Symbolic-Numerical Investigation of Gyrostat Satellite Dynamics

Gutnik S.A.

Moscow Institute of Physics and Technology, MGIMO Sarychev V. A.

Keldysh Institute of Applied Mathematics, RAS

The 15th International Workshop on Computer Algebra in Scientific Computing September 9 - 13, 2013 Berlin, Germany

1. Equations of motion

The equations of the satellite's attitude motion under the influence of gravitational and gyrostatic torques in a circular orbit take the form:

$$A\dot{p} + (C - B)qr - 3\omega_0^2(C - B)a_{32}a_{33} + \bar{H}_3q - \bar{H}_2r = 0,$$

$$B\dot{q} + (A - C)rp - 3\omega_0^2(A - C)a_{33}a_{31} + \bar{H}_1r - \bar{H}_3p = 0,$$

$$C\dot{r} + (B - A)pq - 3\omega_0^2(B - A)a_{31}a_{32} + \bar{H}_2p - \bar{H}_1q = 0;$$
(1)

$$p = \dot{\psi}a_{31} + 9\cos\varphi + \omega_0 a_{21} = \overline{p} + \omega_0 a_{21},$$

$$q = \dot{\psi}a_{32} - \dot{9}\sin\varphi + \omega_0 a_{22} = \overline{q} + \omega_0 a_{22},$$

$$r = \dot{\psi}a_{33} + \dot{\varphi} + \omega_0 a_{23} = \overline{r} + \omega_0 a_{23}.$$
(2)

Here **A**, **B**, **C**; are the principal central moments of inertia of the satellite; *p*, *q*, *r* – are the projections of the satellite's angular velocity in the axes Ox, Oy, Oz; Ψ , ϑ , and φ - are the Euler angles ; a_{ij} - the direction cosines of the axis Ox, Oy, Oz in the orbital reference frame, $H_1 = \overline{H_1} / \omega_0$, $H_2 = \overline{H_2} / \omega_0$, $H_3 = \overline{H_3} / \omega_0$; are the projections of the vector gyrostatic moment at the body reference frame. ω_0 – is the angular velocity of the satellite in the circular orbit.

2. Equilibrium orientations

Putting in (1) and (2) $\Psi = \Psi_0$, $\mathcal{G} = \mathcal{G}_0$, $\varphi = \varphi_0$, (are constants) we get the stationeries equations:

$$(C-B)(a_{22}a_{23} - 3a_{32}a_{33}) - H_2a_{13} + H_3a_{12} = 0,$$

$$(A-C)(a_{23}a_{21} - 3a_{33}a_{31}) - H_3a_{11} + H_1a_{13} = 0,$$

$$(B-A)(a_{21}a_{22} - 3a_{31}a_{32}) - H_1a_{12} + H_2a_{11} = 0,$$

(3)

or equivalent system

$$Aa_{21}a_{31} + Ba_{22}a_{32} + Ca_{23}a_{33} = 0,$$

$$3(Aa_{11}a_{31} + Ba_{12}a_{32} + Ca_{13}a_{33}) + (H_1a_{31} + H_2a_{32} + H_3a_{33}) = 0,$$

$$(Aa_{11}a_{21} + Ba_{12}a_{22} + Ca_{13}a_{23}) - (H_1a_{21} + H_2a_{22} + H_3a_{23}) = 0,$$

$$(4)$$

with orthogonal conditions

$$a_{11}^{2} + a_{12}^{2} + a_{13}^{2} = 1, \quad a_{11}a_{21} + a_{12}a_{22} + a_{13}a_{23} = 0,$$

$$a_{21}^{2} + a_{22}^{2} + a_{23}^{2} = 1, \quad a_{11}a_{31} + a_{12}a_{32} + a_{13}a_{33} = 0,$$

$$a_{31}^{2} + a_{32}^{2} + a_{33}^{2} = 1, \quad a_{21}a_{31} + a_{22}a_{32} + a_{23}a_{33} = 0$$
(5)

the system of equations (4), (5) determine all equilibrium orientations of a satellite when A, B. C, H_1 , H_2 , H_3 are given.

In the general case $A \neq B \neq C$, $h_1 \neq 0$, $h_2 \neq 0$, $h_3 \neq 0$. After the introduction of the dimensionless parameters the system (4), takes the form: $h_1 = \frac{H_1}{B-C}$, $h_2 = \frac{H_2}{B-C}$, $h_3 = \frac{H_3}{B-C}$, $v = \frac{B-A}{B-C}$. $-(va_{21}a_{31} + a_{23}a_{33}) + (h_1a_{31} + h_2a_{32} + h_3a_{33}) = 0$, $va_{11}a_{31} + a_{13}a_{33} = 0$, (6) $va_{11}a_{21} + a_{13}a_{23} - (h_1a_{11} + h_2a_{12} + h_3a_{13}) = 0$.

