Generalized Bruhat decomposition in commutative domains

Gennadi Malaschonok Tambov State University, Russia malaschonok@gmail.com CASC-2013, Berlin

September, 2013

Abstract

Deterministic recursive algorithm for the computation of **generalized Bruhat decomposition in commutative domain** are presented.

This method has the same complexity as matrix multiplication.

$$A = VwU$$

is called the Bruhat decomposition of the matrix A, if V and U are nonsingular upper triangular matrices and w is a matrix of permutation.

The generalized Bruhat decomposition was introduced and developed by D.Grigoriev.

At CASC-2010 there was presented a pivot-free matrix decomposition method in a common case of singular matrices over a field of arbitrary characteristic with the complexity of matrix multiplication.

Now we present the decomposition in domain.

Definition (Bruhat decomposition in domain) Decomposition of matrix A:

$$A = VwU$$

we call the Bruhat decomposition in the commutative domain R if a) V and U are upper triangular matrices over R and b) w is a matrix of permutation, which is multiplied by some diagonal matrix in the field of fractions F over domain R.

Moreover each nonzero element of w has the form $(a^i a^{i-1})^{-1}$, where a^i is some minor of order i of matrix A ($i \leq \operatorname{rank}(A)$).

Example

$$\begin{bmatrix} 1 & -4 & 0 & 1 \\ 4 & 5 & 5 & 3 \\ 1 & 2 & 2 & 2 \\ 3 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -24 & 0 & 12 & 1 \\ 0 & 60 & 15 & 4 \\ 0 & 0 & 6 & 1 \\ 0 & 0 & 0 & 3 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & \frac{-1}{144} & 0 \\ 0 & 0 & 0 & \frac{-1}{1440} \\ 0 & \frac{1}{18} & 0 & 0 \\ \frac{1}{3} & 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 3 & 0 & 0 & 1 \\ 0 & 6 & 6 & 5 \\ 0 & 0 & -24 & -16 \\ 0 & 0 & 0 & 60 \end{bmatrix}$$

We construct the decomposition in the form A = LDU, where a) L and U are lower and upper triangular matrices, b) D is a matrix of permutation, which is multiplied by some diagonal matrix in the field of fractions F and has the same rank as the matrix A.

Then the Bruhat decomposition VwU in the domain R may be easily obtained using the matrices L, D and U.

Definition

$$A = (a_{i,j}) \in R^{n \times n} - \text{matrix of order } n$$

$$\alpha_{i,j}^k - k \times k \text{ minor of matrix } A$$

which disposed in the rows $1, 2, \ldots, k-1, i$ and columns $1, 2, \ldots, k-1, j$, $1 \le i, j, k \le n$.

$$lpha^k=lpha^k_{k,k}, ~~lpha^0=1, ~~\delta_{ij}$$
 – Kronecker delta. $\mathcal{A}^k_s=(lpha^{k+1}_{i,j})$

- matrix with size $(s-k)\times(s-k)$ of minors $i,j=k+1,\ldots,s-1,s, \ \ 0\leq k< s\leq n$,

$$A = \mathcal{A}_n^0 = (\alpha_{i,j}^1)$$

We shall use

Theorem (Sylvester determinant identity) Let k and s be an integers in the interval $0 \le k < s \le n$. Then it is true that

$$\det(\mathcal{A}_s^k) = \alpha^s (\alpha^k)^{s-k-1}.$$
 (1)

Theorem (LDU decomposition of the minors matrix)
Let
$$A = (a_{i,j}) \in \mathbb{R}^{n \times n}$$
, rank $(A) = r$,
 $\alpha^i \neq 0$ for $i = k, k + 1, ..., r$, $r \leq s \leq n$, then
 $\mathcal{A}_s^k = L_s^k D_s^k U_s^k = (a_{i,j}^j) (\delta_{ij} \alpha^k (\alpha^{i-1} \alpha^i)^{-1}) (a_{i,j}^i).$ (2)
 $L_s^k = (a_{i,j}^j)$
is a low triangular $(s - k) \times (r - k)$ matrix, $k < i \leq s, k < j \leq r$.

ngular (s-k) imes (r-k) matrix, $k < i \le s$, $k < j \le r$,

$$U_s^k = (a_{i,j}^i)$$

is upper triangular $(r-k) \times (s-k)$ matrix, $k < i \le r$, $k < j \le s$,

$$D_s^k = (\delta_{ij}\alpha^k(\alpha^{i-1}\alpha^i)^{-1})$$

is a diagonal $(r-k) \times (r-k)$ matrix, $k < i \le r$, $k < j \le r$.

