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Abstract

Deterministic recursive algorithm for the computation of
generalized Bruhat decomposition in commutative domain

are presented.

This method has
the same complexity as matrix multiplication.



A = V wU

is called the Bruhat decomposition of the matrix A, if V and U are
nonsingular upper triangular matrices and w is a matrix of
permutation.

The generalized Bruhat decomposition was introduced and
developed by D.Grigoriev.

At CASC-2010 there was presented a pivot-free matrix
decomposition method in a common case of singular matrices over
a field of arbitrary characteristic with the complexity of matrix
multiplication.

Now we present the decomposition in domain.



Definition (Bruhat decomposition in domain)

Decomposition of matrix A:

A = V wU

we call the Bruhat decomposition in the commutative domain R if
a) V and U are upper triangular matrices over R and
b) w is a matrix of permutation, which is multiplied by some
diagonal matrix in the field of fractions F over domain R.

Moreover each nonzero element of w has the form (aiai−1)−1,
where ai is some minor of order i of matrix A (i ≤ rank(A)).



Example


1 −4 0 1
4 5 5 3
1 2 2 2
3 0 0 1

 =


−24 0 12 1

0 60 15 4
0 0 6 1
0 0 0 3

×


0 0 −1
144 0

0 0 0 −1
1440

0 1
18 0 0

1
3 0 0 0

×


3 0 0 1
0 6 6 5
0 0 −24 −16
0 0 0 60





We construct the decomposition in the form A = LDU , where
a) L and U are lower and upper triangular matrices,
b) D is a matrix of permutation, which is multiplied by some
diagonal matrix in the field of fractions F and has the same rank
as the matrix A.

Then the Bruhat decomposition V wU in the domain R may be
easily obtained using the matrices L, D and U .



Definition

A = (ai,j) ∈ Rn×n −matrix of order n

αki,j − k × k minor of matrix A

which disposed in the rows 1, 2, . . . , k − 1, i
and columns 1, 2, . . . , k − 1, j, 1 ≤ i, j, k ≤ n.

αk = αkk,k, α0 = 1, δij − Kronecker delta.

Aks = (αk+1
i,j )

- matrix with size (s− k)× (s− k) of minors
i, j = k + 1, . . . , s− 1, s, 0 ≤ k < s ≤ n,

A = A0
n = (α1

i,j)



We shall use

Theorem (Sylvester determinant identity)

Let k and s be an integers in the interval 0 ≤ k < s ≤ n. Then it
is true that

det(Aks) = αs(αk)s−k−1. (1)



Theorem (LDU decomposition of the minors matrix)

Let A = (ai,j) ∈ Rn×n, rank(A) = r,
αi 6= 0 for i = k, k + 1, . . . , r, r ≤ s ≤ n, then

Aks = LksD
k
sU

k
s = (aji,j)(δijα

k(αi−1αi)−1)(aii,j). (2)

Lks = (aji,j)

is a low triangular (s− k)× (r − k) matrix, k < i ≤ s, k < j ≤ r,

Uks = (aii,j)

is upper triangular (r − k)× (s− k) matrix, k < i ≤ r, k < j ≤ s,

Dk
s = (δijα

k(αi−1αi)−1)

is a diagonal (r − k)× (r − k) matrix, k < i ≤ r, k < j ≤ r.



Proof
Equation (2) for k + 1 = r:

(ak+1
i,j ) = (ak+1

i,k+1)(δk+1,k+1a
k(akak+1)−1)(ak+1

k+1,j) (3)

follows from Sylvester determinant identity:

ak+1
i,j ak+1 − ak+1

i,k+1a
k+1
k+1,j = ak+2

i,j ak = ar+1
i,j a

r−1 = 0, (4)

Let for all h, k < h < r, the statement (2) be correct for matrices
Ahs = (ah+1

i,j ). Let

ak+2
i,j =

min(i,j,r)∑
t=k+2

ati,tα
k+1(αt−1αt)−1att,j .