The system (5), (6) can be solved for the variables $a_{11}, a_{12}, a_{13}, a_{21}, a_{22}, a_{23}$ in the following form:

$$a_{11} = \frac{-4a_{32}a_{33}}{h_{1}a_{31} + h_{2}a_{32} + h_{3}a_{33}}, \qquad a_{21} = \frac{4[\nu a_{32}^{2} - (1 - \nu)a_{33}^{2}]a_{31}}{h_{1}a_{31} + h_{2}a_{32} + h_{3}a_{33}}, \qquad a_{21} = \frac{4[\nu a_{32}^{2} - (1 - \nu)a_{33}^{2}]a_{31}}{h_{1}a_{31} + h_{2}a_{32} + h_{3}a_{33}}, \qquad a_{22} = \frac{-4(\nu a_{31}^{2} + a_{33}^{2})a_{32}}{h_{1}a_{31} + h_{2}a_{32} + h_{3}a_{33}}, \qquad a_{22} = \frac{-4(\nu a_{31}^{2} + a_{33}^{2})a_{32}}{h_{1}a_{31} + h_{2}a_{32} + h_{3}a_{33}}, \qquad a_{23} = \frac{4[(1 - \nu)a_{31}^{2} + a_{32}^{2}]a_{33}}{h_{1}a_{31} + h_{2}a_{32} + h_{3}a_{33}}.$$

$$(7)$$

Substituting solutions (7) in (6), we obtain the system of algebraic equations from 3 unknowns a_{31}, a_{32}, a_{33} , or from Groebner basis (5), (6) $16[a_{32}^2a_{33}^2 + (1-\nu)^2a_{33}^2a_{31}^2 + \nu^2a_{31}^2a_{32}^2] = (h_1a_{31} + h_2a_{32} + h_3a_{33})^2(a_{31}^2 + a_{32}^2 + a_{33}^2),$ (8) $4\nu(1-\nu)a_{31}a_{32}a_{33} + [h_1a_{32}a_{33} - h_2(1-\nu)a_{33}a_{31} - h_3\nu a_{31}a_{32}](h_1a_{31} + h_2a_{32} + h_3a_{33}) = 0,$ $a_{31}^2 + a_{32}^2 + a_{33}^2 = 1.$

Let us introduce the values $x = \frac{a_{31}}{a_{33}}$, $y = \frac{a_{32}}{a_{33}}$. Then we will have 2 equations:

$$a_0 y^2 + a_1 y + a_2 = 0,$$

$$b_0 y^4 + b_1 y^3 + b_2 y^2 + b_3 y + b_4 = 0.$$
(9)

Here $a_0 = h_2(h_1 - vh_3 x),$ $a_1 = h_1h_3 + [4v(1 - v) + h_1^2 - (1 - v)h_2^2 - vh_3^2]x - vh_1h_3x^2,$ $a_2 = -(1 - v)h_2(h_1x + h_3)x,$ $b_0 = h_2^2,$ $b_1 = 2h_2(h_1x + h_3),$ $b_2 = (h_2^2 + h_3^2 - 16) + 2h_1h_3x + (h_1^2 + h_2^2 - 16v^2)x^2,$ $b_3 = 2h_2(h_1x + h_3)(1 + x^2),$ $b_4 = (h_1x + h_3)^2(1 + x^2) - 16(1 - v)^2x^2.$ Resultant of equations (9) has the form of the 12-th order algebraic equation:

$$p_0 x^{12} + p_1 x^{11} + p_2 x^{10} + p_3 x^9 + p_4 x^8 + p_5 x^7 + p_6 x^6 +$$
(10)
+ $p_7 x^5 + p_8 x^4 + p_9 x^3 + p_{10} x^2 + p_{11} x + p_{12} = 0,$