Proof Equation (2) for k + 1 = r:

$$(a_{i,j}^{k+1}) = (a_{i,k+1}^{k+1})(\delta_{k+1,k+1}a^k(a^ka^{k+1})^{-1})(a_{k+1,j}^{k+1})$$
(3)

follows from Sylvester determinant identity:

$$a_{i,j}^{k+1}a^{k+1} - a_{i,k+1}^{k+1}a_{k+1,j}^{k+1} = a_{i,j}^{k+2}a^k = a_{i,j}^{r+1}a^{r-1} = 0, \qquad (4)$$

Let for all h, k < h < r, the statement (2) be correct for matrices $\mathcal{A}^h_s = (a^{h+1}_{i,j})$. Let

$$a_{i,j}^{k+2} = \sum_{t=k+2}^{\min(i,j,r)} a_{i,t}^t \alpha^{k+1} (\alpha^{t-1} \alpha^t)^{-1} a_{t,j}^t.$$

We have to prove the corresponding expression for the elements of the matrix $\mathcal{A}_s^k = (a_{i,j}^{k+1})$. Due to the Sylvester determinant identity (3) we obtain

$$\begin{aligned} a_{i,j}^{k+1} &= a_{i,k+1}^{k+1} (\alpha^{k+1})^{-1} a_{k+1,j}^{k+1} + \alpha^k (\alpha^{k+1})^{-1} a_{i,j}^{k+2} = \\ & a_{i,k+1}^{k+1} \alpha^k (\alpha^k \alpha^{k+1})^{-1} a_{k+1,j}^{k+1} + \\ & \alpha^k (\alpha^{k+1})^{-1} \sum_{t=k+2}^{\min(i,j,r)} a_{i,t}^t \alpha^{k+1} (\alpha^{t-1} \alpha^t)^{-1} a_{t,j}^t = \\ & \sum_{t=k+1}^{\min(i,j,r)} a_{i,t}^t \alpha^k (\alpha^{t-1} \alpha^t)^{-1} a_{t,j}^t. \end{aligned}$$

Consequence (LDU decomposition of matrix A) Let $A = (a_{i,j}) \in \mathbb{R}^{n \times n}$, be the matrix of rank $r, r \leq n, \alpha^i \neq 0$ for i = 1, 2, ..., r, then matrix A is equal to the following product of

three matrices:

$$A = L_n^0 D_n^0 U_n^0 = (a_{i,j}^j) (\delta_{ij} (\alpha^{i-1} \alpha^i)^{-1}) (a_{i,j}^i).$$
(4)

 I_n - the identity matrix

 P_n - the matrix with second unit diagonal.

Consequence (Bruhat decomposition of matrix A) Let matrix $A = (a_{i,j})$ have the rank $r, r \le n$, and $B = P_n A$. Let B = LDU be the LDU-decomposition of matrix B. Then $V = P_n LP_r$ and U are upper triangular matrices of size $n \times r$ and $r \times n$ correspondingly and

$$A = V(P_r D)U \tag{5}$$

is the Bruhat decomposition of matrix A.

Notations

For any matrix A (or A_q^p) we denote by $A_{j_1,j_2}^{i_1,i_2}$ (or $A_{q;j_1,j_2}^{p;i_1,i_2}$) the block which stands at the intersection of rows $i_1 + 1, \ldots, i_2$ and columns $j_1 + 1, \ldots, j_2$ of the matrix. We denote by $A_{i_2}^{i_1}$ the diagonal block $A_{i_1,i_2}^{i_1,i_2}$.

LDU ALGORITHM

$$\begin{split} & \text{Input: } (\mathcal{A}_n^k, \alpha^k), \ 0 \leq k < n. \\ & \text{Output: } \{L_n^k, \{\alpha^{k+1}, \alpha^{k+2}, \dots, \alpha^n\}, U_n^k, M_n^k, W_n^k\}, \\ & \text{where } D_n^k = \alpha^k \text{diag}\{\alpha^k \alpha^{k+1}, \dots, \alpha^{n-1} \alpha^n\}^{-1}, \\ & M_n^k = \alpha^k (L_n^k D_n^k)^{-1}, \ W_n^k = \alpha^k (D_n^k U_n^k)^{-1}. \\ & 1. \ \text{If } k = n-1, \ \mathcal{A}_n^{n-1} = (a^n) \text{ is a matrix of the first order, then} \\ & \quad \{a^n, \{a^n\}, a^n, a^{n-1}, a^{n-1}\}, \ D_n^{n-1} = (\alpha^n)^{-1}. \\ & 2. \ \text{If } k = n-2, \ \mathcal{A}_n^{n-2} = \begin{pmatrix} \alpha^{n-1} & \beta \\ \gamma & \delta \end{pmatrix} \text{ is a matrix of second} \\ & \text{order, then} \\ & \quad \left[\begin{matrix} \alpha^{n-1} & 0 \\ \gamma & \alpha^n \end{matrix} \right] \{\alpha^{n-1}, \alpha^n\} \begin{bmatrix} \alpha^{n-1} & \beta \\ 0 & \alpha^n \end{bmatrix} \begin{bmatrix} \alpha^{n-2} & 0 \\ -\gamma & \alpha^{n-1} \end{bmatrix} \begin{bmatrix} \alpha^{n-2} & -\beta \\ 0 & \alpha^{n-1} \end{bmatrix} \\ & \text{where } \alpha^n = (\alpha^{n-2})^{-1} \begin{vmatrix} \alpha^{n-1} & \beta \\ \gamma & \delta \end{vmatrix}, \\ & D_n^{n-2} = \alpha^{n-2} \text{diag}\{\alpha^{n-2} \alpha^{n-1}, \alpha^{n-1} \alpha^n\}^{-1}. \end{split}$$

