Generalized Bruhat decomposition in commutative domains

Gennadi Malaschonok
Tambov State University, Russia
malaschonok@gmail.com
CASC-2013, Berlin

September, 2013

Abstract

Deterministic recursive algorithm for the computation of generalized Bruhat decomposition in commutative domain

 are presented.This method has the same complexity as matrix multiplication.

$$
A=V w U
$$

is called the Bruhat decomposition of the matrix A, if V and U are nonsingular upper triangular matrices and w is a matrix of permutation.

The generalized Bruhat decomposition was introduced and developed by D.Grigoriev.

At CASC-2010 there was presented a pivot-free matrix decomposition method in a common case of singular matrices over a field of arbitrary characteristic with the complexity of matrix multiplication.

Now we present the decomposition in domain.

Definition (Bruhat decomposition in domain)

Decomposition of matrix A :

$$
A=V w U
$$

we call the Bruhat decomposition in the commutative domain R if
a) V and U are upper triangular matrices over R and
b) w is a matrix of permutation, which is multiplied by some diagonal matrix in the field of fractions F over domain R.

Moreover each nonzero element of w has the form $\left(a^{i} a^{i-1}\right)^{-1}$, where a^{i} is some minor of order i of matrix $A(i \leq \operatorname{rank}(A))$.

Example

$$
\begin{gathered}
{\left[\begin{array}{cccc}
1 & -4 & 0 & 1 \\
4 & 5 & 5 & 3 \\
1 & 2 & 2 & 2 \\
3 & 0 & 0 & 1
\end{array}\right]=} \\
{\left[\begin{array}{cccc}
-24 & 0 & 12 & 1 \\
0 & 60 & 15 & 4 \\
0 & 0 & 6 & 1 \\
0 & 0 & 0 & 3
\end{array}\right] \times\left[\begin{array}{cccc}
0 & 0 & \frac{-1}{144} & 0 \\
0 & 0 & 0 & \frac{-1}{1440} \\
0 & \frac{1}{18} & 0 & 0 \\
\frac{1}{3} & 0 & 0 & 0
\end{array}\right] \times\left[\begin{array}{cccc}
3 & 0 & 0 & 1 \\
0 & 6 & 6 & 5 \\
0 & 0 & -24 & -16 \\
0 & 0 & 0 & 60
\end{array}\right]}
\end{gathered}
$$

We construct the decomposition in the form $A=L D U$, where a) L and U are lower and upper triangular matrices, b) D is a matrix of permutation, which is multiplied by some diagonal matrix in the field of fractions F and has the same rank as the matrix A.

Then the Bruhat decomposition $V w U$ in the domain R may be easily obtained using the matrices L, D and U.

Definition

$$
\begin{gathered}
A=\left(a_{i, j}\right) \in R^{n \times n}-\text { matrix of order } n \\
\alpha_{i, j}^{k}-k \times k \text { minor of matrix } A
\end{gathered}
$$

which disposed in the rows $1,2, \ldots, k-1, i$ and columns $1,2, \ldots, k-1, j, \quad 1 \leq i, j, k \leq n$.

$$
\begin{gathered}
\alpha^{k}=\alpha_{k, k}^{k}, \quad \alpha^{0}=1, \quad \delta_{i j}-\text { Kronecker delta. } \\
\mathcal{A}_{s}^{k}=\left(\alpha_{i, j}^{k+1}\right)
\end{gathered}
$$

- matrix with size $(s-k) \times(s-k)$ of minors
$i, j=k+1, \ldots, s-1, s, \quad 0 \leq k<s \leq n$,

$$
A=\mathcal{A}_{n}^{0}=\left(\alpha_{i, j}^{1}\right)
$$

We shall use
Theorem (Sylvester determinant identity)
Let k and s be an integers in the interval $0 \leq k<s \leq n$. Then it is true that

$$
\begin{equation*}
\operatorname{det}\left(\mathcal{A}_{s}^{k}\right)=\alpha^{s}\left(\alpha^{k}\right)^{s-k-1} \tag{1}
\end{equation*}
$$

Theorem (LDU decomposition of the minors matrix)
Let $A=\left(a_{i, j}\right) \in R^{n \times n}, \operatorname{rank}(A)=r$, $\alpha^{i} \neq 0$ for $i=k, k+1, \ldots, r, r \leq s \leq n$, then

$$
\begin{gather*}
\mathcal{A}_{s}^{k}=L_{s}^{k} D_{s}^{k} U_{s}^{k}=\left(a_{i, j}^{j}\right)\left(\delta_{i j} \alpha^{k}\left(\alpha^{i-1} \alpha^{i}\right)^{-1}\right)\left(a_{i, j}^{i}\right) \tag{2}\\
L_{s}^{k}=\left(a_{i, j}^{j}\right)
\end{gather*}
$$

is a low triangular $(s-k) \times(r-k)$ matrix, $k<i \leq s, k<j \leq r$,

$$
U_{s}^{k}=\left(a_{i, j}^{i}\right)
$$

is upper triangular $(r-k) \times(s-k)$ matrix, $k<i \leq r, k<j \leq s$,

$$
D_{s}^{k}=\left(\delta_{i j} \alpha^{k}\left(\alpha^{i-1} \alpha^{i}\right)^{-1}\right)
$$

is a diagonal $(r-k) \times(r-k)$ matrix, $k<i \leq r, k<j \leq r$.

