Computing the Limit Points of Quasi-componets of Regular Chains in Diemnsion One

Marc Moreno Maza
Joint work with Parisa Alvandi and Changbo Chen
University of Western Ontario, Canada

ZIB, Berlin, CASC 2013
September 9, 2013

Plan

(1) The problem
(2) Motivation
(3) An introductory example (informal)
(4) A more advanced example (informal)
(5) Limit points and Puiseux expansions of an algebraic curve
(6) Puiseux expansions of a regular chain and $\lim (W(T))$
(7) Computation of $\lim (W(T))$
(8) Experimentation
(9) Demo
(10) Conclusion

Plan

(1) The problem
(2) Motivation
(3) An introductory example (informal)
(4 A more advanced example (informal)
(5) Limit points and Puiseux expansions of an algebraic curve
(3) Puiscux cxpansions of a regular chain and $\lim (W(T))$
(7) Computation of $\lim (W(T))$
(3) Experimentation
(9) Demo
(1) Conclusion

Specification of the problem

Input

- Let $R \subset \mathbb{C}\left[X_{1}, \ldots, X_{s}\right]$ be a regular chain.
- Let h_{R} be the product of initials of polynomials of R.
- Let $W(R)$ be the quasi-component of R, that is $V(R) \backslash V\left(h_{R}\right)$.

Output

The non-trivial limit points of $W(R)$, that is $\overline{W(R)}^{Z} \backslash W(R)$, denoted by $\lim (W(R))$.

Plan

(1) The problem
(2) Motivation
(3) An introductory example (informal)

4 A more advanced example (informal)
(9) Limit points and Puiscux cxpansions of an algebraic curve
(6) Puiseux expansions of a regular chain and $\lim (W(T))$
(9) Computation of $\lim (W(T))$
8) Experimentation
(a) Demo
(10) Conclusion

Motivation (I): the Ritt problem

The Ritt problem

Given the characteristic sets of two prime differential ideals \mathcal{I}_{1} and \mathcal{I}_{2}, determine whether $\mathcal{I}_{1} \subseteq \mathcal{I}_{2}$ holds or not:

- No algorithm is known,
- Equivalent to other key problems, see (O. Golubitsky et al., 2009).

The algebraic counterpart of the Ritt problem
Given regular chains R_{1} and R_{2}, determine whether $\operatorname{sat}\left(R_{1}\right) \subseteq \operatorname{sat}\left(R_{2}\right)$ holds or not, without computing a basis for $\operatorname{sat}\left(R_{1}\right)$ or $\operatorname{sat}\left(R_{2}\right)$:

- No algorithm is known,
- Such an algorithm could be used to solve the differential problem.

Our strategy for the algebraic version

- $\sqrt{\operatorname{sat}\left(R_{1}\right)} \subseteq \sqrt{\operatorname{sat}\left(R_{2}\right)} \Longleftrightarrow{\overline{W\left(R_{2}\right)}}^{Z} \subseteq{\overline{W\left(R_{1}\right)}}^{Z}$
- $\overline{W(R)}^{Z}=W(R) \cup \lim (W(R))$

Motivation (II): from Kalkbrener to Wu-Lazard decompositions

Specification (in the case of an irreducible variety)
Input: An irreducible algebraic set $V(F)$ and a regular chain R s.t. $V(F)=\overline{W(R)}^{Z}$
Output: Regular chains R_{1}, \ldots, R_{e} s.t.

$$
V(F)=W\left(R_{1}\right) \cup \cdots \cup W\left(R_{e}\right)
$$

Wu's trick

- Compute a triangular decomposition of $F \cup\left\{h_{R}\right\}$.
- The trick generalizes to the case where $V(F)$ is not irreducible.
- In practice, this process is very inefficient (many repeated calculations).

Our proposed strategy

- Compute $V(F) \backslash W(R)$ directly as the set $\lim (W(R))$.

Plan

(1) The problem
(2) Motivation
(3) An introductory example (informal)
(4) A more advanced example (informal)
(5) Limit points and Puiseux expansions of an algebraic curve
(3) Puiseux expansions of a regular chain and $\lim (W(T))$
(7) Computation of $\lim (W(T))$
(3) Experimentation
(9) Demo
(10) Conclusion

Example one

The variable order is $x<y<z$. The regular chain is:

$$
\left\{\begin{array}{l}
x z-y^{2}=0 \\
y^{5}-x^{2}=0
\end{array}\right.
$$

What are the limits of y and z when x approaches 0 ?