3. If the order of the matrix \mathcal{A}_n^k more than two ($0 \le k < n-2$), then we choose s (k < s < n) and divide the matrix into blocks

$$\mathcal{A}_{n}^{k} = \begin{pmatrix} \mathcal{A}_{s}^{k} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{pmatrix}.$$
 (6)

3.1. Recursive step

$$\{L_s^k, \{\alpha^{k+1}, \alpha^{k+2}, \dots, \alpha^s\}, U_s^k, M_s^k, W_s^k\} = \mathbf{LDU}(\mathcal{A}_s^k, \alpha^k)$$

3.2. We compute

$$\widetilde{U} = (\alpha^k)^{-1} M_s^k \mathbf{B}, \quad \widetilde{L} = (\alpha^k)^{-1} \mathbf{C} W_s^k, \tag{7}$$

$$\mathcal{A}_{n}^{s} = (\alpha^{k})^{-1} \alpha^{s} (\mathbf{D} - \widetilde{L} D_{s}^{k} \widetilde{U}).$$
(8)

3.3. Recursive step

$$\{L_n^s, \{\alpha^{s+1}, \alpha^{s+2}, \dots, \alpha^n\}, U_n^s, M_n^s, W_n^s\} = \mathbf{LDU}(\mathcal{A}_n^s, \alpha^s)$$

3.4 Result:

$$\{L_n^k, \{\alpha^{k+1}, \alpha^{k+2}, \dots, \alpha^n\}, U_n^k, M_n^k, W_n^k\},\$$

where

$$L_n^k = \begin{pmatrix} L_s^k & 0\\ \widetilde{L} & L_n^s \end{pmatrix}, \quad U_n^k = \begin{pmatrix} U_s^k & \widetilde{U}\\ 0 & U_n^s \end{pmatrix}, \quad (9)$$
$$M_n^k = \begin{pmatrix} M_s^k & 0\\ -M_n^s \widetilde{L} D_s^k M_s^k / \alpha^k & M_n^s \end{pmatrix}, \quad (10)$$
$$W_n^k = \begin{pmatrix} W_s^k & -W_s^k D_s^k \widetilde{U} W_n^s / \alpha^k\\ 0 & W_n^s \end{pmatrix}. \quad (11)$$

Proof of the correctness of the LDU algorithm

Definition ($\delta_{i,j}^k$ minors and \mathcal{G}^k matrices)

Let $A \in \mathbb{R}^{n \times n}$ be a matrix. The determinant of the matrix, obtained from the upper left block $A_{0,k}^{0,k}$ of matrix A by the replacement in matrix A of the column i by the column j is denoted by $\delta_{i,j}^k$. The matrix of such minors is denoted by

$$\mathcal{G}_s^k = (\delta_{i,j}^{k+1}) \tag{12}$$

Theorem (Base minor's identity)

Let $A \in \mathbb{R}^{n \times n}$ be a matrix and i, j, s, k, be integers in the intervals: $0 \le k < s \le n, \ 0 < i, j \le n$. Then the following identity is true

$$\alpha^{s} \alpha_{ij}^{k+1} - \alpha^{k} a_{ij}^{s+1} = \sum_{p=k+1}^{s} \alpha_{ip}^{k+1} \delta_{pj}^{s}.$$
 (13)

The minors a_{ij}^{s+1} in the left side of this identity equal zero if i < s+1. Therefore this theorem gives the following

Consequence

Let $A \in \mathbb{R}^{n \times n}$ be a matrix and s, k, be integers in the intervals: $0 \le k < s \le n$. Then the following identities are true

$$\alpha^{s} U_{n;s+1,n}^{k;k+1,s} = U_{s}^{k} \mathcal{G}_{n;s+1,n}^{k;k+1,s}.$$
(14)

$$\alpha^s \mathcal{A}_{n;s+1,n}^{k;k+1,s} = \mathcal{A}_s^k \mathcal{G}_{n;s+1,n}^{k;k+1,s}.$$
(15)

The block $\mathcal{A}_{n;s+1,n}^{k;k+1,s}$ of the matrix \mathcal{A}_{n}^{k} was denoted by **B**. Due to Sylvester identity we can write the equation for the adjoint matrix

$$(A_s^k)^* = (A_s^k)^{-1} (\alpha^s) (\alpha^k)^{s-k-1}$$
(16)

Let us multiply both sides of equation (15) by adjoint matrix $(A_s^k)^*$ and use the equation (16). Then we get

Consequence

$$(A_s^k)^* \mathbf{B} = (A_s^k)^* \mathcal{A}_{n;s+1,n}^{k;k+1,s} = (\alpha^k)^{s-k-1} \mathcal{G}_{n;s+1,n}^{k;k+1,s}.$$
 (17)

As well as
$$L_{s}^{k}D_{s}^{k}U_{s}^{k} = A_{s}^{k}$$
,
 $M_{s}^{k} = \alpha^{k}(L_{s}^{k}D_{s}^{k})^{-1} = \alpha^{k}U_{s}^{k}(A_{s}^{k})^{-1}$ and $W_{s}^{k} = \alpha^{k}(D_{s}^{k}U_{s}^{k})^{-1}$.
(18)