Where the coefficients $p_i = p_i(h_1, h_2, h_3, \nu)$ have the form:

$$p_{0} = -h_{1}^{4}h_{3}^{4}v^{3},$$

$$p_{1} = 2h_{1}^{3}h_{3}^{3}v^{5} \Big[2h_{1}^{2} - h_{2}^{2}(v-1) - 2v(h_{3}^{2} + 2v-2) \Big],$$

$$p_{2} = -h_{1}^{2}h_{3}^{2}v^{4} \Big\{ 6h_{1}^{4} + h_{2}^{4}(v-1)^{2} - h_{2}^{2}(v-1) \Big[16(v^{3} - v^{2}) + (v-1) + h_{3}^{2}(1-7v) \Big] +$$

$$+ h_{1}^{2} \Big[(-25v^{2} + 26v-1) + h_{3}^{2}(v^{2} - 16v+1) + h_{2}^{2}(v^{2} - 8v+7) \Big] +$$

$$+ 2v^{2} \Big[3h_{3}^{4} + 8(v-1)^{2} - 4h_{3}^{2}(2v^{2} - 7v+5) \Big] \Big],$$

$$p_{3} = 2h_{1}h_{3}v^{3} \Big\{ 2h_{1}^{6} + h_{1}^{4} \Big[(-13v^{2} + 14v-1) + 2h_{3}^{2}(v^{2} - 6v+1) + h_{2}^{2}(v^{2} - 5v+4) \Big] +$$

$$+ h_{3}^{2} \Big[-h_{2}^{4}(v-1)^{2}(2v-1) + h_{2}^{2}(v-1)v \Big[h_{3}^{2}(1-4v) + (16v^{3} - 16v^{2} + v-1) \Big] +$$

$$+ 2v^{3} \Big[-h_{3}^{4} + 8(v-1)^{2}(4v-5) + 2h_{3}^{2}(7-11v+4v^{2}) \Big] \Big] -$$

$$- h_{1}^{2} \Big[h_{2}^{4}(v-2)(v-1)^{2} + h_{2}^{2}(v-1) \Big[(16v^{3} - 16v^{2} + v-1) + h_{3}^{2}(3v^{2} - 13v+3) \Big] +$$

$$+ 2v \Big[-2(v-1)^{2}(5v-1) + h_{3}^{4}(v^{2} - 6v+1) + h_{3}^{2}(18v^{3} - 53v^{2} + 38v-3) \Big] \Big] \Big\} \dots$$

3. Analysis of equilibrium orientations

The numerical calculations it is possible to provide for the case B > A > C (0 < v < 1).

For the limiting parameters values $\nu = 0$ and $\nu = 1$, it is possible to define analytically a boundary of regions with the equal number of equilibria.

In the case v = 0 (A = B) the boundary has the form:

$$h_1^2 + h_2^2 = (4^{2/3} - h_3^{2/3})^3,$$

$$h_1^2 + h_2^2 = (1 - h_3^{2/3})^3.$$
(11)

In the case v = 1 (A = C) the boundary has the form:

$$h_2^{2/3} + (h_1^2 + h_3^2)^{1/3} = 4^{2/3},$$

$$h_2^{2/3} + (h_1^2 + h_3^2)^{1/3} = 1.$$
(12)

3. Analytical results- axisymmetrical cases

v=0 (A=B) (11)

v=1 (A=C) (12)

 $h_3 = 0.01$

4. Numerical results (Central part)

4. Numerical results

 $v=0.2; h_3=0.25$

4. Numerical results

Regions of equilibria v	24/20	20/16	16/12	12/8
0,01	h ₃ =0,990	h ₃ =0,999	h ₃ =3,959	h ₃ =4,0
0,1	h ₃ =0,900	h ₃ =1,021	h ₃ =3,610	h ₃ =4,0
0,2	h ₃ =0,800	h ₃ =1,048	h ₃ =3,264	h ₃ =4,0
0,3	h ₃ =0,700	<i>h</i> ₃ =1,082	h ₃ =2,950	h ₃ =4,0
0,4	h ₃ =0,600	h ₃ =1,124	h ₃ =2,669	h ₃ =4,0
0,5	h ₃ =0,500	h ₃ =1,182	h ₃ =2,412	h ₃ =4,0
0,6	h ₃ =0,400	h ₃ =1,186	h ₃ =2,167	h ₃ =4,0

4. Numerical results

Regions of equilibria V	24/20	20/16	16/12	12/8
0,7	h ₃ =0,300	h ₃ =1,105	h ₃ =1,915	h ₃ =4,0
0,8	h ₃ =0,200	h ₃ =0,909	h ₃ =1,629	h ₃ =4,0
0,9	h ₃ =0,100	h ₃ =0,676	h ₃ =1,245	h ₃ =4,0
0,99	h ₃ =0,010	h ₃ =0,168	h ₃ =0,997	h ₃ =4,0