Example one

The variable order is $x<y<z$. The regular chain is:

$$
\left\{\begin{array}{l}
x z-y^{2}=0 \\
y^{5}-x^{2}=0
\end{array}\right.
$$

What are the limits of y and z when x approaches 0 ?

Example two

The variable order is $x<y<z$. The regular chain is:

$$
\left\{\begin{array}{c}
x z-y^{2}=0 \\
y^{5}-x^{3}=0
\end{array}\right.
$$

What are the limits of y and z when x approaches 0 ?

Example two

The variable order is $x<y<z$. The regular chain is:

$$
\left\{\begin{array}{l}
x z-y^{2}=0 \\
y^{5}-x^{3}=0
\end{array}\right.
$$

What are the limits of y and z when x approaches 0 ?

Figure: One limit point at $x=0$.

How to compute the limit points

The variable order is $x<y<z$.

$$
R_{1}:=\left\{\begin{array}{l}
x z-y^{2}=0 \\
y^{5}-x^{2}=0
\end{array}\right.
$$

(1) solve $y^{5}-x^{2}=0$, we get $y=x^{\frac{2}{5}}$
(2) substitute $y=x^{\frac{2}{5}}$ into $x z-y^{2}=0$, we get $x z-x^{\frac{4}{5}}=0$
(3) since $x \neq 0$, we have $z=x^{-\frac{1}{5}}$
(4) so there are no limit points

$$
R_{2}:=\left\{\begin{array}{c}
x z-y^{2}=0 \\
y^{5}-x^{3}=0
\end{array}\right.
$$

(1) $y=x^{\frac{3}{5}}$
(2) $z=x^{\frac{1}{5}}$
(3) the limit point is $(x=0, y=0, z=0)$

Plan

(1) The problem
(3) Motivation
(3) An introductory example (informal)

4 A more advanced example (informal)
(5) Limit points and Puiseux expansions of an algebraic curve
(6) Puiseux expansions of a regular chain and $\lim (W(T))$
(9) Computation of $\lim (W(T))$
(8) Experimentation
(a) Domo
(10) Conclusion

The problem

- Input: the regular chain R below with $X_{1}<X_{2}<X_{3}$

$$
R:=\left\{\begin{array}{l}
r_{2}=\left(X_{1}+2\right) X_{1} X_{3}^{2}+\left(X_{2}+1\right)\left(X_{3}+1\right) \\
r_{1}=X_{1} X_{2}^{2}+X_{2}+1
\end{array}\right.
$$

The product of the initials of its polynomials is $h_{R}:=X_{1}\left(X_{1}+2\right)$.

- Output: Limit points of $W(R)$ at $h_{R}=0$.

Puiseux series expansions of r_{1} at $X_{1}=0$

- The two Puiseux expansions of r_{1} at $X_{1}=0$ are:

$$
\begin{gathered}
{\left[X_{1}=T, X_{2}=-1-T+O\left(T^{2}\right)\right]} \\
{\left[X_{1}=T, X_{2}=-T^{-1}+1+T+O\left(T^{2}\right)\right]}
\end{gathered}
$$

- The second expansion cannot result in a limit point while the first one might.

Limit points of $W(R)$ at $X_{1}=0$

- After substituting the first expansion into r_{2}, we have:

$$
r_{2}^{\prime}=(T+2) T X_{3}^{2}+\left(-T+O\left(T^{2}\right)\right)\left(X_{3}+1\right)
$$

- Now, we compute Puiseux series expansions of r_{2}^{\prime} which are

$$
\begin{gathered}
{\left[T=T, X_{3}=1-1 / 3 T+O\left(T^{2}\right)\right]} \\
{\left[T=T, X_{3}=-1 / 2+1 / 12 T+O\left(T^{2}\right)\right]}
\end{gathered}
$$

- So the regular chains

$$
\left\{\begin{array}{l}
X_{3}-1=0 \\
X_{2}+1=0 \\
X_{1}=0
\end{array},\left\{\begin{array}{l}
X_{3}+1 / 2=0 \\
X_{2}+1=0 \\
X_{1}=0
\end{array}\right.\right.
$$

give the limit points of $W(R)$ at $X_{1}=0$.

