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Specification of the problem

Input

Let R ⊂ C[X1, . . . , Xs] be a regular chain.

Let hR be the product of initials of polynomials of R.

Let W (R) be the quasi-component of R, that is V (R) \ V (hR).

Output

The non-trivial limit points of W (R), that is W (R)
Z \W (R), denoted by

lim(W (R)).
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Motivation (I): the Ritt problem

The Ritt problem

Given the characteristic sets of two prime differential ideals I1 and I2,
determine whether I1 ⊆ I2 holds or not:

No algorithm is known,

Equivalent to other key problems, see (O. Golubitsky et al., 2009).

The algebraic counterpart of the Ritt problem

Given regular chains R1 and R2, determine whether sat(R1) ⊆ sat(R2)
holds or not, without computing a basis for sat(R1) or sat(R2):

No algorithm is known,

Such an algorithm could be used to solve the differential problem.

Our strategy for the algebraic version√
sat(R1) ⊆

√
sat(R2)⇐⇒W (R2)

Z ⊆W (R1)
Z

W (R)
Z

= W (R) ∪ lim(W (R))



Motivation (II): from Kalkbrener to Wu-Lazard decompositions

Specification (in the case of an irreducible variety)

Input: An irreducible algebraic set V (F ) and a regular chain R s.t.

V (F ) = W (R)
Z

Output: Regular chains R1, . . . , Re s.t.
V (F ) = W (R1) ∪ · · · ∪ W (Re)

Wu’s trick

Compute a triangular decomposition of F ∪ {hR}.
The trick generalizes to the case where V (F ) is not irreducible.

In practice, this process is very inefficient (many repeated
calculations).

Our proposed strategy

Compute V (F ) \W (R) directly as the set lim(W (R)).
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Example one

The variable order is x < y < z. The regular chain is:{
xz − y2 = 0
y5 − x2 = 0

What are the limits of y and z when x approaches 0?

Figure: No limit points at x = 0.



Example one

The variable order is x < y < z. The regular chain is:{
xz − y2 = 0
y5 − x2 = 0

What are the limits of y and z when x approaches 0?

Figure: No limit points at x = 0.



Example two

The variable order is x < y < z. The regular chain is:{
xz − y2 = 0
y5 − x3 = 0

What are the limits of y and z when x approaches 0?

Figure: One limit point at x = 0.



Example two

The variable order is x < y < z. The regular chain is:{
xz − y2 = 0
y5 − x3 = 0

What are the limits of y and z when x approaches 0?

Figure: One limit point at x = 0.



How to compute the limit points

The variable order is x < y < z.

R1 :=

{
xz − y2 = 0
y5 − x2 = 0

(1) solve y5 − x2 = 0, we get y = x
2
5

(2) substitute y = x
2
5 into xz − y2 = 0, we get xz − x

4
5 = 0

(3) since x 6= 0, we have z = x−
1
5

(4) so there are no limit points

R2 :=

{
xz − y2 = 0
y5 − x3 = 0

(1) y = x
3
5

(2) z = x
1
5

(3) the limit point is (x = 0, y = 0, z = 0)
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The problem

Input: the regular chain R below with X1 < X2 < X3

R :=

{
r2 = (X1 + 2)X1X

2
3 + (X2 + 1)(X3 + 1)

r1 = X1X
2
2 +X2 + 1

The product of the initials of its polynomials is hR := X1(X1 + 2).

Output: Limit points of W (R) at hR = 0.

Puiseux series expansions of r1 at X1 = 0

The two Puiseux expansions of r1 at X1 = 0 are:

[X1 = T,X2 = −1− T +O(T 2)],

[X1 = T,X2 = −T−1 + 1 + T +O(T 2)].

The second expansion cannot result in a limit point while the first one
might.



Limit points of W (R) at X1 = 0

After substituting the first expansion into r2, we have:

r′2 = (T + 2)TX2
3 + (−T +O(T 2))(X3 + 1)

Now, we compute Puiseux series expansions of r′2 which are

[T = T,X3 = 1− 1/3T +O(T 2)],
[T = T,X3 = −1/2 + 1/12T +O(T 2)].

So the regular chains
X3 − 1 = 0
X2 + 1 = 0
X1 = 0

,


X3 + 1/2 = 0
X2 + 1 = 0
X1 = 0

give the limit points of W (R) at X1 = 0.



Limit points of W (R) at X1 = −2

Puiseux series expansions of r1 at the point X1 = −2:

[X1 = T−2, X2 = 1 + 1/3T +O(T 2)],
[X1 = T−2, X2 = −1/2− 1/12T +O(T 2)].