We have to prove the corresponding expression for the elements of
the matrix Aks = (ak+1

i,j ). Due to the Sylvester determinant identity
(3) we obtain

ak+1
i,j = ak+1

i,k+1(α
k+1)−1ak+1

k+1,j + αk(αk+1)−1ak+2
i,j =

ak+1
i,k+1α

k(αkαk+1)−1ak+1
k+1,j+

αk(αk+1)−1
min(i,j,r)∑
t=k+2

ati,tα
k+1(αt−1αt)−1att,j =

min(i,j,r)∑
t=k+1

ati,tα
k(αt−1αt)−1att,j .



Consequence (LDU decomposition of matrix A)

Let A = (ai,j) ∈ Rn×n, be the matrix of rank r, r ≤ n, αi 6= 0 for
i = 1, 2, . . . , r, then matrix A is equal to the following product of
three matrices:

A = L0
nD

0
nU

0
n = (aji,j)(δij(α

i−1αi)−1)(aii,j). (4)



In - the identity matrix
Pn - the matrix with second unit diagonal.

Consequence (Bruhat decomposition of matrix A)

Let matrix A = (ai,j) have the rank r, r ≤ n, and B = PnA. Let
B = LDU be the LDU-decomposition of matrix B. Then
V = PnLPr and U are upper triangular matrices of size n× r and
r × n correspondingly and

A = V (PrD)U (5)

is the Bruhat decomposition of matrix A.



Notations

For any matrix A (or Apq) we denote by Ai1,i2j1,j2
(or Ap;i1,i2q;j1,j2

) the
block which stands at the intersection of rows i1 + 1, . . . , i2 and
columns j1 + 1, . . . , j2 of the matrix. We denote by Ai1i2 the

diagonal block Ai1,i2i1,i2
.



LDU ALGORITHM

Input: (Akn, αk), 0 ≤ k < n.
Output: {Lkn, {αk+1, αk+2, . . . , αn}, Ukn ,Mk

n ,W
k
n},

where Dk
n = αkdiag{αkαk+1, . . . , αn−1αn}−1,

Mk
n = αk(LknD

k
n)−1, W k

n = αk(Dk
nU

k
n)−1.

1. If k = n− 1, An−1n = (an) is a matrix of the first order, then

{an, {an}, an, an−1, an−1}, Dn−1
n = (αn)−1.

2. If k = n− 2, An−2n =

(
αn−1 β
γ δ

)
is a matrix of second

order, then[
αn−1 0
γ αn

]
{αn−1, αn}

[
αn−1 β

0 αn

] [
αn−2 0
−γ αn−1

] [
αn−2 −β

0 αn−1

]

where αn = (αn−2)
−1
∣∣∣∣ αn−1 β

γ δ

∣∣∣∣,
Dn−2
n = αn−2diag{αn−2αn−1, αn−1αn}−1.



3. If the order of the matrix Akn more than two (0 ≤ k < n− 2),
then we choose s (k < s < n) and divide the matrix into blocks

Akn =

(
Aks B
C D

)
. (6)

3.1. Recursive step

{Lks , {αk+1, αk+2, . . . , αs}, Uks ,Mk
s , W

k
s } = LDU(Aks , αk)

3.2. We compute

Ũ = (αk)−1Mk
sB, L̃ = (αk)−1CW k

s , (7)

Asn = (αk)−1αs(D− L̃Dk
s Ũ). (8)

3.3. Recursive step

{Lsn, {αs+1, αs+2, . . . , αn}, U sn,M s
n, W

s
n} = LDU(Asn, αs)



3.4 Result:

{Lkn, {αk+1, αk+2, . . . , αn}, Ukn ,Mk
n ,W

k
n},

where

Lkn =

(
Lks 0

L̃ Lsn

)
, Ukn =

(
Uks Ũ
0 U sn

)
, (9)

Mk
n =

(
Mk
s 0

−M s
nL̃D

k
sM

k
s /α

k M s
n

)
, (10)