Proof

Equation (2) for $k+1=r$:

$$
\begin{equation*}
\left(a_{i, j}^{k+1}\right)=\left(a_{i, k+1}^{k+1}\right)\left(\delta_{k+1, k+1} a^{k}\left(a^{k} a^{k+1}\right)^{-1}\right)\left(a_{k+1, j}^{k+1}\right) \tag{3}
\end{equation*}
$$

follows from Sylvester determinant identity:

$$
\begin{equation*}
a_{i, j}^{k+1} a^{k+1}-a_{i, k+1}^{k+1} a_{k+1, j}^{k+1}=a_{i, j}^{k+2} a^{k}=a_{i, j}^{r+1} a^{r-1}=0 \tag{4}
\end{equation*}
$$

Let for all $h, k<h<r$, the statement (2) be correct for matrices $\mathcal{A}_{s}^{h}=\left(a_{i, j}^{h+1}\right)$. Let

$$
a_{i, j}^{k+2}=\sum_{t=k+2}^{\min (i, j, r)} a_{i, t}^{t} \alpha^{k+1}\left(\alpha^{t-1} \alpha^{t}\right)^{-1} a_{t, j}^{t}
$$

We have to prove the corresponding expression for the elements of the matrix $\mathcal{A}_{s}^{k}=\left(a_{i, j}^{k+1}\right)$. Due to the Sylvester determinant identity (3) we obtain

$$
\begin{gathered}
a_{i, j}^{k+1}=a_{i, k+1}^{k+1}\left(\alpha^{k+1}\right)^{-1} a_{k+1, j}^{k+1}+\alpha^{k}\left(\alpha^{k+1}\right)^{-1} a_{i, j}^{k+2}= \\
a_{i, k+1}^{k+1} \alpha^{k}\left(\alpha^{k} \alpha^{k+1}\right)^{-1} a_{k+1, j}^{k+1}+ \\
\alpha^{k}\left(\alpha^{k+1}\right)^{-1} \sum_{t=k+2}^{\min (i, j, r)} a_{i, t}^{t} \alpha^{k+1}\left(\alpha^{t-1} \alpha^{t}\right)^{-1} a_{t, j}^{t}= \\
\sum_{t=k+1}^{\min (i, j, r)} a_{i, t}^{t} \alpha^{k}\left(\alpha^{t-1} \alpha^{t}\right)^{-1} a_{t, j}^{t}
\end{gathered}
$$

Consequence (LDU decomposition of matrix A)
Let $A=\left(a_{i, j}\right) \in R^{n \times n}$, be the matrix of rank $r, r \leq n, \alpha^{i} \neq 0$ for $i=1,2, \ldots, r$, then matrix A is equal to the following product of three matrices:

$$
\begin{equation*}
A=L_{n}^{0} D_{n}^{0} U_{n}^{0}=\left(a_{i, j}^{j}\right)\left(\delta_{i j}\left(\alpha^{i-1} \alpha^{i}\right)^{-1}\right)\left(a_{i, j}^{i}\right) . \tag{4}
\end{equation*}
$$

I_{n} - the identity matrix
P_{n} - the matrix with second unit diagonal.
Consequence (Bruhat decomposition of matrix A)
Let matrix $A=\left(a_{i, j}\right)$ have the rank $r, r \leq n$, and $B=P_{n} A$. Let $B=L D U$ be the LDU-decomposition of matrix B. Then
$V=P_{n} L P_{r}$ and U are upper triangular matrices of size $n \times r$ and $r \times n$ correspondingly and

$$
\begin{equation*}
A=V\left(P_{r} D\right) U \tag{5}
\end{equation*}
$$

is the Bruhat decomposition of matrix A.

Notations

For any matrix A (or A_{q}^{p}) we denote by $A_{j_{1}, j_{2}}^{i_{1}, i_{2}}\left(\right.$ or $\left.A_{q ; j_{1}, j_{2}}^{p ; i_{1}, i_{2}}\right)$ the block which stands at the intersection of rows $i_{1}+1, \ldots, i_{2}$ and columns $j_{1}+1, \ldots, j_{2}$ of the matrix. We denote by $A_{i_{2}}^{i_{1}}$ the diagonal block $A_{i_{1}, i_{2}}^{i_{1}, i_{2}}$.

LDU ALGORITHM

Input: $\left(\mathcal{A}_{n}^{k}, \alpha^{k}\right), 0 \leq k<n$.
Output: $\left\{L_{n}^{k},\left\{\alpha^{k+1}, \alpha^{k+2}, \ldots, \alpha^{n}\right\}, U_{n}^{k}, M_{n}^{k}, W_{n}^{k}\right\}$, where $D_{n}^{k}=\alpha^{k} \operatorname{diag}\left\{\alpha^{k} \alpha^{k+1}, \ldots, \alpha^{n-1} \alpha^{n}\right\}^{-1}$,
$M_{n}^{k}=\alpha^{k}\left(L_{n}^{k} D_{n}^{k}\right)^{-1}, W_{n}^{k}=\alpha^{k}\left(D_{n}^{k} U_{n}^{k}\right)^{-1}$.

1. If $k=n-1, \mathcal{A}_{n}^{n-1}=\left(a^{n}\right)$ is a matrix of the first order, then

$$
\left\{a^{n},\left\{a^{n}\right\}, a^{n}, a^{n-1}, a^{n-1}\right\}, \quad D_{n}^{n-1}=\left(\alpha^{n}\right)^{-1} .
$$

2. If $k=n-2, \mathcal{A}_{n}^{n-2}=\left(\begin{array}{cc}\alpha^{n-1} & \beta \\ \gamma & \delta\end{array}\right)$ is a matrix of second order, then
$\left[\begin{array}{cc}\alpha^{n-1} & 0 \\ \gamma & \alpha^{n}\end{array}\right]\left\{\alpha^{n-1}, \alpha^{n}\right\}\left[\begin{array}{cc}\alpha^{n-1} & \beta \\ 0 & \alpha^{n}\end{array}\right]\left[\begin{array}{cc}\alpha^{n-2} & 0 \\ -\gamma & \alpha^{n-1}\end{array}\right]\left[\begin{array}{cc}\alpha^{n-2} & -\beta \\ 0 & \alpha^{n-1}\end{array}\right]$
where $\alpha^{n}=\left(\alpha^{n-2}\right)^{-1}\left|\begin{array}{rr}\alpha^{n-1} & \beta \\ \gamma & \delta\end{array}\right|$,
$D_{n}^{n-2}=\alpha^{n-2} \operatorname{diag}\left\{\alpha^{n-2} \alpha^{n-1}, \alpha^{n-1} \alpha^{n}\right\}^{-1}$.
3. If the order of the matrix \mathcal{A}_{n}^{k} more than two ($0 \leq k<n-2$), then we choose $s(k<s<n)$ and divide the matrix into blocks

$$
\mathcal{A}_{n}^{k}=\left(\begin{array}{cc}
\mathcal{A}_{s}^{k} & \mathbf{B} \tag{6}\\
\mathbf{C} & \mathbf{D}
\end{array}\right)
$$