5. Stability analysis of equilibria

Let us use the Hamiltonian of (1), (2) as Lyapunov's function in order to obtain the sufficient conditions of stability

$$\frac{1}{2}(A\overline{p}^{2} + B\overline{q}^{2} + C\overline{r}^{2}) + \frac{1}{2}(B - C)\omega_{0}^{2}\{3[(1 - \nu)a_{31}^{2} + a_{32}^{2}] + (\nu a_{21}^{2} + a_{23}^{2}) - 2(h_{1}a_{21} + h_{2}a_{22} + h_{3}a_{23})\} = const.$$
(13)

Let us present angles $\psi = \psi_0 + \overline{\psi}$, $\vartheta = \vartheta_0 + \overline{\vartheta}$, $\varphi = \varphi_0 + \overline{\varphi}$, then, Hamiltonian (1) can be presented in the form:

$$\frac{1}{2}(A\overline{p}^{2} + B\overline{q}^{2} + C\overline{r}^{2}) + \frac{1}{2}(B - C)\omega_{0}^{2}(A_{\psi\psi}\overline{\psi}^{2} + A_{gg}\overline{\vartheta}^{2} + A_{\varphi\phi}\overline{\varphi}^{2} + 2A_{\psi\phi}\overline{\psi}\overline{\vartheta} + 2A_{gg}\overline{\vartheta}\overline{\vartheta}) + \Sigma = const.$$
(14)

5. Stability analysis of equilibria

Where:
$$A_{\psi\psi} = v(a_{11}^2 - a_{21}^2) + (a_{13}^2 - a_{23}^2) + h_1 a_{21} + h_2 a_{22} + h_3 a_{23},$$

 $A_{gg} = (3 + \cos^2 \psi_0)(1 - v \sin^2 \varphi_0) \cos 2\vartheta_0 - - \frac{1}{4}v \sin 2\psi_0 \cos \vartheta_0 \sin 2\varphi_0 + (h_1 \sin \varphi_0 + h_2 \cos \varphi_0) \cos \psi_0 \cos \vartheta_0 + h_3 a_{23},$
 $A_{\phi\phi} = v[(a_{22}^2 - a_{21}^2) - 3(a_{32}^2 - a_{31}^2)] + h_1 a_{21} + h_2 a_{22},$
 $A_{\psi\vartheta} = -\frac{1}{2}\sin 2\psi_0 \sin 2\vartheta_0 + v(a_{11}a_{23} + a_{13}a_{21}) - \sin \psi_0(h_1a_{31} + h_2a_{32} + h_3a_{33}),$
 $A_{\psi\phi} = v(a_{11}a_{22} + a_{12}a_{21}) - h_1a_{12} + h_2a_{11},$
 $A_{\vartheta\phi} = -\frac{3}{2}v \sin 2\vartheta_0 \sin 2\varphi_0 + v(a_{21}\cos \varphi_0 + a_{22})a_{23} - (h_1\cos \varphi_0 - h_2\sin \varphi_0)a_{23}.$
(15)

It follows form the Lyapunov's theorem that the equilibrium solution is stable if the quadratic form (14), (15) for this solution is positive definite i.e. the following inequalities take place:

$$A_{\psi\psi} > 0,$$

$$A_{\psi\psi} A_{gg} - (A_{\psig})^{2} > 0,$$

$$A_{\psi\psi} A_{gg} A_{\varphi\varphi} + 2A_{\psig} A_{\psi\varphi} A_{g\varphi} - A_{\psi\psi} (A_{g\varphi})^{2} - A_{gg} (A_{\psi\varphi})^{2} - A_{\varphi\varphi} (A_{\psig})^{2} > 0.$$
(16)

6. Numerical results of the stability of equilibria

6. Numerical results of the stability of equilibria

Fig. 25. $v=0.2, h_3 = 0.4$

Fig. 26. v=0.2, $h_2 = 0.05$, $h_3 = 0.4$ (24 equilibria, 4 stable)

Fig. 27. v=0.2, $h_2 = 0.1$, $h_3 = 0.4$ (24 equilibria, 4 stable)

6. Numerical results of the stability of equilibria

Fig. 28. v=0.2, $h_2 = 0.2$, $h_3 = 0.4$ (20 equilibria, 2 stable)

Fig. 30. v=0.2, $h_2 = 0.5$, $h_3 = 0.4$ (16 equilibria, 2 stable)

Fig. 29. v=0.2, h₂ = 0.3, h₃ = 0.4 (20 equilibria, 2 stable)

Fig. 31. v=0.2, $h_2 = 0.6$, $h_3 = 0.4$ (12 equilibria, 2 stable)

Fig. 32. v=0.2, $h_2 = 1.0$, $h_3 = 0.4$ (12 equilibria, 2 stable)