W k
n =

(
W k
s −W k

s D
k
s ŨW

s
n/α

k

0 W s
n

)
. (11)



Proof of the correctness of the LDU algorithm

Definition (δki,j minors and Gk matrices)

Let A ∈ Rn×n be a matrix. The determinant of the matrix,
obtained from the upper left block A0,k

0,k of matrix A by the
replacement in matrix A of the column i by the column j is
denoted by δki,j . The matrix of such minors is denoted by

Gks = (δk+1
i,j ) (12)

Theorem (Base minor’s identity)

Let A ∈ Rn×n be a matrix and i, j, s, k, be integers in the intervals:
0 ≤ k < s ≤ n, 0 < i, j ≤ n. Then the following identity is true

αsαk+1
ij − αkas+1

ij =

s∑
p=k+1

αk+1
ip δspj . (13)



The minors as+1
ij in the left side of this identity equal zero if

i < s+ 1. Therefor this theorem gives the following

Consequence

Let A ∈ Rn×n be a matrix and s, k, be integers in the intervals:
0 ≤ k < s ≤ n. Then the following identities are true

αsUk;k+1,s
n;s+1,n = Uks G

k;k+1,s
n;s+1,n. (14)

αsAk;k+1,s
n;s+1,n = AksG

k;k+1,s
n;s+1,n. (15)



The block Ak;k+1,s
n;s+1,n of the matrix Akn was denoted by B. Due to

Sylvester identity we can write the equation for the adjoint matrix

(Aks)
∗ = (Aks)

−1(αs)(αk)s−k−1 (16)

Let us multiply both sides of equation (15) by adjoint matrix (Aks)
∗

and use the equation (16). Then we get

Consequence

(Aks)
∗B = (Aks)

∗Ak;k+1,s
n;s+1,n = (αk)s−k−1Gk;k+1,s

n;s+1,n. (17)



As well as LksD
k
sU

k
s = Aks ,

Mk
s = αk(LksD

k
s )−1 = αkUks (Aks)

−1 and W k
s = αk(Dk

sU
k
s )−1.

(18)
Therefor

Ũ = (αk)−1Mk
sB = (αk)−1Uks (Aks)

−1B = (αs)−1(αk)−s+kUks (Aks)
∗B.

(19)
Equations (19), (17), (14) give the

Consequence

Ũ = Uk;k+1,s
n;s+1,n (20)

In the same way we can prove

Consequence

L̃ = Lk;s+1,n
n;k+1,s. (21)



Now we have to prove the identity (8). Due to the equations
(14)-(19) we obtain

L̃Dk
s Ũ = (αk)−1CW k

s D
k
s (αk)−1Mk

sB =

(αk)−2C(Aks)
−1B = (αk)−s+k−1(αs)−1C(Aks)

∗B (22)

The identity

Asn = (αk)−1(αsD− (αk)−s+k+1C(Aks)
∗B) (23)

was proved in [4] and [5]. Due to (20) and (21) we obtain the
identity (8).
To prove the formula (10) and (11) it is sufficient to verify the
identities Mk

n = αk(LknD
k
n)−1 and W k

n = αk(Dk
nU

k
n)−1 using

(9),(10), (11) and definition
Dk
n = αkdiag{αkαk+1, . . . , αn−1αn}−1.



Theorem
The algorithm has the same complexity as matrix multiplication.

Proof.
Number of matrix multiplications is 7.
Number of recursive calls is 2.
Decomposition of the 2x2 matrix takes 7 multiplicative operations.
So the recurrent equality for complexity:

t(n) = 2t(n/2) + 7M(n/2), t(2) = 7.

Let M(n) = γnβ + o(nβ) be the complexity of n× n matrix
multiplication. After summation from n = 2k to 21 we obtain

7γ(202β·(k−1) + . . .+ 2k−22β·1) + 2k−27 = 7γ
nβ − n2β−1

2β − 2
+

7

4
n.