3.1. Recursive step

$$
\left\{L_{s}^{k},\left\{\alpha^{k+1}, \alpha^{k+2}, \ldots, \alpha^{s}\right\}, U_{s}^{k}, M_{s}^{k}, W_{s}^{k}\right\}=\mathbf{L D U}\left(\mathcal{A}_{s}^{k}, \alpha^{k}\right)
$$

3.2. We compute

$$
\begin{gather*}
\widetilde{U}=\left(\alpha^{k}\right)^{-1} M_{s}^{k} \mathbf{B}, \quad \widetilde{L}=\left(\alpha^{k}\right)^{-1} \mathbf{C} W_{s}^{k}, \tag{7}\\
\mathcal{A}_{n}^{s}=\left(\alpha^{k}\right)^{-1} \alpha^{s}\left(\mathbf{D}-\widetilde{L} D_{s}^{k} \widetilde{U}\right) . \tag{8}
\end{gather*}
$$

3.3. Recursive step

$$
\left\{L_{n}^{s},\left\{\alpha^{s+1}, \alpha^{s+2}, \ldots, \alpha^{n}\right\}, U_{n}^{s}, M_{n}^{s}, W_{n}^{s}\right\}=\mathbf{L D U}\left(\mathcal{A}_{n}^{s}, \alpha^{s}\right)
$$

3.4 Result:

$$
\left\{L_{n}^{k},\left\{\alpha^{k+1}, \alpha^{k+2}, \ldots, \alpha^{n}\right\}, U_{n}^{k}, M_{n}^{k}, W_{n}^{k}\right\}
$$

where

$$
\begin{gather*}
L_{n}^{k}=\left(\begin{array}{cc}
L_{s}^{k} & 0 \\
\widetilde{L} & L_{n}^{s}
\end{array}\right), U_{n}^{k}=\left(\begin{array}{cc}
U_{s}^{k} & \widetilde{U} \\
0 & U_{n}^{s}
\end{array}\right), \tag{9}\\
M_{n}^{k}=\left(\begin{array}{cc}
M_{s}^{k} & 0 \\
-M_{n}^{s} \widetilde{L} D_{s}^{k} M_{s}^{k} / \alpha^{k} & M_{n}^{s}
\end{array}\right), \tag{10}\\
W_{n}^{k}=\left(\begin{array}{cc}
W_{s}^{k} & -W_{s}^{k} D_{s}^{k} \widetilde{U} W_{n}^{s} / \alpha^{k} \\
0 & W_{n}^{s}
\end{array}\right) . \tag{11}
\end{gather*}
$$

Proof of the correctness of the LDU algorithm

Definition ($\delta_{i, j}^{k}$ minors and \mathcal{G}^{k} matrices)

Let $A \in R^{n \times n}$ be a matrix. The determinant of the matrix, obtained from the upper left block $A_{0, k}^{0, k}$ of matrix A by the replacement in matrix A of the column i by the column j is denoted by $\delta_{i, j}^{k}$. The matrix of such minors is denoted by

$$
\begin{equation*}
\mathcal{G}_{s}^{k}=\left(\delta_{i, j}^{k+1}\right) \tag{12}
\end{equation*}
$$

Theorem (Base minor's identity)
Let $A \in R^{n \times n}$ be a matrix and i, j, s, k, be integers in the intervals: $0 \leq k<s \leq n, 0<i, j \leq n$. Then the following identity is true

$$
\begin{equation*}
\alpha^{s} \alpha_{i j}^{k+1}-\alpha^{k} a_{i j}^{s+1}=\sum_{p=k+1}^{s} \alpha_{i p}^{k+1} \delta_{p j}^{s} \tag{13}
\end{equation*}
$$

The minors $a_{i j}^{s+1}$ in the left side of this identity equal zero if $i<s+1$. Therefor this theorem gives the following
Consequence
Let $A \in R^{n \times n}$ be a matrix and s, k, be integers in the intervals:
$0 \leq k<s \leq n$. Then the following identities are true

$$
\begin{align*}
\alpha^{s} U_{n ; s+1, n}^{k ; k+1, s} & =U_{s}^{k} \mathcal{G}_{n ; s+1, n}^{k ; k+1, s} \tag{14}\\
\alpha^{s} \mathcal{A}_{n ; s+1, n}^{k ; k+1, s} & =\mathcal{A}_{s}^{k} \mathcal{G}_{n ; s+1, n}^{k ; k+1, s} \tag{15}
\end{align*}
$$

The block $\mathcal{A}_{n ; s+1, n}^{k ; k+1, s}$ of the matrix \mathcal{A}_{n}^{k} was denoted by B. Due to Sylvester identity we can write the equation for the adjoint matrix

$$
\begin{equation*}
\left(A_{s}^{k}\right)^{*}=\left(A_{s}^{k}\right)^{-1}\left(\alpha^{s}\right)\left(\alpha^{k}\right)^{s-k-1} \tag{16}
\end{equation*}
$$

Let us multiply both sides of equation (15) by adjoint matrix $\left(A_{s}^{k}\right)^{*}$ and use the equation (16). Then we get
Consequence

$$
\begin{equation*}
\left(A_{s}^{k}\right)^{*} \mathbf{B}=\left(A_{s}^{k}\right)^{*} \mathcal{A}_{n ; s+1, n}^{k ; k+1, s}=\left(\alpha^{k}\right)^{s-k-1} \mathcal{G}_{n ; s+1, n}^{k ; k+1, s} \tag{17}
\end{equation*}
$$