- Puiseux series expansions of r_{1} at the point $X_{1}=-2$:

$$
\begin{gathered}
{\left[X_{1}=T-2, X_{2}=1+1 / 3 T+O\left(T^{2}\right)\right]} \\
{\left[X_{1}=T-2, X_{2}=-1 / 2-1 / 12 T+O\left(T^{2}\right)\right]}
\end{gathered}
$$

- After substitution into r_{2}, we obtain:

$$
\begin{gathered}
r_{12}^{\prime}=(T-2) T X_{3}{ }^{2}+\left(2+1 / 3 T+O\left(T^{2}\right)\right)\left(X_{3}+1\right) \\
r_{22}^{\prime}=(T-2) T X_{3}^{2}+\left(1 / 2-1 / 12 T+O\left(T^{2}\right)\right)\left(X_{3}+1\right) .
\end{gathered}
$$

- Puiseux expansions of r_{12}^{\prime} and r_{22}^{\prime} at $T=0$ resulting in limit points:
i) for $r_{12}^{\prime}:\left[T=T, X_{3}=-1+T+O\left(T^{2}\right)\right]$
ii) for $r_{22}^{\prime}:\left[T=T, X_{3}=-1+4 T+O\left(T^{2}\right)\right]$
- The limit points of $W(R)$ at $X_{1}=-2$ are represented by the regular chains $\left\{X_{1}+2, X_{2}-1, X_{3}+1\right\}$ and $\left\{X_{1}+2, X_{2}+1 / 2, X_{3}+1\right\}$.

Visualizing the limit points of $W(R)$

The limit points are:

$$
\left\{\begin{array}{l}
X_{3}-1=0 \\
X_{2}+1=0 \\
X_{1}=0
\end{array},\left\{\begin{array}{l}
X_{3}+1 / 2=0 \\
X_{2}+1=0 \\
X_{1}=0
\end{array},\left\{\begin{array}{l}
X_{3}+1=0 \\
X_{2}-1=0 \\
X_{1}+2=0
\end{array},\left\{\begin{array}{l}
X_{3}+1=0 \\
X_{2}+1 / 2=0 \\
X_{1}+2=0
\end{array}\right.\right.\right.\right.
$$

Plan

(1) The problem
(2) Motivation
(3) An introductory example (informal)
(4 more advanced example (informal)
(5) Limit points and Puiseux expansions of an algebraic curve
(6) Puiseux expansions of a regular chain and $\lim (W(T))$
(7) Computation of $\lim (W(T))$
(3) Experimentation
(9) Demo
(10) Conclusion

Zariski topology

Zariski closure

- Let \mathbf{k} be an algebraically closed field, like \mathbb{C}.
- We denote by \mathbb{A}^{s} the affine s-space over \mathbf{k}.
- An affine algebraic variety of \mathbb{A}^{s} is the set of common zeroes of a collection $F \subseteq \mathbf{k}\left[X_{1}, \ldots, X_{s}\right]$ of polynomials.
- The Zariski topology on \mathbb{A}^{s} is the topology whose closed sets are the affine algebraic varieties of \mathbb{A}^{s}.
- The Zariski closure of a subset $W \subseteq \mathbb{A}^{s}$ is the intersection of all affine algebraic varieties containing W.

The set $\{y=0, x \neq 0\}$ and its Zariski closure $\{y=0\}$.

Zariski topology and the Euclidean topology

The relation between the two topologies

- With $\mathbf{k}=\mathbb{C}$, the affine space \mathbb{A}^{s} is endowed with both topologies.
- The basic open sets of the Euclidean topology are the open balls.
- The basic open sets of Zariski topology are the complements of hypersurfaces.
- Thus, a Zariski closed (resp. open) set is closed (resp. open) in the Euclidean topology on \mathbb{A}^{s}.
- That is, Zariski topology is coarser than the Euclidean topology.

Theorem (The relation between two closures (D. Mumford))

- Let $V \subseteq \mathbb{A}^{s}$ be an irreducible affine variety.
- Let $U \subseteq V$ be nonempty and open in the Zariski topology induced on V.