∼ 7γnβ

2β − 2



The exact triangular decomposition

Definition
A decomposition of the matrix A of rank r over a domain R

A = PLDUQ (24)

is called exact triangular decomposition if
P and Q are permutation matrces,
L and PLP T are nonsingular lower triangular matrices over R,
U and QTUQ are nonsingular upper triangular matrices over R,
D = diag(d−11 , d−12 , .., d−1r , 0, .., 0) is a diagonal matrix of rank r,
di ∈ R\{0}, i = 1, ..r.

Designation: ETD(A) = (P,L,D,U,Q).



Theorem (Main theorem)

Any matrix over a commutative domain has an exact triangular
decomposition.



Comment

1) If D matrix is combined with L or U , we get the expression

A = PLUQ

– the LU -decomposition with permutations of rows and columns.
2) If the factors are grouped in the following way:

A = (PLP T )(PDQ)(QTUQ),

then we obtain LDU-decomposition.
3) If S is a permutation matrix in which the unit elements are
placed on the secondary diagonal, then

(SA) = (SLS)(STD)U = V wU

– the Bruhat decomposition of the matrix (SA).



Proof

If matrix A is a zero matrix: ETD(A) = (I, I, 0, I, I).
If A is the first order nonzero matrix: ETD(a) = (I, a, a−1, a, I).
Let us consider a non-zero matrix of order two. We denote

A =

(
α β
γ δ

)
,∆ =

∣∣∣∣ α β
γ δ

∣∣∣∣ , ε =

{
∆, ∆ 6= 0
1, ∆ = 0.

∆−1 =

{
1
∆ , ∆ 6= 0
0, ∆ = 0.

α 6= 0 : A =

(
α 0
γ ε

)(
α−1 0

0 ∆−1α−1

)(
α β
0 ε

)
.

α = 0, β 6= 0 :

A =

(
β 0
δ ε

)(
β−1 0

0 −∆−1β−1

)(
β 0
0 ε

)(
0 1
1 0

)
.

α = 0, γ 6= 0 :

A =

(
0 1
1 0

)(
γ 0
0 ε

)(
γ−1 0

0 −∆−1γ−1

)(
γ δ
0 ε

)
.

α = β = γ = 0, δ 6= 0 :

A =

(
0 1
1 0

)(
δ 0
0 1

)(
δ−1 0
0 0

)(
δ 0
0 1

)(
0 1
1 0

)
.



There are only two different cases for matrices of size 1× 2:

If α 6= 0, then
(
α β

)
=
(
α
) (

α−1 0
)( α β

0 1

)
.

If α = 0, β 6= 0, then
(

0 β
)

=(
β
) (

β−1 0
)( β 0

0 1

)(
0 1
1 0

)
.

Two cases for matrices of size 2× 1 can be easily obtained by a
simple transposition.



These examples allow us to formulate

Sentence
For all matrices A of size n×m, n,m < 3 there exists an exact
triangular decomposition.



Property (Property of the factors)

For a matrix A ∈ Rn×m of rank r, r < n, r < m over a
commutative domain R there exists the exact triangular
decomposition (24) in which
(α) the matrices L and U are of the form

L =

(
L1 0
L2 In−r

)
U =

(
U1 U2

0 Im−r

)
, (25)

(β) the matrices PLP T and QTUQ remain triangular after
replacing in the matrices L and Q of unit blocks In−r and Im−r by
arbitrary triangular blocks.



Let matrix A be of size N ×M . Assume that all matrices of size
less than n×m have the exact triangular decomposition.
We split the matrix A into blocks:

A =

(
A B
C D

)
,

where A ∈ Rn×n, n < N , n < M .



(1). Let the block A have the full rank. There exists exact
triangular decomposition of this block: A = P1L1D1U1Q1 then

A =

[
P1 0
0 I

] [
L1 0

CQT1 U
−1
1 D−11 I

] [
D1 0
0 D′

]
×

[
U1 D−11 L−11 P T1 B
0 I

] [
Q1 0
0 I

]
.