Therefor

$$\begin{split} \widetilde{U} &= (\alpha^k)^{-1} M_s^k \mathbf{B} = (\alpha^k)^{-1} U_s^k (A_s^k)^{-1} \mathbf{B} = (\alpha^s)^{-1} (\alpha^k)^{-s+k} U_s^k (A_s^k)^* \mathbf{B}. \end{split}$$
(19) Equations (19), (17), (14) give the

Consequence

$$\widetilde{U} = U_{n;s+1,n}^{k;k+1,s} \tag{20}$$

In the same way we can prove

Consequence

$$\widetilde{L} = L_{n;k+1,s}^{k;s+1,n}.$$
(21)

Now we have to prove the identity (8). Due to the equations (14)-(19) we obtain

$$\widetilde{L}D_s^k \widetilde{U} = (\alpha^k)^{-1} \mathbf{C} W_s^k D_s^k (\alpha^k)^{-1} M_s^k \mathbf{B} =$$
$$(\alpha^k)^{-2} \mathbf{C} (A_s^k)^{-1} \mathbf{B} = (\alpha^k)^{-s+k-1} (\alpha^s)^{-1} \mathbf{C} (A_s^k)^* \mathbf{B}$$
(22)

The identity

$$\mathcal{A}_n^s = (\alpha^k)^{-1} (\alpha^s \mathbf{D} - (\alpha^k)^{-s+k+1} \mathbf{C} (A_s^k)^* \mathbf{B})$$
(23)

was proved in [4] and [5]. Due to (20) and (21) we obtain the identity (8).

To prove the formula (10) and (11) it is sufficient to verify the identities $M_n^k = \alpha^k (L_n^k D_n^k)^{-1}$ and $W_n^k = \alpha^k (D_n^k U_n^k)^{-1}$ using (9),(10), (11) and definition $D_n^k = \alpha^k \operatorname{diag} \{ \alpha^k \alpha^{k+1}, \dots, \alpha^{n-1} \alpha^n \}^{-1}.$

Theorem

The algorithm has the same complexity as matrix multiplication.

Proof.

Number of matrix multiplications is 7.

Number of recursive calls is 2.

Decomposition of the 2×2 matrix takes 7 multiplicative operations. So the recurrent equality for complexity:

 $t(n)=2t(n/2)+7M(n/2), \ t(2)=7.$

Let $M(n)=\gamma n^\beta+o(n^\beta)$ be the complexity of $n\times n$ matrix multiplication. After summation from $n=2^k$ to 2^1 we obtain

$$7\gamma(2^{0}2^{\beta\cdot(k-1)}+\ldots+2^{k-2}2^{\beta\cdot 1})+2^{k-2}7=7\gamma\frac{n^{\beta}-n2^{\beta-1}}{2^{\beta}-2}+\frac{7}{4}n.$$

$$\sim \frac{7\gamma n^\beta}{2^\beta-2}$$

The exact triangular decomposition

Definition

A decomposition of the matrix A of rank r over a domain R

$$A = PLDUQ \tag{24}$$

is called exact triangular decomposition if

P and Q are permutation matrces, L and PLP^T are nonsingular lower triangular matrices over R, U and Q^TUQ are nonsingular upper triangular matrices over R, $D = {\rm diag}(d_1^{-1}, d_2^{-1}, ..., d_r^{-1}, 0, ..., 0)$ is a diagonal matrix of rank r, $d_i \in R \backslash \{0\}, \ i=1,..r.$

Designation: $\mathbf{ETD}(A) = (P, L, D, U, Q).$

Theorem (Main theorem)

Any matrix over a commutative domain has an exact triangular decomposition.

Comment

1) If D matrix is combined with L or U, we get the expression

A = PLUQ

– the LU-decomposition with permutations of rows and columns. 2) If the factors are grouped in the following way:

$$A = (PLP^T)(PDQ)(Q^TUQ),$$

then we obtain \mathbf{LDU} -decomposition.

3) If S is a permutation matrix in which the unit elements are placed on the secondary diagonal, then

$$(SA) = (S\mathbf{L}S)(S^T\mathbf{D})\mathbf{U} = Vw\mathbf{U}$$

– the Bruhat decomposition of the matrix (SA).

Proof

If matrix A is a zero matrix: $\mathbf{ETD}(A) = (I, I, 0, I, I)$. If A is the first order nonzero matrix: $\mathbf{ETD}(a) = (I, a, a^{-1}, a, I)$. Let us consider a non-zero matrix of order two. We denote