Then, U has the same closure in both topologies. In fact, we have

$$
V=\bar{U}^{Z}=\bar{U}^{E}
$$

Limit points

Limit points

- Let (X, τ) be a topological space and $S \subseteq X$ be a subset.
- A point $p \in X$ is a limit point of S if every neighborhood of p contains at least one point of S different from p itself.
- If X is a metric space, the point p is a limit point of S if and only if there exists a sequence $\left(x_{n}, n \in \mathbb{N}\right)$ of points of $S \backslash\{p\}$ such that $\lim _{n \rightarrow \infty} x_{n}=p$.
- The limit points of S which do not belong to S are called non-trivial, denoted by $\lim (S)$.

Example

Consider the interval $S:=[1,2) \subset \mathbb{R}$. The point 2 is a non-trivial limit point of S.

Limit points of the quasi-component of a regular chain

Recall Mumford's Theorem

- Let $V \subseteq \mathbb{A}^{s}$ be an irreducible affine variety.
- Let $U \subseteq V$ be nonempty and open in the Zariski topology induced on V.
Then $V=\bar{U}^{Z}=\bar{U}^{E}$.

Corollary

Let R be a regular chain. Recall that $\operatorname{sat}(R):=\langle R\rangle: \operatorname{init}(R)^{\infty}$ is its saturated ideal and $W(R)=V(R) \backslash V(\operatorname{init}(R))$ is its quasi-component.
Then, we have

$$
V(\operatorname{sat}(R))=\overline{W(R)}^{Z}=\overline{W(R)}^{E} .
$$

- We use $\overline{W(R)}$ to denote this common closure.
- $\lim (W(R)):=\overline{W(R)} \backslash W(R)$ denotes the limit points of $W(R)$.

Field of Puiseux series

- Let T be a symbol.
- $\mathbb{C}[[T]]$: ring of formal power series.
- $\mathbb{C}\langle T\rangle$: ring of convergent power series.
- $\mathbb{C}\left[\left[T^{*}\right]\right]=\cup_{n=1}^{\infty} \mathbb{C}\left[\left[T^{\frac{1}{n}}\right]\right]$: ring of formal Puiseux series.
- $\mathbb{C}\left\langle T^{*}\right\rangle=\cup_{n=1}^{\infty} \mathbb{C}\left\langle T^{\frac{1}{n}}\right\rangle$: ring of convergent Puiseux series.
- $\mathbb{C}\left(\left(T^{*}\right)\right)$: quotient field of $\mathbb{C}\left[\left[T^{*}\right]\right]$, or the field of Puiseux series.
- $\mathbb{C}\left(\left\langle T^{*}\right\rangle\right)$: quotient field of $\mathbb{C}\left\langle T^{*}\right\rangle$, or the field of convergent Puiseux series.

We have

- $\mathbb{C}[[T]] \subset \mathbb{C}\left[\left[T^{*}\right]\right] \subset \mathbb{C}\left(\left(T^{*}\right)\right) ; \mathbb{C}\langle T\rangle \subset \mathbb{C}\left\langle T^{*}\right\rangle \subset \mathbb{C}\left(\left\langle T^{*}\right\rangle\right)$
- $\mathbb{C}\langle T\rangle \subset \mathbb{C}\left[\left[T^{*}\right]\right] ; \mathbb{C}\left\langle T^{*}\right\rangle \subset \mathbb{C}\left[\left[T^{*}\right]\right] ; \mathbb{C}\left(\left\langle T^{*}\right\rangle\right) \subset \mathbb{C}\left(\left(T^{*}\right)\right)$

Example
We have $\sum_{i=0}^{\infty} T^{i} \in \mathbb{C}\langle T\rangle, \sum_{i=0}^{\infty} T^{\frac{i}{2}} \in \mathbb{C}\left\langle T^{*}\right\rangle$ and $\sum_{i=-3}^{\infty} T^{\frac{i}{2}} \in \mathbb{C}\left(\left\langle T^{*}\right\rangle\right)$.

Theorem (Puiseux)

Both $\mathbb{C}\left(\left(T^{*}\right)\right)$ and $\mathbb{C}\left(\left\langle T^{*}\right\rangle\right)$ are algebraically closed fields.

Puiseux expansions

- Let $\mathbf{k}=\mathbb{C}\left(\left(X^{*}\right)\right)$ or $\mathbb{C}\left(\left\langle X^{*}\right\rangle\right)$.
- Let $f \in \mathbf{k}[Y]$, where $d:=\operatorname{deg}(f, Y)>0$.
- There exist $\varphi_{i} \in \mathbf{k}, i=1, \ldots, d$, such that

$$
\frac{f}{\operatorname{lc}(f, Y)}=\left(Y-\varphi_{1}\right) \cdots\left(Y-\varphi_{d}\right)
$$

- We call $\varphi_{1}, \ldots, \varphi_{d}$ the Puiseux expansions of f at the origin.