The matrix D′ also has the exact triangular decomposition
D′ = P2L2D2U2Q2, then

A =

[
P1 0
0 P2

] [
L1 0

P T2 CQT1 U
−1
1 D−11 L2

] [
D1 0
0 D2

]
×

[
U1 D−11 L−11 P T1 BQT2
0 U2

] [
Q1 0
0 Q2

]
.

It is easy to see that this decomposition is exact triangular.



(2) Let the block A has rank r, r < n. There exists exact
triangular decomposition of this block:

A = P1L1D1U1Q1.

Here U1 =

(
U0 V0
0 I

)
, L1 =

(
L0 0
M0 I

)
and the diagonal

matrix D1 =

(
d1 0
0 0

)
has a block d1 of rank r.

Let us denote (C0,C1)= CQT1

(
U−10 −V0

0 I

)
and

(
B0

B1

)
=(

L−10 0
−M0 I

)
P T1 B.



Then for the matrix A we obtain the decomposition:

A =

(
P1 0
0 I

) L0 0 0
M0 I 0

C0d
−1
1 0 I

 d1 0 0
0 0 B1

0 C1 D

×
 U0 V0 d−11 B0

0 I 0
0 0 I

( Q1 0
0 I

)
. (26)



(2.1) Let B1 = 0 and C1 = 0 then(
0 B1

C1 D

)
=

(
0 I
I 0

)(
D 0
0 0

)(
0 I
I 0

)
.

D = P2L2D2U2Q2. We denote

P3 =

(
P1 0
0 P2

) I 0 0
0 0 I
0 I 0

 , Q3 =

 I 0 0
0 0 I
0 I 0

( Q1 0
0 Q2

)
.

Then A = P3

 L0 0 0

P T2 C0d
−1
1 L2 0

M0 0 I

×
 d1 0 0

0 D2 0
0 0 0

 U0 d−11 B0Q
T
2 V0

0 U2 0
0 0 I

Q3.



(2.2) Suppose that at least one of the two blocks of B1 or C1 is
not zero. Let the exact triangular decomposition exist for these
blocks:

C1 = P2L2D2U2Q2, B1 = P3L3D3U3Q3.

We denote

P1 =

(
P1 0
0 I

)
,P2 =

 I 0 0
0 P3 0
0 0 P2

 , Q2 =

 I 0 0
0 Q2 0
0 0 Q3

 ,

Q1 =

(
Q1 0
0 I

)
,

P3 = P1P2, Q3 = Q2Q1, D′ = L−12 P T2 DQT3 U
−1
3 .



Then, basing on the expansion (26) we obtain:

A = P3

 L0 0 0
P T3 M0 L3 0

P T2 C0d
−1
1 0 L2

 d1 0 0
0 0 D3

0 D2 D′

×
 U0 V0Q

T
2 d−11 B0Q

T
3

0 U2 0
0 0 U3

Q3. (27)



We denote d2 ( d3) nondegenerate blocks of the matrices D2 ( D3)

(V1, V4) = V0Q
T
2 , (V5, V6) = d−11 B0Q

T
3 ,

(
M1

M4

)
= P T3 M0,

(
M5

M6

)
= P T2 C0d

−1
1

L2 =

(
L′2 0
M2 I

)
, L3 =

(
L′3 0
M3 I

)
, U2 =

(
U ′2 V2
0 I

)
,

U3 =

(
U ′3 V3
0 I

)
,D′ =

(
D′1 D′3
D′2 D′4

)
.

M7 = D′2d
−1
3 , V7 = d−12 D′1U

′
3, V8 = d−12 (D′1V3 + D′3).