$$\begin{split} \mathcal{A} &= \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}, \Delta = \begin{vmatrix} \alpha & \beta \\ \gamma & \delta \end{vmatrix}, \varepsilon = \begin{cases} \Delta, \ \Delta \neq 0 \\ 1, \ \Delta = 0. \end{cases} \Delta^{-1} = \begin{cases} \frac{1}{\Delta}, \ \Delta \neq 0 \\ 0, \ \Delta = 0. \end{cases} \\ \alpha \neq 0 : \mathcal{A} &= \begin{pmatrix} \alpha & 0 \\ \gamma & \varepsilon \end{pmatrix} \begin{pmatrix} \alpha^{-1} & 0 \\ 0 & \Delta^{-1}\alpha^{-1} \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ 0 & \varepsilon \end{pmatrix}. \\ \alpha = 0, \beta \neq 0 : \\ \mathcal{A} &= \begin{pmatrix} \beta & 0 \\ \delta & \varepsilon \end{pmatrix} \begin{pmatrix} \beta^{-1} & 0 \\ 0 & -\Delta^{-1}\beta^{-1} \end{pmatrix} \begin{pmatrix} \beta & 0 \\ 0 & \varepsilon \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}. \\ \alpha = 0, \ \gamma \neq 0 : \\ \mathcal{A} &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \gamma & 0 \\ 0 & \varepsilon \end{pmatrix} \begin{pmatrix} \gamma^{-1} & 0 \\ 0 & -\Delta^{-1}\gamma^{-1} \end{pmatrix} \begin{pmatrix} \gamma & \delta \\ 0 & \varepsilon \end{pmatrix}. \\ \alpha = \beta = \gamma = 0, \delta \neq 0 : \\ \mathcal{A} &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \delta & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \delta^{-1} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \delta^{-1} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \delta & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}. \end{split}$$

There are only two different cases for matrices of size 1×2 : If $\alpha \neq 0$, then $(\alpha \ \beta) = (\alpha) (\alpha^{-1} \ 0) \begin{pmatrix} \alpha \ \beta \\ 0 \ 1 \end{pmatrix}$. If $\alpha = 0, \ \beta \neq 0$, then $(0 \ \beta) =$ $(\beta) (\beta^{-1} \ 0) \begin{pmatrix} \beta \ 0 \\ 0 \ 1 \end{pmatrix} \begin{pmatrix} 0 \ 1 \\ 1 \ 0 \end{pmatrix}$. Two cases for matrices of size 2×1 can be easily obtained by

Two cases for matrices of size 2×1 can be easily obtained by a simple transposition.

These examples allow us to formulate

Sentence

For all matrices A of size $n \times m$, n, m < 3 there exists an exact triangular decomposition.

Property (Property of the factors)

For a matrix $A \in \mathbb{R}^{n \times m}$ of rank r, r < n, r < m over a commutative domain R there exists the exact triangular decomposition (24) in which (α) the matrices L and U are of the form

$$L = \begin{pmatrix} L_1 & 0 \\ L_2 & I_{n-r} \end{pmatrix} U = \begin{pmatrix} U_1 & U_2 \\ 0 & I_{m-r} \end{pmatrix}, \quad (25)$$

(β) the matrices PLP^T and Q^TUQ remain triangular after replacing in the matrices L and Q of unit blocks I_{n-r} and I_{m-r} by arbitrary triangular blocks. Let matrix \mathcal{A} be of size $N \times M$. Assume that all matrices of size less than $n \times m$ have the exact triangular decomposition. We split the matrix \mathcal{A} into blocks:

$$\mathcal{A} = \left(\begin{array}{cc} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{array} \right),$$

where $\mathbf{A} \in \mathbb{R}^{n \times n}$, n < N, n < M.

(1). Let the block A have the full rank. There exists exact triangular decomposition of this block: $\mathbf{A} = P_1 L_1 D_1 U_1 Q_1$ then

$$\mathcal{A} = \begin{bmatrix} P_1 & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} L_1 & 0 \\ \mathbf{C}Q_1^T U_1^{-1} D_1^{-1} & I \end{bmatrix} \begin{bmatrix} D_1 & 0 \\ 0 & \mathbf{D}' \end{bmatrix} \times \begin{bmatrix} U_1 & D_1^{-1} L_1^{-1} P_1^T \mathbf{B} \\ 0 & I \end{bmatrix} \begin{bmatrix} Q_1 & 0 \\ 0 & I \end{bmatrix}.$$

The matrix \mathbf{D}' also has the exact triangular decomposition $\mathbf{D}'=P_2L_2D_2U_2Q_2\text{, then}$

$$\mathcal{A} = \begin{bmatrix} P_1 & 0 \\ 0 & P_2 \end{bmatrix} \begin{bmatrix} L_1 & 0 \\ P_2^T \mathbf{C} Q_1^T U_1^{-1} D_1^{-1} & L_2 \end{bmatrix} \begin{bmatrix} D_1 & 0 \\ 0 & D_2 \end{bmatrix} \times \begin{bmatrix} U_1 & D_1^{-1} L_1^{-1} P_1^T \mathbf{B} Q_2^T \\ 0 & U_2 \end{bmatrix} \begin{bmatrix} Q_1 & 0 \\ 0 & Q_2 \end{bmatrix}.$$

It is easy to see that this decomposition is exact triangular.