As well as $L_{s}^{k} D_{s}^{k} U_{s}^{k}=A_{s}^{k}$,

$$
\begin{equation*}
M_{s}^{k}=\alpha^{k}\left(L_{s}^{k} D_{s}^{k}\right)^{-1}=\alpha^{k} U_{s}^{k}\left(A_{s}^{k}\right)^{-1} \text { and } W_{s}^{k}=\alpha^{k}\left(D_{s}^{k} U_{s}^{k}\right)^{-1} \tag{18}
\end{equation*}
$$

Therefor
$\widetilde{U}=\left(\alpha^{k}\right)^{-1} M_{s}^{k} \mathbf{B}=\left(\alpha^{k}\right)^{-1} U_{s}^{k}\left(A_{s}^{k}\right)^{-1} \mathbf{B}=\left(\alpha^{s}\right)^{-1}\left(\alpha^{k}\right)^{-s+k} U_{s}^{k}\left(A_{s}^{k}\right)^{*} \mathbf{B}$.
Equations (19), (17), (14) give the
Consequence

$$
\begin{equation*}
\widetilde{U}=U_{n ; s+1, n}^{k ; k+1, s} \tag{20}
\end{equation*}
$$

In the same way we can prove
Consequence

$$
\begin{equation*}
\widetilde{L}=L_{n ; k+1, s}^{k ; s+1, n} \tag{21}
\end{equation*}
$$

Now we have to prove the identity (8). Due to the equations (14)-(19) we obtain

$$
\begin{gather*}
\widetilde{L} D_{s}^{k} \widetilde{U}=\left(\alpha^{k}\right)^{-1} \mathbf{C} W_{s}^{k} D_{s}^{k}\left(\alpha^{k}\right)^{-1} M_{s}^{k} \mathbf{B}= \\
\left(\alpha^{k}\right)^{-2} \mathbf{C}\left(A_{s}^{k}\right)^{-1} \mathbf{B}=\left(\alpha^{k}\right)^{-s+k-1}\left(\alpha^{s}\right)^{-1} \mathbf{C}\left(A_{s}^{k}\right)^{*} \mathbf{B} \tag{22}
\end{gather*}
$$

The identity

$$
\begin{equation*}
\mathcal{A}_{n}^{s}=\left(\alpha^{k}\right)^{-1}\left(\alpha^{s} \mathbf{D}-\left(\alpha^{k}\right)^{-s+k+1} \mathbf{C}\left(A_{s}^{k}\right)^{*} \mathbf{B}\right) \tag{23}
\end{equation*}
$$

was proved in [4] and [5]. Due to (20) and (21) we obtain the identity (8).
To prove the formula (10) and (11) it is sufficient to verify the identities $M_{n}^{k}=\alpha^{k}\left(L_{n}^{k} D_{n}^{k}\right)^{-1}$ and $W_{n}^{k}=\alpha^{k}\left(D_{n}^{k} U_{n}^{k}\right)^{-1}$ using (9),(10), (11) and definition $D_{n}^{k}=\alpha^{k} \operatorname{diag}\left\{\alpha^{k} \alpha^{k+1}, \ldots, \alpha^{n-1} \alpha^{n}\right\}^{-1}$.

Theorem

The algorithm has the same complexity as matrix multiplication.

Proof.

Number of matrix multiplications is 7 .
Number of recursive calls is 2 .
Decomposition of the 2×2 matrix takes 7 multiplicative operations. So the recurrent equality for complexity:

$$
t(n)=2 t(n / 2)+7 M(n / 2), \quad t(2)=7 .
$$

Let $M(n)=\gamma n^{\beta}+o\left(n^{\beta}\right)$ be the complexity of $n \times n$ matrix multiplication. After summation from $n=2^{k}$ to 2^{1} we obtain

$$
\begin{gathered}
7 \gamma\left(2^{0} 2^{\beta \cdot(k-1)}+\ldots+2^{k-2} 2^{\beta \cdot 1}\right)+2^{k-2} 7=7 \gamma \frac{n^{\beta}-n 2^{\beta-1}}{2^{\beta}-2}+\frac{7}{4} n \\
\sim \frac{7 \gamma n^{\beta}}{2^{\beta}-2}
\end{gathered}
$$

The exact triangular decomposition

Definition

A decomposition of the matrix A of rank r over a domain R

$$
\begin{equation*}
A=P L D U Q \tag{24}
\end{equation*}
$$

is called exact triangular decomposition if
P and Q are permutation matrces,
L and $P L P^{T}$ are nonsingular lower triangular matrices over R, U and $Q^{T} U Q$ are nonsingular upper triangular matrices over R, $D=\operatorname{diag}\left(d_{1}^{-1}, d_{2}^{-1}, . ., d_{r}^{-1}, 0, . ., 0\right)$ is a diagonal matrix of rank r, $d_{i} \in R \backslash\{0\}, i=1, . . r$.
Designation: $\operatorname{ETD}(A)=(P, L, D, U, Q)$.

Theorem (Main theorem)
Any matrix over a commutative domain has an exact triangular decomposition.

Comment

1) If D matrix is combined with L or U, we get the expression

$$
A=P L U Q
$$

- the $L U$-decomposition with permutations of rows and columns.

2) If the factors are grouped in the following way:

$$
A=\left(P L P^{T}\right)(P D Q)\left(Q^{T} U Q\right)
$$

then we obtain LDU-decomposition.
3) If S is a permutation matrix in which the unit elements are placed on the secondary diagonal, then

$$
(S A)=(S \mathbf{L} S)\left(S^{T} \mathbf{D}\right) \mathbf{U}=V w \mathbf{U}
$$

- the Bruhat decomposition of the matrix $(S A)$.