After substitution into r2, we obtain:

r′12 = (T − 2)TX3
2 +

(
2 + 1/3T +O(T 2)

)
(X3 + 1)

r′22 = (T − 2)TX3
2 +

(
1/2− 1/12T +O(T 2)

)
(X3 + 1) .

Puiseux expansions of r′12 and r′22 at T = 0 resulting in limit points:

i) for r′12: [T = T,X3 = −1 + T +O(T 2)]
ii) for r′22: [T = T,X3 = −1 + 4T +O(T 2)]

The limit points of W (R) at X1 = −2 are represented by the regular
chains {X1 + 2, X2 − 1, X3 + 1} and {X1 + 2, X2 + 1/2, X3 + 1}.



Visualizing the limit points of W (R)

The limit points are:
X3 − 1 = 0
X2 + 1 = 0
X1 = 0

,


X3 + 1/2 = 0
X2 + 1 = 0
X1 = 0

,


X3 + 1 = 0
X2 − 1 = 0
X1 + 2 = 0

,


X3 + 1 = 0
X2 + 1/2 = 0
X1 + 2 = 0

.
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Zariski topology

Zariski closure

Let k be an algebraically closed field, like C.

We denote by As the affine s-space over k.

An affine algebraic variety of As is the set of common zeroes of a
collection F ⊆ k[X1, . . . , Xs] of polynomials.

The Zariski topology on As is the topology whose closed sets are the
affine algebraic varieties of As.
The Zariski closure of a subset W ⊆ As is the intersection of all affine
algebraic varieties containing W .

The set {y = 0, x 6= 0} and its Zariski closure {y = 0}.



Zariski topology and the Euclidean topology

The relation between the two topologies

With k = C, the affine space As is endowed with both topologies.

The basic open sets of the Euclidean topology are the open balls.

The basic open sets of Zariski topology are the complements of
hypersurfaces.

Thus, a Zariski closed (resp. open) set is closed (resp. open) in the
Euclidean topology on As.
That is, Zariski topology is coarser than the Euclidean topology.

Theorem (The relation between two closures (D. Mumford))

Let V ⊆ As be an irreducible affine variety.

Let U ⊆ V be nonempty and open in the Zariski topology induced on
V .

Then, U has the same closure in both topologies. In fact, we have

V = U
Z

= U
E

.



Limit points

Limit points

Let (X, τ) be a topological space and S ⊆ X be a subset.

A point p ∈ X is a limit point of S if every neighborhood of p
contains at least one point of S different from p itself.

If X is a metric space, the point p is a limit point of S if and only if
there exists a sequence (xn, n ∈ N) of points of S \ {p} such that
limn→∞ xn = p.

The limit points of S which do not belong to S are called non-trivial,
denoted by lim(S).

Example

Consider the interval S := [1, 2) ⊂ R. The point 2 is a non-trivial limit
point of S.



Limit points of the quasi-component of a regular chain

Recall Mumford’s Theorem

Let V ⊆ As be an irreducible affine variety.

Let U ⊆ V be nonempty and open in the Zariski topology induced on
V .

Then V = U
Z

= U
E

.

Corollary

Let R be a regular chain. Recall that sat(R) := 〈R〉 : init(R)∞ is its
saturated ideal and W (R) = V (R) \ V (init(R)) is its quasi-component.
Then, we have

V (sat(R)) = W (R)
Z

= W (R)
E
.

We use W (R) to denote this common closure.

lim(W (R)) := W (R) \W (R) denotes the limit points of W (R).



Field of Puiseux series

Let T be a symbol.

C[[T ]] : ring of formal power series.

C〈T 〉 : ring of convergent power series.

C[[T ∗]] = ∪∞n=1C[[T
1
n ]] : ring of formal Puiseux series.

C〈T ∗〉 = ∪∞n=1C〈T
1
n 〉 : ring of convergent Puiseux series.

C((T ∗)) : quotient field of C[[T ∗]], or the field of Puiseux series.

C(〈T ∗〉) : quotient field of C〈T ∗〉, or the field of convergent Puiseux
series.

We have

C[[T ]] ⊂ C[[T ∗]] ⊂ C((T ∗)); C〈T 〉 ⊂ C〈T ∗〉 ⊂ C(〈T ∗〉)
C〈T 〉 ⊂ C[[T ∗]]; C〈T ∗〉 ⊂ C[[T ∗]]; C(〈T ∗〉) ⊂ C((T ∗))

Example

We have
∑∞

i=0 T
i ∈ C〈T 〉,

∑∞
i=0 T

i
2 ∈ C〈T ∗〉 and

∑∞
i=−3 T

i
2 ∈ C(〈T ∗〉).