(2) Let the block A has rank r, r < n. There exists exact triangular decomposition of this block:

$$\mathbf{A} = P_1 L_1 D_1 U_1 Q_1.$$

Here $U_1 = \begin{pmatrix} U_0 & V_0 \\ 0 & I \end{pmatrix}$, $L_1 = \begin{pmatrix} L_0 & 0 \\ M_0 & I \end{pmatrix}$ and the diagonal matrix $D_1 = \begin{pmatrix} d_1 & 0 \\ 0 & 0 \end{pmatrix}$ has a block d_1 of rank r .
Let us denote $(\mathbf{C}_0, \mathbf{C}_1) = \mathbf{C} Q_1^T \begin{pmatrix} U_0^{-1} & -V_0 \\ 0 & I \end{pmatrix}$ and $\begin{pmatrix} \mathbf{B}_0 \\ \mathbf{B}_1 \end{pmatrix} = \begin{pmatrix} L_0^{-1} & 0 \\ -M_0 & I \end{pmatrix} P_1^T \mathbf{B}.$

Then for the matrix \mathcal{A} we obtain the decomposition:

$$\mathcal{A} = \begin{pmatrix} P_{1} & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} L_{0} & 0 & 0 \\ M_{0} & I & 0 \\ \mathbf{C}_{0}d_{1}^{-1} & 0 & I \end{pmatrix} \begin{pmatrix} d_{1} & 0 & 0 \\ 0 & 0 & \mathbf{B}_{1} \\ 0 & \mathbf{C}_{1} & \mathbf{D} \end{pmatrix} \times \begin{pmatrix} U_{0} & V_{0} & d_{1}^{-1}\mathbf{B}_{0} \\ 0 & I & 0 \\ 0 & 0 & I \end{pmatrix} \begin{pmatrix} Q_{1} & 0 \\ 0 & I \end{pmatrix}.$$
(26)

(2.1) Let $B_1 = 0$ and $C_1 = 0$ then $\begin{pmatrix} 0 & \mathbf{B}_1 \\ \mathbf{C}_1 & \mathbf{D} \end{pmatrix} = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix} \begin{pmatrix} \mathbf{D} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}.$ $\mathbf{D} = P_2 L_2 D_2 U_2 Q_2$. We denote $\mathbf{P}_{3} = \begin{pmatrix} P_{1} & 0 \\ 0 & P_{2} \end{pmatrix} \begin{pmatrix} I & 0 & 0 \\ 0 & 0 & I \\ 0 & I & 0 \end{pmatrix}, \ \mathbf{Q}_{3} = \begin{pmatrix} I & 0 & 0 \\ 0 & 0 & I \\ 0 & I & 0 \end{pmatrix} \begin{pmatrix} Q_{1} & 0 \\ 0 & Q_{2} \end{pmatrix}.$ Then $\mathcal{A} = \mathbf{P}_3 \begin{pmatrix} L_0 & 0 & 0 \\ P_2^T \mathbf{C}_0 d_1^{-1} & L_2 & 0 \\ M_1 & 0 & L \end{pmatrix} \times$ $\begin{pmatrix} d_1 & 0 & 0 \\ 0 & D_2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} U_0 & d_1^{-1} \mathbf{B}_0 Q_2^T & V_0 \\ 0 & U_2 & 0 \\ 0 & 0 & I \end{pmatrix} \mathbf{Q}_3.$

(2.2) Suppose that at least one of the two blocks of B_1 or C_1 is not zero. Let the exact triangular decomposition exist for these blocks:

$$\mathbf{C}_1 = P_2 L_2 D_2 U_2 Q_2, \ \mathbf{B}_1 = P_3 L_3 D_3 U_3 Q_3.$$

We denote

$$\mathbf{P}_{1} = \begin{pmatrix} P_{1} & 0\\ 0 & I \end{pmatrix}, \mathbf{P}_{2} = \begin{pmatrix} I & 0 & 0\\ 0 & P_{3} & 0\\ 0 & 0 & P_{2} \end{pmatrix}, \ \mathbf{Q}_{2} = \begin{pmatrix} I & 0 & 0\\ 0 & Q_{2} & 0\\ 0 & 0 & Q_{3} \end{pmatrix},$$
$$\mathbf{Q}_{1} = \begin{pmatrix} Q_{1} & 0\\ 0 & I \end{pmatrix},$$
$$\mathbf{P}_{3} = \mathbf{P}_{1}\mathbf{P}_{2}, \ \mathbf{Q}_{3} = \mathbf{Q}_{2}\mathbf{Q}_{1}, \ \mathbf{D}' = L_{2}^{-1}P_{2}^{T}\mathbf{D}Q_{3}^{T}U_{3}^{-1}.$$

Then, basing on the expansion (26) we obtain:

$$\mathcal{A} = \mathbf{P}_{3} \begin{pmatrix} L_{0} & 0 & 0 \\ P_{3}^{T} M_{0} & L_{3} & 0 \\ P_{2}^{T} \mathbf{C}_{0} d_{1}^{-1} & 0 & L_{2} \end{pmatrix} \begin{pmatrix} d_{1} & 0 & 0 \\ 0 & 0 & D_{3} \\ 0 & D_{2} & \mathbf{D}' \end{pmatrix} \times \begin{pmatrix} U_{0} & V_{0} Q_{2}^{T} & d_{1}^{-1} \mathbf{B}_{0} Q_{3}^{T} \\ 0 & U_{2} & 0 \\ 0 & 0 & U_{3} \end{pmatrix} \mathbf{Q}_{3}.$$
(27)