Proof

If matrix A is a zero matrix: $\operatorname{ETD}(A)=(I, I, 0, I, I)$.
If A is the first order nonzero matrix: $\operatorname{ETD}(a)=\left(I, a, a^{-1}, a, I\right)$.
Let us consider a non-zero matrix of order two. We denote
$\mathcal{A}=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right), \Delta=\left|\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right|, \varepsilon=\left\{\begin{array}{c}\Delta, \Delta \neq 0 \\ 1, \Delta=0 .\end{array} \quad \Delta^{-1}=\left\{\begin{array}{c}\frac{1}{\Delta}, \Delta \neq 0 \\ 0, \Delta=0 .\end{array}\right.\right.$
$\alpha \neq 0: \mathcal{A}=\left(\begin{array}{cc}\alpha & 0 \\ \gamma & \varepsilon\end{array}\right)\left(\begin{array}{cc}\alpha^{-1} & 0 \\ 0 & \Delta^{-1} \alpha^{-1}\end{array}\right)\left(\begin{array}{cc}\alpha & \beta \\ 0 & \varepsilon\end{array}\right)$.
$\alpha=0, \beta \neq 0$:
$\mathcal{A}=\left(\begin{array}{ll}\beta & 0 \\ \delta & \varepsilon\end{array}\right)\left(\begin{array}{cc}\beta^{-1} & 0 \\ 0 & -\Delta^{-1} \beta^{-1}\end{array}\right)\left(\begin{array}{ll}\beta & 0 \\ 0 & \varepsilon\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
$\alpha=0, \gamma \neq 0$:
$\mathcal{A}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}\gamma & 0 \\ 0 & \varepsilon\end{array}\right)\left(\begin{array}{cc}\gamma^{-1} & 0 \\ 0 & -\Delta^{-1} \gamma^{-1}\end{array}\right)\left(\begin{array}{ll}\gamma & \delta \\ 0 & \varepsilon\end{array}\right)$.
$\alpha=\beta=\gamma=0, \delta \neq 0$:
$\mathcal{A}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}\delta & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}\delta^{-1} & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}\delta & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.

There are only two different cases for matrices of size 1×2 : If $\alpha \neq 0$, then $\left(\begin{array}{cc}\alpha & \beta\end{array}\right)=(\alpha)\left(\begin{array}{ll}\alpha^{-1} & 0\end{array}\right)\left(\begin{array}{cc}\alpha & \beta \\ 0 & 1\end{array}\right)$.
If $\alpha=0, \beta \neq 0$, then $\left(\begin{array}{ll}0 & \beta\end{array}\right)=$ $(\beta)\left(\begin{array}{ll}\beta^{-1} & 0\end{array}\right)\left(\begin{array}{ll}\beta & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
Two cases for matrices of size 2×1 can be easily obtained by a simple transposition.

These examples allow us to formulate
Sentence
For all matrices \mathcal{A} of size $n \times m, n, m<3$ there exists an exact triangular decomposition.

Property (Property of the factors)

For a matrix $A \in R^{n \times m}$ of rank $r, r<n, r<m$ over a commutative domain R there exists the exact triangular decomposition (24) in which (α) the matrices L and U are of the form

$$
L=\left(\begin{array}{cc}
L_{1} & 0 \tag{25}\\
L_{2} & I_{n-r}
\end{array}\right) U=\left(\begin{array}{cc}
U_{1} & U_{2} \\
0 & I_{m-r}
\end{array}\right)
$$

(β) the matrices $P L P^{T}$ and $Q^{T} U Q$ remain triangular after replacing in the matrices L and Q of unit blocks I_{n-r} and I_{m-r} by arbitrary triangular blocks.

Let matrix \mathcal{A} be of size $N \times M$. Assume that all matrices of size less than $n \times m$ have the exact triangular decomposition. We split the matrix \mathcal{A} into blocks:

$$
\mathcal{A}=\left(\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right)
$$

where $\mathbf{A} \in R^{n \times n}, n<N, n<M$.
(1). Let the block \mathbf{A} have the full rank. There exists exact triangular decomposition of this block: $\mathbf{A}=P_{1} L_{1} D_{1} U_{1} Q_{1}$ then

$$
\begin{gathered}
\mathcal{A}=\left[\begin{array}{cc}
P_{1} & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
L_{1} & 0 \\
\mathbf{C} Q_{1}^{T} U_{1}^{-1} D_{1}^{-1} & I
\end{array}\right]\left[\begin{array}{cc}
D_{1} & 0 \\
0 & \mathbf{D}^{\prime}
\end{array}\right] \times \\
{\left[\begin{array}{cc}
U_{1} & D_{1}^{-1} L_{1}^{-1} P_{1}^{T} \mathbf{B} \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
Q_{1} & 0 \\
0 & I
\end{array}\right] .}
\end{gathered}
$$

The matrix \mathbf{D}^{\prime} also has the exact triangular decomposition $\mathbf{D}^{\prime}=P_{2} L_{2} D_{2} U_{2} Q_{2}$, then

$$
\begin{gathered}
\mathcal{A}=\left[\begin{array}{cc}
P_{1} & 0 \\
0 & P_{2}
\end{array}\right]\left[\begin{array}{cc}
L_{1} & 0 \\
P_{2}^{T} \mathbf{C} Q_{1}^{T} U_{1}^{-1} D_{1}^{-1} & L_{2}
\end{array}\right]\left[\begin{array}{cc}
D_{1} & 0 \\
0 & D_{2}
\end{array}\right] \times \\
{\left[\begin{array}{cc}
U_{1} & D_{1}^{-1} L_{1}^{-1} P_{1}^{T} \mathbf{B} Q_{2}^{T} \\
0 & U_{2}
\end{array}\right]\left[\begin{array}{cc}
Q_{1} & 0 \\
0 & Q_{2}
\end{array}\right] .}
\end{gathered}
$$

It is easy to see that this decomposition is exact triangular.
(2) Let the block \mathbf{A} has rank $r, r<n$. There exists exact triangular decomposition of this block:

$$
\mathbf{A}=P_{1} L_{1} D_{1} U_{1} Q_{1} .
$$

Here $U_{1}=\left(\begin{array}{cc}U_{0} & V_{0} \\ 0 & I\end{array}\right), L_{1}=\left(\begin{array}{cc}L_{0} & 0 \\ M_{0} & I\end{array}\right)$ and the diagonal matrix $D_{1}=\left(\begin{array}{cc}d_{1} & 0 \\ 0 & 0\end{array}\right)$ has a block d_{1} of rank r.
Let us denote $\left(\mathbf{C}_{0}, \mathbf{C}_{1}\right)=\mathbf{C} Q_{1}^{T}\left(\begin{array}{cc}U_{0}^{-1} & -V_{0} \\ 0 & I\end{array}\right)$ and $\binom{\mathbf{B}_{0}}{\mathbf{B}_{1}}=$ $\left(\begin{array}{cc}L_{0}^{-1} & 0 \\ -M_{0} & I\end{array}\right) P_{1}^{T} \mathbf{B}$.