Theorem (Puiseux)

Both C((T ∗)) and C(〈T ∗〉) are algebraically closed fields.

Puiseux expansions

Let k = C((X∗)) or C(〈X∗〉).

Let f ∈ k[Y ], where d := deg(f, Y ) > 0.

There exist ϕi ∈ k, i = 1, . . . , d, such that

f

lc(f, Y )
= (Y − ϕ1) · · · (Y − ϕd).

We call ϕ1, . . . , ϕd the Puiseux expansions of f at the origin.

Example

(Y 2 −X) = (Y −X
1
2 )(Y +X

1
2 ).

Puiseux expansions of Y 2 −XY −X:

Y −(X
1
2 + 1

2 X+ 1
8 X

3
2 +O(X2)), Y −(−X

1
2 + 1

2 X−
1
8 X

3
2 +O(X2)).



Puiseux parametrizations

Let f ∈ C〈X〉[Y ]. A Puiseux parametrization of f is a pair (ψ(T ), ϕ(T ))
of elements of C〈T 〉 for some new variable T , such that

ψ(T ) = T ς , for some ς ∈ N>0.

f(X = ψ(T ), Y = ϕ(T )) = 0 holds in C〈T 〉,
there is no integer k > 1 such that both ψ(T ) and ϕ(T ) are in C〈T k〉.

The index ς is the ramification index of the parametrization (T ς , ϕ(T )).

Relation to Puiseux expansions

Let z1, . . . , zς denote the primitive roots of unity of order ς in C.
Then ϕ(ziX

1/ς), for i = 1, . . . , ς, are ς Puiseux expansions of f .

For a Puiseux expansion ϕ of f , let c minimum s.t. ϕ = g(T 1/c) and
g ∈ C〈T 〉. Then (T c, g(T )) is a Puiseux parametrization of f .

Example

Puiseux parametrization of Y 2 −XY −X:(
X = T 2, Y = T + 1

2 T
2 + 1

8 T
3 +O(T 4)

)



Plan

1 The problem

2 Motivation

3 An introductory example (informal)

4 A more advanced example (informal)

5 Limit points and Puiseux expansions of an algebraic curve

6 Puiseux expansions of a regular chain and lim(W (T ))

7 Computation of lim(W (T ))

8 Experimentation

9 Demo

10 Conclusion



Puiseux expansions of a regular chain

Notation

Let R := {r1(X1, X2), . . . , rs−1(X1, . . . , Xs)} ⊂ C[X1 < · · · < Xs]
be a 1-dim regular chain.

Assume R is strongly normalized, that is, init(R) ∈ C[X1].

Let k = C(〈X∗1 〉).

Then R generates a zero-dimensional ideal in k[X2, . . . , Xs].

Let V ∗(R) be the zero set of R in ks−1.

Definition

We call Puiseux expansions of R the elements of V ∗(R).

Remarks

The strongly normalized assumption is only for presentation ease.

Generically, The 1-dim assumption extends to d-dim d ≤ 2.

Higher dimension requires the Jung-Abhyankar theorem.



An example

A regular chain R

R :=

{
X1X

2
3 +X2

X1X
2
2 +X2 +X1

Puiseux expansions of R{
X3 = 1 +O(X2

1 )
X2 = −X1 +O(X2

1 )

{
X3 = −1 +O(X2

1 )
X2 = −X1 +O(X2

1 ){
X3 = X1

−1 − 1
2X1 +O(X2

1 )
X2 = −X1

−1 +X1 +O(X2
1 )

{
X3 = −X1

−1 + 1
2X1 +O(X2

1 )
X2 = −X1

−1 +X1 +O(X2
1 )



Relation between lim0(W (R)) and Puiseux expansions of R

Theorem

For W ⊆ Cs, denote

lim0(W ) := {x = (x1, . . . , xs) ∈ Cs | x ∈ lim(W ) and x1 = 0},

and define

V ∗≥0(R) := {Φ = (Φ1, . . . ,Φs−1) ∈ V ∗(R) | ord(Φj) ≥ 0, j = 1, . . . , s−1}.

Then we have

lim0(W (R)) = ∪Φ∈V ∗
≥0(R){(X1 = 0,Φ(X1 = 0))}.