Example

- $\left(Y^{2}-X\right)=\left(Y-X^{\frac{1}{2}}\right)\left(Y+X^{\frac{1}{2}}\right)$.
- Puiseux expansions of $Y^{2}-X Y-X$:

$$
Y-\left(X^{\frac{1}{2}}+\frac{1}{2} X+\frac{1}{8} X^{\frac{3}{2}}+O\left(X^{2}\right)\right), Y-\left(-X^{\frac{1}{2}}+\frac{1}{2} X-\frac{1}{8} X^{\frac{3}{2}}+O\left(X^{2}\right)\right) .
$$

Puiseux parametrizations

Let $f \in \mathbb{C}\langle X\rangle[Y]$. A Puiseux parametrization of f is a pair $(\psi(T), \varphi(T))$ of elements of $\mathbb{C}\langle T\rangle$ for some new variable T, such that

- $\psi(T)=T^{\varsigma}$, for some $\varsigma \in \mathbb{N}_{>0}$.
- $f(X=\psi(T), Y=\varphi(T))=0$ holds in $\mathbb{C}\langle T\rangle$,
- there is no integer $k>1$ such that both $\psi(T)$ and $\varphi(T)$ are in $\mathbb{C}\left\langle T^{k}\right\rangle$. The index ς is the ramification index of the parametrization $\left(T^{\varsigma}, \varphi(T)\right)$.

Relation to Puiseux expansions

- Let $z_{1}, \ldots, z_{\varsigma}$ denote the primitive roots of unity of order ς in \mathbb{C}. Then $\varphi\left(z_{i} X^{1 / \varsigma}\right)$, for $i=1, \ldots, \varsigma$, are ς Puiseux expansions of f.
- For a Puiseux expansion φ of f, let c minimum s.t. $\varphi=g\left(T^{1 / c}\right)$ and $g \in \mathbb{C}\langle T\rangle$. Then $\left(T^{c}, g(T)\right)$ is a Puiseux parametrization of f.

Example
Puiseux parametrization of $Y^{2}-X Y-X$:

$$
\left(X=T^{2}, Y=T+\frac{1}{2} T^{2}+\frac{1}{8} T^{3}+O\left(T^{4}\right)\right)
$$

Plan

(1) The problem
(2) Motivation
(3) An introductory example (informal)
(4 more advanced example (informal)
(5) Limit points and Puiseux expansions of an algebraic curve
(6) Puiseux expansions of a regular chain and $\lim (W(T))$
(7) Computation of $\lim (W(T))$

8 Experimentation
(3) Demo
(10) Conclusion

Puiseux expansions of a regular chain

Notation

- Let $R:=\left\{r_{1}\left(X_{1}, X_{2}\right), \ldots, r_{s-1}\left(X_{1}, \ldots, X_{s}\right)\right\} \subset \mathbb{C}\left[X_{1}<\cdots<X_{s}\right]$ be a 1-dim regular chain.
- Assume R is strongly normalized, that is, $\operatorname{init}(R) \in \mathbb{C}\left[X_{1}\right]$.
- Let $\mathbf{k}=\mathbb{C}\left(\left\langle X_{1}^{*}\right\rangle\right)$.
- Then R generates a zero-dimensional ideal in $\mathbf{k}\left[X_{2}, \ldots, X_{s}\right]$.
- Let $V^{*}(R)$ be the zero set of R in \mathbf{k}^{s-1}.

Definition

We call Puiseux expansions of R the elements of $V^{*}(R)$.

Remarks

- The strongly normalized assumption is only for presentation ease.
- Generically, The 1-dim assumption extends to d - $\operatorname{dim} d \leq 2$.
- Higher dimension requires the Jung-Abhyankar theorem.