Then for the matrix \mathcal{A} we obtain the decomposition:

$$
\begin{gather*}
\mathcal{A}=\left(\begin{array}{cc}
P_{1} & 0 \\
0 & I
\end{array}\right)\left(\begin{array}{ccc}
L_{0} & 0 & 0 \\
M_{0} & I & 0 \\
\mathbf{C}_{0} d_{1}^{-1} & 0 & I
\end{array}\right)\left(\begin{array}{ccc}
d_{1} & 0 & 0 \\
0 & 0 & \mathbf{B}_{1} \\
0 & \mathbf{C}_{1} & \mathbf{D}
\end{array}\right) \times \\
\left(\begin{array}{ccc}
U_{0} & V_{0} & d_{1}^{-1} \mathbf{B}_{0} \\
0 & I & 0 \\
0 & 0 & I
\end{array}\right)\left(\begin{array}{cc}
Q_{1} & 0 \\
0 & I
\end{array}\right) . \tag{26}
\end{gather*}
$$

(2.1) Let $\mathbf{B}_{1}=0$ and $\mathbf{C}_{1}=0$ then

$$
\begin{gathered}
\left(\begin{array}{cc}
0 & \mathbf{B}_{1} \\
\mathbf{C}_{1} & \mathbf{D}
\end{array}\right)=\left(\begin{array}{cc}
0 & I \\
I & 0
\end{array}\right)\left(\begin{array}{cc}
\mathbf{D} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & I \\
I & 0
\end{array}\right) . \\
\mathbf{D}=P_{2} L_{2} D_{2} U_{2} Q_{2} . \text { We denote } \\
\mathbf{P}_{3}=\left(\begin{array}{cc}
P_{1} & 0 \\
0 & P_{2}
\end{array}\right)\left(\begin{array}{ccc}
I & 0 & 0 \\
0 & 0 & I \\
0 & I & 0
\end{array}\right), \mathbf{Q}_{3}=\left(\begin{array}{ccc}
I & 0 & 0 \\
0 & 0 & I \\
0 & I & 0
\end{array}\right)\left(\begin{array}{cc}
Q_{1} & 0 \\
0 & Q_{2}
\end{array}\right) . \\
\text { Then } \mathcal{A}=\mathbf{P}_{3}\left(\begin{array}{cc}
L_{0} & 0 \\
P_{2}^{T} \mathbf{C}_{0} d_{1}^{-1} & L_{2} \\
M_{0} & 0 \\
\hline
\end{array}\right) \times \\
\left(\begin{array}{ccc}
d_{1} & 0 & 0 \\
0 & D_{2} & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
U_{0} & d_{1}^{-1} \mathbf{B}_{0} Q_{2}^{T} & V_{0} \\
0 & U_{2} & 0 \\
0 & 0 & I
\end{array}\right) \mathbf{Q}_{3} .
\end{gathered}
$$

(2.2) Suppose that at least one of the two blocks of \mathbf{B}_{1} or \mathbf{C}_{1} is not zero. Let the exact triangular decomposition exist for these blocks:

$$
\mathbf{C}_{1}=P_{2} L_{2} D_{2} U_{2} Q_{2}, \mathbf{B}_{1}=P_{3} L_{3} D_{3} U_{3} Q_{3}
$$

We denote

$$
\begin{gathered}
\mathbf{P}_{1}=\left(\begin{array}{cc}
P_{1} & 0 \\
0 & I
\end{array}\right), \mathbf{P}_{2}=\left(\begin{array}{ccc}
I & 0 & 0 \\
0 & P_{3} & 0 \\
0 & 0 & P_{2}
\end{array}\right), \mathbf{Q}_{2}=\left(\begin{array}{ccc}
I & 0 & 0 \\
0 & Q_{2} & 0 \\
0 & 0 & Q_{3}
\end{array}\right) \\
\mathbf{Q}_{1}=\left(\begin{array}{cc}
Q_{1} & 0 \\
0 & I
\end{array}\right),
\end{gathered}
$$

$$
\mathbf{P}_{3}=\mathbf{P}_{1} \mathbf{P}_{2}, \mathbf{Q}_{3}=\mathbf{Q}_{2} \mathbf{Q}_{1}, \mathbf{D}^{\prime}=L_{2}^{-1} P_{2}^{T} \mathbf{D} Q_{3}^{T} U_{3}^{-1}
$$

Then, basing on the expansion (26) we obtain:

$$
\begin{gather*}
\mathcal{A}=\mathbf{P}_{3}\left(\begin{array}{ccc}
L_{0} & 0 & 0 \\
P_{3}^{T} M_{0} & L_{3} & 0 \\
P_{2}^{T} \mathbf{C}_{0} d_{1}^{-1} & 0 & L_{2}
\end{array}\right)\left(\begin{array}{ccc}
d_{1} & 0 & 0 \\
0 & 0 & D_{3} \\
0 & D_{2} & \mathbf{D}^{\prime}
\end{array}\right) \times \\
\left(\begin{array}{ccc}
U_{0} & V_{0} Q_{2}^{T} & d_{1}^{-1} \mathbf{B}_{0} Q_{3}^{T} \\
0 & U_{2} & 0 \\
0 & 0 & U_{3}
\end{array}\right) \mathbf{Q}_{3 .} . \tag{27}
\end{gather*}
$$