Then (27) can be written as

A = P3


L0 0 0 0 0
M1 L′3 0 0 0
M4 M3 I 0 0
M5 0 0 L′2 0
M6 0 0 M2 I




d1 0 0 0 0
0 0 0 d3 0
0 0 0 0 0
0 d2 0 D′1 D′3
0 0 0 D′2 D′4




U0 V1 V4 V5 V6
0 U ′2 V2 0 0
0 0 I 0 0
0 0 0 U ′3 V3
0 0 0 0 I

Q3 =



= P3


L0 0 0 0 0
M1 L′3 0 0 0
M4 M3 I 0 0
M5 0 0 L′2 0
M6 M7 0 M2 I




d1 0 0 0 0
0 0 0 d3 0
0 0 0 0 0
0 d2 0 0 0
0 0 0 0 D′4




U0 V1 V4 V5 V6
0 U ′2 V2 V7 V8
0 0 I 0 0
0 0 0 U ′3 V3
0 0 0 0 I

Q3. (28)



Let
D′4 = P4L4D4U4Q4,

P4 = diag(I, I, I, I, P4),
Q4 = diag(I, I, I, I,Q4),
P5 = P3P4,
Q5 = Q4Q3,

(M ′6,M
′
7,M

′
2) = P T4 (M6,M7,M2)

(V ′6 , V
′
8 , V

′
3) = (V6, V8, V3)Q

T
4 .



After substituting (29) into (28) we obtain the decomposition of
the matrix A as

A = P5


L0 0 0 0 0
M1 L′3 0 0 0
M4 M3 I 0 0
M5 0 0 L′2 0
M ′6 M ′7 0 M ′2 L4




d1 0 0 0 0
0 0 0 d3 0
0 0 0 0 0
0 d2 0 0 0
0 0 0 0 D4




U0 V1 V4 V5 V ′6
0 U ′2 V2 V7 V ′8
0 0 I 0 0
0 0 0 U ′3 V ′3
0 0 0 0 U4

Q5. (30)



We rearrange the blocks d2, d3 and D4 to obtain the diagonal
matrix d = diag(d1, d3, d2, D4, 0). To do it we use permutation
matrices P6 and Q6:

P6 =


1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0

 , Q6 =


1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0

 ,

d =


d1 0 0 0 0
0 0 0 d3 0
0 0 0 0 0
0 d2 0 0 0
0 0 0 0 D4





As a result, we obtain the decomposition:

A = P6LdUQ6, (31)

with permutation matrices P6 = P5P
T
6 and Q6 = QT6 Q5, diagonal

matrix d and triangular matrices

L = P6


L0 0 0 0 0
M1 L′3 0 0 0
M4 M3 I 0 0
M5 0 0 L′2 0
M ′6 M ′7 0 M ′2 L4

P T6 =


L0 0 0 0 0
M5 L′2 0 0 0
M1 0 L′3 0 0
M ′6 M ′7 M ′2 L4 0
M4 0 M3 0 I

 ,

U = QT6


U0 V1 V4 V5 V ′6
0 U ′2 V2 V7 V ′8
0 0 I 0 0
0 0 0 U ′3 V ′3
0 0 0 0 U4

Q6 =


U0 V1 V5 V ′6 V4
0 U ′2 V7 V ′8 V2
0 0 U ′3 V ′3 0
0 0 0 U4 0
0 0 0 0 I

 .



We must verify that the matrices L = P6LP
T
6 and Q = QT

6 UQ6

are triangular, and the matrices P,L,U,Q satisfy the properties
(α) and (β).
It is easy to see that all matrices in sequence

L1 = P6LP
T
6 , L2 = P4L1PT

4 , L3 = P2L2PT
2 , L4 = P1L3PT

1

are triangular and L4 = L.
Similarly, all of the matrices in the sequence

U1 = QT6 LQ6, U2 = QT
4 U1Q4, U3 = QT

2 U2Q2, U4 = QT
1 U3Q1

are triangular and U4 = U .
For the matrices L and U Properties (α) and (β) are satisfied.



Conclusion

Algorithms for finding the LDU and Bruhat decomposition in
commutative domain are described. These algorithms have the
same complexity as matrix multiplication.
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