An example

A regular chain R

$$
R:=\left\{\begin{array}{l}
X_{1} X_{3}^{2}+X_{2} \\
X_{1} X_{2}^{2}+X_{2}+X_{1}
\end{array}\right.
$$

Puiseux expansions of R

$$
\begin{gathered}
\left\{\begin{array}{l}
X_{3}=1+O\left(X_{1}^{2}\right) \\
X_{2}=-X_{1}+O\left(X_{1}^{2}\right)
\end{array}\right. \\
\left\{\begin{array} { l }
{ X _ { 3 } = - 1 + O (X _ { 1 } ^ { 2 }) } \\
{ X _ { 2 } = - X _ { 1 } + O (X _ { 1 } ^ { 2 }) } \\
{ X _ { 3 } = X _ { 1 } ^ { - 1 } - \frac { 1 } { 2 } X _ { 1 } + O (X _ { 1 } ^ { 2 }) } \\
{ X _ { 2 } = - X _ { 1 } ^ { - 1 } + X _ { 1 } + O (X _ { 1 } ^ { 2 }) }
\end{array} \quad \left\{\begin{array}{lll}
X_{3} & =-X_{1}^{-1}+\frac{1}{2} X_{1}+O\left(X_{1}^{2}\right. \\
X_{2} & =-X_{1}^{-1}+X_{1}+O\left(X_{1}^{2}\right)
\end{array}\right.\right.
\end{gathered}
$$

Relation between $\lim _{0}(W(R))$ and Puiseux expansions of R

Theorem

For $W \subseteq \mathbb{C}^{s}$, denote

$$
\lim _{0}(W):=\left\{x=\left(x_{1}, \ldots, x_{s}\right) \in \mathbb{C}^{s} \mid x \in \lim (W) \text { and } x_{1}=0\right\}
$$

and define
$V_{\geq 0}^{*}(R):=\left\{\Phi=\left(\Phi^{1}, \ldots, \Phi^{s-1}\right) \in V^{*}(R) \mid \operatorname{ord}\left(\Phi^{j}\right) \geq 0, j=1, \ldots, s-1\right\}$.
Then we have

$$
\lim _{0}(W(R))=\cup_{\Phi \in V_{\geq 0}^{*}(R)}\left\{\left(X_{1}=0, \Phi\left(X_{1}=0\right)\right)\right\}
$$

$$
V_{\geq 0}^{*}(R):=\left\{\begin{array} { l }
{ X _ { 3 } = 1 + O (X _ { 1 } ^ { 2 }) } \\
{ X _ { 2 } = - X _ { 1 } + O (X _ { 1 } ^ { 2 }) }
\end{array} \cup \left\{\begin{array}{l}
X_{3}=-1+O\left(X_{1}^{2}\right) \\
X_{2}=-X_{1}+O\left(X_{1}^{2}\right)
\end{array}\right.\right.
$$

Thus the limit ponts are $\lim _{0}(W(R))=\{(0,0,1),(0,0,-1)\}$.

Puiseux parametrizations of a regular chain

Idea

- Let $\Phi_{i}=\left(\Phi_{i}^{1}, \ldots, \Phi_{i}^{s-1}\right) \in V_{\geq 0}^{*}(R)$ be a Puiseux expansion, $1 \leq i \leq M:=\left|V_{\geq 0}^{*}(R)\right|$. Recall that $\Phi_{i}^{1}, \ldots, \Phi_{i}^{s-1} \in \mathbb{C}\left(\left\langle X_{1}^{*}\right\rangle\right)$.
- Φ_{i} can be associated with a Puiseux parametrization $\left(X_{1}=T^{\varsigma_{i}}, X_{2}=g_{i}^{1}(T), \ldots, X_{s}=g_{i}^{s-1}(T)\right)$ with $g_{i}^{j} \in \mathbb{C}\langle T\rangle$.

Details

- Note: Φ_{i}^{j} is an expansion of $r_{j}\left(X_{1}, X_{2}=\Phi_{i}^{1}, \ldots, X_{j}=\Phi_{i}^{j-1}, X_{j+1}\right)$.
- Let $\left(T^{\varsigma_{i, j}}, X_{j}=\varphi_{i}^{j}(T)\right)$ be the corresponding Puiseux parametrization of Φ_{i}^{j}, where $\varsigma_{i, j}$ is the ramification index of Φ_{i}^{j}.
- Let ς_{i} be the I.c.m. of $\left\{\varsigma_{i, 1}, \ldots, \varsigma_{i, s-1}\right\}$ and $g_{i}^{j}:=\varphi_{i}^{j}\left(T=T^{\varsigma_{i} / \varsigma_{i, j}}\right)$.