We denote $d_{2}\left(d_{3}\right)$ nondegenerate blocks of the matrices $D_{2}\left(D_{3}\right)$

$$
\begin{gathered}
\left(V_{1}, V_{4}\right)=V_{0} Q_{2}^{T},\left(V_{5}, V_{6}\right)=d_{1}^{-1} \mathbf{B}_{0} Q_{3}^{T},\binom{M_{1}}{M_{4}}=P_{3}^{T} M_{0} \\
\binom{M_{5}}{M_{6}}=P_{2}^{T} \mathbf{C}_{0} d_{1}^{-1} \\
L_{2}=\left(\begin{array}{cc}
L_{2}^{\prime} & 0 \\
M_{2} & I
\end{array}\right), L_{3}=\left(\begin{array}{cc}
L_{3}^{\prime} & 0 \\
M_{3} & I
\end{array}\right), U_{2}=\left(\begin{array}{cc}
U_{2}^{\prime} & V_{2} \\
0 & I
\end{array}\right), \\
U_{3}=\left(\begin{array}{cc}
U_{3}^{\prime} & V_{3} \\
0 & I
\end{array}\right), \mathbf{D}^{\prime}=\left(\begin{array}{cc}
\mathbf{D}_{1}^{\prime} & \mathbf{D}_{3}^{\prime} \\
\mathbf{D}_{2}^{\prime} & \mathbf{D}_{4}^{\prime}
\end{array}\right) . \\
M_{7}=\mathbf{D}_{2}^{\prime} d_{3}^{-1}, V_{7}=d_{2}^{-1} \mathbf{D}_{1}^{\prime} U_{3}^{\prime}, V_{8}=d_{2}^{-1}\left(\mathbf{D}_{1}^{\prime} V_{3}+\mathbf{D}_{3}^{\prime}\right)
\end{gathered}
$$

Then (27) can be written as

$$
\mathcal{A}=\mathbf{P}_{3}\left(\begin{array}{ccccc}
L_{0} & 0 & 0 & 0 & 0 \\
M_{1} & L_{3}^{\prime} & 0 & 0 & 0 \\
M_{4} & M_{3} & I & 0 & 0 \\
M_{5} & 0 & 0 & L_{2}^{\prime} & 0 \\
M_{6} & 0 & 0 & M_{2} & I
\end{array}\right)\left(\begin{array}{ccccc}
d_{1} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & d_{3} & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & d_{2} & 0 & \mathbf{D}_{1}^{\prime} & \mathbf{D}_{3}^{\prime} \\
0 & 0 & 0 & \mathbf{D}_{2}^{\prime} & \mathbf{D}_{4}^{\prime}
\end{array}\right)
$$

$$
\left(\begin{array}{ccccc}
U_{0} & V_{1} & V_{4} & V_{5} & V_{6} \\
0 & U_{2}^{\prime} & V_{2} & 0 & 0 \\
0 & 0 & I & 0 & 0 \\
0 & 0 & 0 & U_{3}^{\prime} & V_{3} \\
0 & 0 & 0 & 0 & I
\end{array}\right) \mathbf{Q}_{3}=
$$

$$
=\mathbf{P}_{3}\left(\begin{array}{ccccc}
L_{0} & 0 & 0 & 0 & 0 \\
M_{1} & L_{3}^{\prime} & 0 & 0 & 0 \\
M_{4} & M_{3} & I & 0 & 0 \\
M_{5} & 0 & 0 & L_{2}^{\prime} & 0 \\
M_{6} & M_{7} & 0 & M_{2} & I
\end{array}\right)\left(\begin{array}{ccccc}
d_{1} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & d_{3} & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & d_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \mathbf{D}_{4}^{\prime}
\end{array}\right)
$$

$$
\left(\begin{array}{ccccc}
U_{0} & V_{1} & V_{4} & V_{5} & V_{6} \tag{28}\\
0 & U_{2}^{\prime} & V_{2} & V_{7} & V_{8} \\
0 & 0 & I & 0 & 0 \\
0 & 0 & 0 & U_{3}^{\prime} & V_{3} \\
0 & 0 & 0 & 0 & I
\end{array}\right) \mathbf{Q}_{3} .
$$

Let

$$
\mathbf{D}_{4}^{\prime}=P_{4} L_{4} D_{4} U_{4} Q_{4}
$$

$$
\begin{aligned}
& \mathbf{P}_{4}=\operatorname{diag}\left(I, I, I, I, P_{4}\right) \\
& \mathbf{Q}_{4}=\operatorname{diag}\left(I, I, I, I, Q_{4}\right) \\
& \mathbf{P}_{5}=\mathbf{P}_{3} \mathbf{P}_{4} \\
& \mathbf{Q}_{5}=\mathbf{Q}_{4} \mathbf{Q}_{3}
\end{aligned}
$$

$$
\begin{aligned}
\left(M_{6}^{\prime}, M_{7}^{\prime}, M_{2}^{\prime}\right) & =P_{4}^{T}\left(M_{6}, M_{7}, M_{2}\right) \\
\left(V_{6}^{\prime}, V_{8}^{\prime}, V_{3}^{\prime}\right) & =\left(V_{6}, V_{8}, V_{3}\right) Q_{4}^{T}
\end{aligned}
$$

After substituting (29) into (28) we obtain the decomposition of the matrix \mathcal{A} as

$$
\begin{gather*}
\mathcal{A}=\mathbf{P}_{5}\left(\begin{array}{ccccc}
L_{0} & 0 & 0 & 0 & 0 \\
M_{1} & L_{3}^{\prime} & 0 & 0 & 0 \\
M_{4} & M_{3} & I & 0 & 0 \\
M_{5} & 0 & 0 & L_{2}^{\prime} & 0 \\
M_{6}^{\prime} & M_{7}^{\prime} & 0 & M_{2}^{\prime} & L_{4}
\end{array}\right)\left(\begin{array}{ccccc}
d_{1} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & d_{3} & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & d_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & D_{4}
\end{array}\right) \\
\left(\begin{array}{cccccc}
U_{0} & V_{1} & V_{4} & V_{5} & V_{6}^{\prime} \\
0 & U_{2}^{\prime} & V_{2} & V_{7} & V_{8}^{\prime} \\
0 & 0 & I & 0 & 0 \\
0 & 0 & 0 & U_{3}^{\prime} & V_{3}^{\prime} \\
0 & 0 & 0 & 0 & U_{4}
\end{array}\right) \mathbf{Q}_{5} . \tag{30}
\end{gather*}
$$