V ∗≥0(R) :=

{
X3 = 1 +O(X2

1 )
X2 = −X1 +O(X2

1 )
∪
{
X3 = −1 +O(X2

1 )
X2 = −X1 +O(X2

1 )

Thus the limit ponts are lim0(W (R)) = {(0, 0, 1), (0, 0,−1)}.



Puiseux parametrizations of a regular chain

Idea

Let Φi = (Φ1
i , . . . ,Φ

s−1
i ) ∈ V ∗≥0(R) be a Puiseux expansion,

1 ≤ i ≤M := |V ∗≥0(R)|. Recall that Φ1
i , . . . ,Φ

s−1
i ∈ C(〈X∗1 〉).

Φi can be associated with a Puiseux parametrization
(X1 = T ςi , X2 = g1

i (T ), . . . , Xs = gs−1
i (T )) with gji ∈ C〈T 〉.

Details

Note: Φj
i is an expansion of rj(X1, X2 = Φ1

i , . . . , Xj = Φj−1
i , Xj+1).

Let (T ςi,j , Xj = ϕji (T )) be the corresponding Puiseux parametrization

of Φj
i , where ςi,j is the ramification index of Φj

i .

Let ςi be the l.c.m. of {ςi,1, . . . , ςi,s−1} and gji := ϕji (T = T ςi/ςi,j ).

Definition

GR := {(X1 = T ςi , X2 = g1
i (T ), . . . , Xs = gs−1

i (T )), i = 1, . . . ,M} is a
system of Puiseux parametrizations of R.



Relation between lim0(W (R)) and Puiseux parametrizations of R

Notation (recall)

Let GR := {(X1 = T ςi , X2 = g1
i (T ), . . . , Xs = gs−1

i (T )), i = 1, . . . ,M}
be a system of Puiseux parametrizations of R.

Theorem

We have
lim0(W (R)) = GR(T = 0).
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Limit points of a plane curve (without Puiseux parametrizations)

Theorem (Lemaire-MorenoMaza-Pan-Xie 08, 〈T 〉 ?
= sat(T ))

Let f ∈ C[X][Y ]. Assume that f is primitive in Y . Then
lim0(W (f)) = {(0, y) | f(0, y) = 0}.

Theorem (R.J. Walker, 50)

Let f ∈ C[X][Y ]. Assume that f is general in Y , that is f(0, Y ) 6= 0.
Then, lim0(W (f)) = {(0, y) | f(0, y) = 0}.

Theorem

Let f ∈ C〈X〉[Y ].

Assume that f is general in Y .

Let ρ > 0 be small enough such that f converges in |X| < ρ.

Let Vρ(f) := {(x, y) | 0 < |x| < ρ, f(x, y) = 0}.

Then, we have lim0(Vρ(f)) = {(0, y) | f(0, y) = 0}.



From algebra to computer: what is the challenge?

Algebra

Let GR be a system of Puiseux parametrizations of R. Recall that we have

lim0(W (R)) = GR(T = 0).

When Walker’s theorem applies or when the T is a primitive regular chain,
we do not need to compute GR(T = 0). However, those are criteria only!

How to compute GR when the previous criteria do not apply?

We shall not compute GR.

We need to compute GR(T = 0).

In fact, we compute a truncation (approximation) of GR.



The back-substitution process for computing GR

Specifications

Input: R := {r1(X1, X2), . . . , rs−1(X1, . . . , Xs)} a 1-dim strongly
normalized regular chain.

Output: GR: a system of Puiseux parametrizations of R.

Algorithm

Polynomial Substitution Puiseux parametrsation
r1(X1, X2) N/A (X1 = T ς11 , X2 = ϕ1(T1))
r2(X1, X2, X3) r2(T ς11 , ϕ1(T1), X3) (T1 = T ς22 , X3 = ϕ2(T2))
r3(X1, X2, X3, X4) r3(T ς1ς22 , ϕ1(T ς22 ), ϕ2(T2), X4) (T2 = T ς33 , X4 = ϕ3(T3))

More generally, for i = 2, . . . , s− 1, we define:

fi := ri(X1 = T ς11 , X2 = ϕ1(T1), . . . , Xi = ϕi−1(Ti−1), Xi+1) ∈
C〈Ti−1〉[Xi+1],

(Ti := T ςii−1, Xi+1 := ϕi(Ti)).

New problem: compute Puiseux parametrizations of fi of given accuracy.



Puiseux parametrizations of f ∈ C〈X〉[Y ] of finite accuracy

Definition

Let f =
∑∞

i=0 aiX
i ∈ C[[X]].

For any τ ∈ N, let f (τ) :=
∑τ

i=0 aiX
i.