Fig. 33. v=0.2, $h_2 = 2.0$, $h_3 = 0.4$ (12 equilibria, 2 stable)

Fig. 35. v=0.2, $h_2 = 4.0$, $h_3 = 0.4$ (8 equilibria, 2 stable)

7. Conclution

- Numerical-analytical method for the determination of the equilibrium orientations in the gyrostat satellite is proposed in general case $A \neq B \neq C$, $h_1 \neq 0$, $h_2 \neq 0$, $h_3 \neq 0$.
- Evolution of domains in the space of parameters which correspond to various numbers of equilibria are carried out in detail
- Relationship with axisymmetrical cases of satellite gyrostat is considered.
- It is shown that the number of equilibria of the gyrostat satellite in general case not be less than 8 and not more than 24
- It is shown that the number of stable equilibria of the gyrostat satellite in general case changes from 4 to 2 with the increasing the absolute value of gyrostatic torque.

8. References

- 1. Sarychev V. A. V. A.: Problems of Orientation of Satellites, Itogi Nauki i Tekhniki. Ser. Space Research, vol. 11. VINITI, Moscow (1978)
- 2. Sarychev V. A., Gutnik S. A. Relative equilibria of a gyrostat satellite. *Cosmic Research*, 1984, Vol.22, No.3, P.257-260.
- 3. Sarychev V.A., Mirer S.A. Relative equilibria of a gyrostat satellite with internal angular momentum along a principal axis. Acta Austronautica. 2001, V.49, № 11, P.641-644
- 4. Sarychev V.A., Mirer S.A., Degtyarev, A. A.: The dynamics of a satellite gyrostat with a single nonzero component of the vector of gyrostatic moment. Cosmic Research 43, 268-279 (2005)
- 5. Sarychev V.A. Dynamics of an axisymmetric gyrostat satellite under the action of gravitational moment. *Cosmic Research*. 2010. V.48. №2. P.188-193.
- 6. Sarychev V. A., Gutnik S. A. Dynamics of an axisymmetric gyrostat satellite. Investigation of equilibria and their stability. Keldysh Institute Preprints. 11, (2011)
- 7. Sarychev V.A., Gutnik S.A., Silva A., Santos L. Dynamics of gyrostat satellite subject to gravitational torque. Investigation of equilibria. Keldysh Institute Preprints. 63, (2012)

Annex. Numerical results *v*=0.01

Fig. 1. v=0.01, $h_3 = 0.01$

Fig. 2. $v=0, h_3 = 0.01$

Fig. 3. v=0.01, $h_3 = 0.495$

Fig. 4. $v=0, h_3 = 0.495$

Fig. 5. $v=0.01, h_3 = 0.99$

Fig. 6. $v=0, h_3 = 0.99$

Fig. 7. v=0.1, $h_3 = 0.01$

Fig. 8. v=0.1, $h_3 = 0.495$

Fig. 9. v=0.1, $h_3 = 0.9$

Fig. 10. $v=0.1, h_3 = 1.021$

Fig. 11. $v=0.1, h_3 = 2.0$

Fig. 12. $v=0.1, h_3 = 3.61$

Fig. 13. $v=0.1, h_3 = 4.0$

12

0.4

0.6

Fig. 14. $v=0.2, h_3 = 0.01$

0.015

0.010

0.005

0.000

8

2

1.375 1.385 1.395 1.405

Fig. 16. v=0.2, h₃ = 0.8

Fig. 17. v=0.2, h₃ = 1.048

Fig. 19. $v=0.2, h_3 = 4$

Fig. 28. v=0.5, h₃=0.01

Fig. 29. $v=0.5, h_3=0.5$

Fig.31. v=0.5, *h*₃=2.412

Fig. 41. v=0.8, $h_3 = 0.2$

Fig. 44. v=0.9, $h_3 = 0.01$

Fig. 45. v=0.9, $h_3=0.1$

Fig. 47. v=0.9, h₃=1.245

Fig. 46. v=0.9, h₃ = 0.676

Fig. 45. v=0.9, $h_3=0.1$

Fig. 47. v=0.9, h₃=1.245

Fig. 46. v=0.9, h₃ = 0.676

Fig.48. v=0.99, $h_3=0.005$

Fig. 49. $v=0.99, h_3 = 0.01$

 $^{4}h_{1}$

3

2 1.5

1

0

0.5

12

16

2.5

8

0 0.5 1 1.5 2 2.5 3

3.5

Fig. 54. v=1.0, h₃ = 0.01