We denote d_2 (d_3) nondegenerate blocks of the matrices D_2 (D_3)

$$(V_1, V_4) = V_0 Q_2^T, (V_5, V_6) = d_1^{-1} \mathbf{B}_0 Q_3^T, \begin{pmatrix} M_1 \\ M_4 \end{pmatrix} = P_3^T M_0,$$

$$\begin{pmatrix} M_5 \\ M_6 \end{pmatrix} = P_2^T \mathbf{C}_0 d_1^{-1}$$
$$L_2 = \begin{pmatrix} L'_2 & 0 \\ M_2 & I \end{pmatrix}, L_3 = \begin{pmatrix} L'_3 & 0 \\ M_3 & I \end{pmatrix}, U_2 = \begin{pmatrix} U'_2 & V_2 \\ 0 & I \end{pmatrix},$$
$$U_3 = \begin{pmatrix} U'_3 & V_3 \\ 0 & I \end{pmatrix}, \mathbf{D}' = \begin{pmatrix} \mathbf{D}'_1 & \mathbf{D}'_3 \\ \mathbf{D}'_2 & \mathbf{D}'_4 \end{pmatrix}.$$
$$M_7 = \mathbf{D}'_2 d_3^{-1}, V_7 = d_2^{-1} \mathbf{D}'_1 U'_3, V_8 = d_2^{-1} (\mathbf{D}'_1 V_3 + \mathbf{D}'_3).$$

Then (27) can be written as

$$\mathcal{A} = \mathbf{P}_{3} \begin{pmatrix} L_{0} & 0 & 0 & 0 & 0 \\ M_{1} & L_{3}' & 0 & 0 & 0 \\ M_{4} & M_{3} & I & 0 & 0 \\ M_{5} & 0 & 0 & L_{2}' & 0 \\ M_{6} & 0 & 0 & M_{2} & I \end{pmatrix} \begin{pmatrix} d_{1} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & d_{3} & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & d_{2} & 0 & \mathbf{D}_{1}' & \mathbf{D}_{3}' \\ 0 & 0 & 0 & \mathbf{D}_{2}' & \mathbf{D}_{4}' \end{pmatrix}$$
$$\begin{pmatrix} U_{0} & V_{1} & V_{4} & V_{5} & V_{6} \\ 0 & U_{2}' & V_{2} & 0 & 0 \\ 0 & 0 & I & 0 & 0 \\ 0 & 0 & 0 & U_{3}' & V_{3} \\ 0 & 0 & 0 & 0 & I \end{pmatrix} \mathbf{Q}_{3} =$$

$$= \mathbf{P}_{3} \begin{pmatrix} L_{0} & 0 & 0 & 0 & 0 \\ M_{1} & L_{3}' & 0 & 0 & 0 \\ M_{4} & M_{3} & I & 0 & 0 \\ M_{5} & 0 & 0 & L_{2}' & 0 \\ M_{6} & M_{7} & 0 & M_{2} & I \end{pmatrix} \begin{pmatrix} d_{1} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & d_{3} & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & d_{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \mathbf{D}_{4}' \end{pmatrix} \\ \begin{pmatrix} U_{0} & V_{1} & V_{4} & V_{5} & V_{6} \\ 0 & U_{2}' & V_{2} & V_{7} & V_{8} \\ 0 & 0 & I & 0 & 0 \\ 0 & 0 & 0 & U_{3}' & V_{3} \\ 0 & 0 & 0 & 0 & I \end{pmatrix} \mathbf{Q}_{3}.$$
(28)

Let

$$\begin{aligned} \mathbf{D}_{4}' &= P_{4}L_{4}D_{4}U_{4}Q_{4}, \\ \mathbf{P}_{4} &= \text{diag}(I, I, I, I, P_{4}), \\ \mathbf{Q}_{4} &= \text{diag}(I, I, I, I, Q_{4}), \\ \mathbf{P}_{5} &= \mathbf{P}_{3}\mathbf{P}_{4}, \\ \mathbf{Q}_{5} &= \mathbf{Q}_{4}\mathbf{Q}_{3}, \end{aligned}$$

$$(M'_6, M'_7, M'_2) = P_4^T(M_6, M_7, M_2)$$

 $(V'_6, V'_8, V'_3) = (V_6, V_8, V_3)Q_4^T.$

After substituting (29) into (28) we obtain the decomposition of the matrix ${\cal A}$ as

$$\mathcal{A} = \mathbf{P}_{5} \begin{pmatrix} L_{0} & 0 & 0 & 0 & 0 \\ M_{1} & L'_{3} & 0 & 0 & 0 \\ M_{4} & M_{3} & I & 0 & 0 \\ M_{5} & 0 & 0 & L'_{2} & 0 \\ M'_{6} & M'_{7} & 0 & M'_{2} & L_{4} \end{pmatrix} \begin{pmatrix} d_{1} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & d_{3} & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & d_{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & D_{4} \end{pmatrix} \\ \begin{pmatrix} U_{0} & V_{1} & V_{4} & V_{5} & V'_{6} \\ 0 & U'_{2} & V_{2} & V_{7} & V'_{8} \\ 0 & 0 & I & 0 & 0 \\ 0 & 0 & 0 & U'_{3} & V'_{3} \\ 0 & 0 & 0 & 0 & U'_{4} \end{pmatrix} \mathbf{Q}_{5}.$$
(30)

