some irreducible component V of the variety determined by this system. After that for each $0 \le i < \binom{D+m}{D}$ where $D \le d^{3k}$, the algorithm substitutes $X_{i_1} = p_{i_1}^j, \ldots, X_{i_m} = p_m^j$ into polynomials f_1, \ldots, f_k and solves the resulting system of polynomial equations in n - m < k variables applying the algorithm by Chistov-G. The complexity of each of these applications does not exceed a polynomial in $M \cdot {\binom{D+m}{D}} \cdot d^{(n-m)^2}$, i. e. a polynomial in $M \cdot n^{d^{3k}}$. Moreover, our algorithm yields a solution of a system, provided that it does exist. Summarizing

Theorem

To test solvability of system $f_1 = \cdots = f_k = 0$ the algorithm chooses all possible subsets $\{i_1, \ldots, i_m\} \subset \{1, \ldots, n\}$ with $m \ge n - k$ treating X_{i_1}, \ldots, X_{i_m} as a candidate for a transcendental basis of some irreducible component V of the variety determined by this system. After that for each $0 \le i < \binom{D+m}{D}$ where $D \le d^{3k}$, the algorithm substitutes $X_{i_1} = p_{i_1}^j, \ldots, X_{i_m} = p_m^j$ into polynomials f_1, \ldots, f_k and solves the resulting system of polynomial equations in n - m < k variables applying the algorithm by Chistov-G. The complexity of each of these applications does not exceed a polynomial in $M \cdot {\binom{D+m}{D}} \cdot d^{(n-m)^2}$, i. e. a polynomial in $M \cdot n^{d^{3k}}$. Moreover, our algorithm yields a solution of a system, provided that it does exist. Summarizing

Theorem