We call f (τ) the polynomial part of f of accuracy τ + 1.

Definition

Let f ∈ C〈X〉[Y ], deg(f, Y ) > 0.

Let σ, τ ∈ N>0 and g(T ) =
∑τ−1

k=0 bkT
k.

Let {T k1 , . . . , T km} be the support of g(T ).

The pair (T σ, g(T )) is called a Puiseux parametrization of f of
accuracy τ if there exists a Puiseux parametrization (T ς , ϕ(T )) of f
such that

(i) σ divides ς.
(ii) gcd(σ, k1, . . . , km) = 1.

(iii) g(T ς/σ) is the polynomial part of ϕ(T ) of accuracy (ς/σ)(τ − 1) + 1.



Computing Puiseux parametrizations of f ∈ C〈X〉[Y ] of finite
accuracy

Theorem

Let f =
∑d

i=0

∑∞
j=0 ai,jY

i ∈ C〈X〉[Y ].

Then we can compute m ∈ N such that the Puiseux parametrizations
of f of accuracy τ are exactly the Puiseux parametrizations of∑d

i=0

∑m−1
j=0 ai,jY

i of accuracy τ .

Lemma

Let f = ad(X)Y d + · · ·+ a0(X) ∈ C〈X〉[Y ].

Let δ := ord(ad(X)).

Then “generically”, we can choose m = τ + δ.



Recall the back-substitution process for computing GR

Algorithm

Polynomial Substitution Puiseux parametrsation
r1(X1, X2) N/A (X1 = T ς11 , X2 = ϕ1(T1))
r2(X1, X2, X3) r2(T ς11 , ϕ1(T1), X3) (T1 = T ς22 , X3 = ϕ2(T2))
r3(X1, X2, X3, X4) r3(T ς1ς22 , ϕ1(T ς22 ), ϕ2(T2), X4) (T2 = T ς33 , X4 = ϕ3(T3))
...

...
...

More generally, for i = 2, . . . , s− 1, we define:

fi := ri(X1 = T ς11 , X2 = ϕ1(T1), . . . , Xi = ϕi−1(Ti−1), Xi+1) ∈
C〈Ti−1〉[Xi+1],

(Ti := T ςii−1, Xi+1 := ϕi(Ti)).



Putting everything together

Let R := {r1(X1, X2), . . . , rs−1(X1, . . . , Xs)} ⊂ C[X1 < · · · < Xs]. For
1 ≤ i ≤ s− 1, let

hi := init(ri)

di := deg(ri, Xi+1)

δi := ord(hi).

Theorem

One can compute positive integer numbers τ1, . . . , τs−1 such that, in order
to compute lim0(W (R)), it sufficies to compute Puiseux parametrizations
of fi of accuracy τi, for i = 1, . . . , s− 1. Moreover, generically, we can
choose τi, i = 1, . . . , s− 1, as follows

τs−1 := 1

τs−2 := (
∏s−2
k=1 ςk)δs−1 + 1

τi = (
∏s−2
k=1 ςk)(

∑s−1
k=2 δi) + 1, i = 1, . . . , s− 3.

Moreover, the indices ςk can be replaced with dk, k = 1, . . . , s− 2.
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Maple packages used: RegularChains and algcurves:-puiseux.

T : timings of Triangularize

#(T ): number of regular chains returned by Triangularize

d-1, d-0: number of one and zero dimensional components

R: timings spent on removing redundant components

#(R): number of irredundant components

Table: Removing redundant components in Kalkbrener decompositions.

Sys T #(T) d-1 d-0 R #(R)

f-744 14.360 4 1 3 432.567 1
Liu-Lorenz 0.412 3 3 0 216.125 3
MontesS3 0.072 2 2 0 0.064 2

Neural 0.296 5 5 0 1.660 5
Solotareff-4a 0.632 7 7 0 32.362 7

Vermeer 1.172 2 2 0 75.332 2
Wang-1991c 3.084 13 13 0 6.280 13
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Concluding remarks

We proposed an algorithm for computing the limit points of the
quasi-component of a regular chain in dimension one.

To this end, we make use of the Puiseux series expansions of a regular
chain.

In addition, we have sharp bounds on the degree of truncations that
are required to compute approximate Puiseux series expansions from
which the desired limit points can be obtained.

Our experimental results show that this is a useful tool for dealing
with triangular decompositions of polynomial systems.

For instance, for testing inclusion between saturated ideals of regular
chains in a direct manner (i.e. without computing a basis).

Computing limit points in higher dimension may require the help of
the Abhyankar-Jung theorem. This is work in progress.
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