We rearrange the blocks d_{2}, d_{3} and D_{4} to obtain the diagonal matrix $\mathbf{d}=\operatorname{diag}\left(d_{1}, d_{3}, d_{2}, D_{4}, 0\right)$. To do it we use permutation matrices P_{6} and Q_{6} :

$$
\begin{gathered}
P_{6}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0
\end{array}\right), Q_{6}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right), \\
\mathbf{d}=\left(\begin{array}{ccccc}
d_{1} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & d_{3} & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & d_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & D_{4}
\end{array}\right)
\end{gathered}
$$

As a result, we obtain the decomposition:

$$
\begin{equation*}
\mathcal{A}=\mathbf{P}_{6} \mathbf{L d U Q} \mathbf{Q}_{6} \tag{31}
\end{equation*}
$$

with permutation matrices $\mathbf{P}_{6}=\mathbf{P}_{5} P_{6}^{T}$ and $\mathbf{Q}_{6}=Q_{6}^{T} \mathbf{Q}_{5}$, diagonal matrix \mathbf{d} and triangular matrices
$\mathbf{L}=P_{6}\left(\begin{array}{ccccc}L_{0} & 0 & 0 & 0 & 0 \\ M_{1} & L_{3}^{\prime} & 0 & 0 & 0 \\ M_{4} & M_{3} & I & 0 & 0 \\ M_{5} & 0 & 0 & L_{2}^{\prime} & 0 \\ M_{6}^{\prime} & M_{7}^{\prime} & 0 & M_{2}^{\prime} & L_{4}\end{array}\right) P_{6}^{T}=\left(\begin{array}{ccccc}L_{0} & 0 & 0 & 0 & 0 \\ M_{5} & L_{2}^{\prime} & 0 & 0 & 0 \\ M_{1} & 0 & L_{3}^{\prime} & 0 & 0 \\ M_{6}^{\prime} & M_{7}^{\prime} & M_{2}^{\prime} & L_{4} & 0 \\ M_{4} & 0 & M_{3} & 0 & I\end{array}\right)$
$\mathbf{U}=Q_{6}^{T}\left(\begin{array}{ccccc}U_{0} & V_{1} & V_{4} & V_{5} & V_{6}^{\prime} \\ 0 & U_{2}^{\prime} & V_{2} & V_{7} & V_{8}^{\prime} \\ 0 & 0 & I & 0 & 0 \\ 0 & 0 & 0 & U_{3}^{\prime} & V_{3}^{\prime} \\ 0 & 0 & 0 & 0 & U_{4}\end{array}\right) Q_{6}=\left(\begin{array}{ccccc}U_{0} & V_{1} & V_{5} & V_{6}^{\prime} & V_{4} \\ 0 & U_{2}^{\prime} & V_{7} & V_{8}^{\prime} & V_{2} \\ 0 & 0 & U_{3}^{\prime} & V_{3}^{\prime} & 0 \\ 0 & 0 & 0 & U_{4} & 0 \\ 0 & 0 & 0 & 0 & I\end{array}\right)$

We must verify that the matrices $\mathcal{L}=\mathbf{P}_{6} \mathbf{L} \mathbf{P}_{6}^{T}$ and $\mathcal{Q}=\mathbf{Q}_{6}^{T} \mathbf{U} \mathbf{Q}_{6}$ are triangular, and the matrices $\mathbf{P}, \mathbf{L}, \mathbf{U}, \mathbf{Q}$ satisfy the properties (α) and (β).
It is easy to see that all matrices in sequence

$$
\mathcal{L}_{1}=P_{6} \mathbf{L} P_{6}^{T}, \mathcal{L}_{2}=\mathbf{P}_{4} \mathcal{L}_{1} \mathbf{P}_{4}^{T}, \mathcal{L}_{3}=\mathbf{P}_{2} \mathcal{L}_{2} \mathbf{P}_{2}^{T}, \mathcal{L}_{4}=\mathbf{P}_{1} \mathcal{L}_{3} \mathbf{P}_{1}^{T}
$$

are triangular and $\mathcal{L}_{4}=\mathcal{L}$.
Similarly, all of the matrices in the sequence

$$
\mathcal{U}_{1}=Q_{6}^{T} \mathbf{L} Q_{6}, \mathcal{U}_{2}=\mathbf{Q}_{4}^{T} \mathcal{U}_{1} \mathbf{Q}_{4}, \mathcal{U}_{3}=\mathbf{Q}_{2}^{T} \mathcal{U}_{2} \mathbf{Q}_{2}, \mathcal{U}_{4}=\mathbf{Q}_{1}^{T} \mathcal{U}_{3} \mathbf{Q}_{1}
$$

are triangular and $\mathcal{U}_{4}=\mathcal{U}$.
For the matrices \mathbf{L} and \mathbf{U} Properties (α) and (β) are satisfied.

Conclusion

Algorithms for finding the LDU and Bruhat decomposition in commutative domain are described. These algorithms have the same complexity as matrix multiplication.

REFERENCES

睩 Grigoriev D．Analogy of Bruhat decomposition for the closure of a cone of Chevalley group of a classical serie．Soviet Math． Dokl．，vol．23，N 2，393－397（1981）．

國 Grigoriev D．Additive complexity in directed computations． Theoretical Computer Science，vol．19，39－67（1982）．

囲 Malaschonok G．I．：Fast Generalized Bruhat Decomposition．In： Ganzha，V．M．，Mayr，E．W．，Vorozhtsov，E．V．（eds．）12th International Workshop on Computer Algebra in Scientific Computing（CASC 2010），194－202．LNCS 6244．Springer， Berlin Heidelberg，（2010）．

嗇 Malaschonok G．I．：Matrix computational methods in commutative rings．Monograph．Tambov，Tambov University Publishing House（2002）．

围 Malaschonok G．I．：Effective Matrix Methods in Commutative Domains．Formal Power Series and Algebraic Combinatorics． pp．506－517．Springer．Berlin（2000）．

THE END