We rearrange the blocks d_2 , d_3 and D_4 to obtain the diagonal matrix $\mathbf{d} = \text{diag}(d_1, d_3, d_2, D_4, 0)$. To do it we use permutation matrices P_6 and Q_6 :

As a result, we obtain the decomposition:

$$\mathcal{A} = \mathbf{P}_6 \mathbf{L} \mathbf{d} \mathbf{U} \mathbf{Q}_6, \tag{31}$$

with permutation matrices $\mathbf{P}_6 = \mathbf{P}_5 P_6^T$ and $\mathbf{Q}_6 = Q_6^T \mathbf{Q}_5$, diagonal matrix \mathbf{d} and triangular matrices

$$\mathbf{L} = P_6 \begin{pmatrix} L_0 & 0 & 0 & 0 & 0 \\ M_1 & L'_3 & 0 & 0 & 0 \\ M_4 & M_3 & I & 0 & 0 \\ M_5 & 0 & 0 & L'_2 & 0 \\ M'_6 & M'_7 & 0 & M'_2 & L_4 \end{pmatrix} P_6^T = \begin{pmatrix} L_0 & 0 & 0 & 0 & 0 \\ M_5 & L'_2 & 0 & 0 & 0 \\ M_1 & 0 & L'_3 & 0 & 0 \\ M'_6 & M'_7 & M'_2 & L_4 & 0 \\ M_4 & 0 & M_3 & 0 & I \end{pmatrix}$$
$$\mathbf{U} = Q_6^T \begin{pmatrix} U_0 & V_1 & V_4 & V_5 & V'_6 \\ 0 & U'_2 & V_2 & V_7 & V'_8 \\ 0 & 0 & I & 0 & 0 \\ 0 & 0 & 0 & U'_3 & V'_3 \\ 0 & 0 & 0 & 0 & U_4 \end{pmatrix} Q_6 = \begin{pmatrix} U_0 & V_1 & V_5 & V'_6 & V_4 \\ 0 & U'_2 & V_7 & V'_8 & V_2 \\ 0 & 0 & U'_3 & V'_3 & 0 \\ 0 & 0 & 0 & 0 & I \end{pmatrix}$$

We must verify that the matrices $\mathcal{L} = \mathbf{P}_6 \mathbf{L} \mathbf{P}_6^T$ and $\mathcal{Q} = \mathbf{Q}_6^T \mathbf{U} \mathbf{Q}_6$ are triangular, and the matrices $\mathbf{P}, \mathbf{L}, \mathbf{U}, \mathbf{Q}$ satisfy the properties (α) and (β) . It is easy to see that all matrices in sequence

$$\mathcal{L}_1 = P_6 \mathbf{L} P_6^T, \ \mathcal{L}_2 = \mathbf{P}_4 \mathcal{L}_1 \mathbf{P}_4^T, \ \mathcal{L}_3 = \mathbf{P}_2 \mathcal{L}_2 \mathbf{P}_2^T, \ \mathcal{L}_4 = \mathbf{P}_1 \mathcal{L}_3 \mathbf{P}_1^T$$

are triangular and $\mathcal{L}_4 = \mathcal{L}$. Similarly, all of the matrices in the sequence

$$\mathcal{U}_1 = Q_6^T \mathbf{L} Q_6, \ \mathcal{U}_2 = \mathbf{Q}_4^T \mathcal{U}_1 \mathbf{Q}_4, \ \mathcal{U}_3 = \mathbf{Q}_2^T \mathcal{U}_2 \mathbf{Q}_2, \ \mathcal{U}_4 = \mathbf{Q}_1^T \mathcal{U}_3 \mathbf{Q}_1$$

are triangular and $\mathcal{U}_4 = \mathcal{U}$. For the matrices **L** and **U** Properties (α) and (β) are satisfied.

Conclusion

Algorithms for finding the LDU and Bruhat decomposition in commutative domain are described. These algorithms have the same complexity as matrix multiplication.

REFERENCES

- Grigoriev D. Analogy of Bruhat decomposition for the closure of a cone of Chevalley group of a classical serie. Soviet Math. Dokl., vol.23, N 2, 393-397 (1981).
- Grigoriev D. Additive complexity in directed computations. Theoretical Computer Science, vol.19, 39-67 (1982).
- Malaschonok G.I.: Fast Generalized Bruhat Decomposition. In: Ganzha, V.M., Mayr, E.W., Vorozhtsov, E.V. (eds.) 12th International Workshop on Computer Algebra in Scientific Computing (CASC 2010), 194-202. LNCS 6244. Springer, Berlin Heidelberg, (2010).
- Malaschonok G.I.: Matrix computational methods in commutative rings. Monograph. Tambov, Tambov University Publishing House (2002).
- Malaschonok G.I.: Effective Matrix Methods in Commutative Domains. Formal Power Series and Algebraic Combinatorics. pp. 506-517. Springer. Berlin (2000).

THE END