Definition

$\mathfrak{G}_{R}:=\left\{\left(X_{1}=T^{\varsigma_{i}}, X_{2}=g_{i}^{1}(T), \ldots, X_{s}=g_{i}^{s-1}(T)\right), i=1, \ldots, M\right\}$ is a system of Puiseux parametrizations of R.

Relation between $\lim _{0}(W(R))$ and Puiseux parametrizations of R

Notation (recall)
Let $\mathfrak{G}_{R}:=\left\{\left(X_{1}=T^{\varsigma_{i}}, X_{2}=g_{i}^{1}(T), \ldots, X_{s}=g_{i}^{s-1}(T)\right), i=1, \ldots, M\right\}$ be a system of Puiseux parametrizations of R.

Theorem
We have

$$
\lim _{0}(W(R))=\mathfrak{G}_{R}(T=0)
$$

Plan

(1) The problem
(2) Motivation
(3) An introductory example (informal)
(1) A more advanced example (informal)
(5) Limit points and Puiseux expansions of an algebraic curve
(3) Puiscux expansions of a regular chain and $\lim (W(T))$
(7) Computation of $\lim (W(T))$

8 Experimentation
(9) Demo
(10) Conclusion

Limit points of a plane curve (without Puiseux parametrizations)

Theorem (Lemaire-MorenoMaza-Pan-Xie 08, $\langle T\rangle \stackrel{?}{=} \operatorname{sat}(T)$) Let $f \in \mathbb{C}[X][Y]$. Assume that f is primitive in Y. Then $\lim _{0}(W(f))=\{(0, y) \mid f(0, y)=0\}$.

Theorem (R.J. Walker, 50)
Let $f \in \mathbb{C}[X][Y]$. Assume that f is general in Y, that is $f(0, Y) \neq 0$. Then, $\lim _{0}(W(f))=\{(0, y) \mid f(0, y)=0\}$.

Theorem

- Let $f \in \mathbb{C}\langle X\rangle[Y]$.
- Assume that f is general in Y.
- Let $\rho>0$ be small enough such that f converges in $|X|<\rho$.
- Let $V_{\rho}(f):=\{(x, y)|0<|x|<\rho, f(x, y)=0\}$.

Then, we have $\lim _{0}\left(V_{\rho}(f)\right)=\{(0, y) \mid f(0, y)=0\}$.

From algebra to computer: what is the challenge?

Algebra
Let \mathfrak{G}_{R} be a system of Puiseux parametrizations of R. Recall that we have

$$
\lim _{0}(W(R))=\mathfrak{G}_{R}(T=0)
$$

When Walker's theorem applies or when the T is a primitive regular chain, we do not need to compute $\mathfrak{G}_{R}(T=0)$. However, those are criteria only!

How to compute \mathfrak{G}_{R} when the previous criteria do not apply?

- We shall not compute \mathfrak{G}_{R}.
- We need to compute $\mathfrak{G}_{R}(T=0)$.
- In fact, we compute a truncation (approximation) of \mathfrak{G}_{R}.

The back-substitution process for computing \mathfrak{G}_{R}

Specifications

Input: $R:=\left\{r_{1}\left(X_{1}, X_{2}\right), \ldots, r_{s-1}\left(X_{1}, \ldots, X_{s}\right)\right\}$ a 1-dim strongly normalized regular chain.
Output: \mathfrak{G}_{R} : a system of Puiseux parametrizations of R.
Algorithm

Polynomial	Substitution	Puiseux parametrsation
$r_{1}\left(X_{1}, X_{2}\right)$	N / A	$\left(X_{1}=T_{1}^{\varsigma_{1}}, X_{2}=\varphi_{1}\left(T_{1}\right)\right)$
$r_{2}\left(X_{1}, X_{2}, X_{3}\right)$	$r_{2}\left(T_{1}^{\varsigma_{1}}, \varphi_{1}\left(T_{1}\right), X_{3}\right)$	$\left(T_{1}=T_{2}^{\varsigma_{2}}, X_{3}=\varphi_{2}\left(T_{2}\right)\right)$
$r_{3}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$	$r_{3}\left(T_{2}^{\varsigma_{1} \varsigma_{2}}, \varphi_{1}\left(T_{2}^{\varsigma_{2}}\right), \varphi_{2}\left(T_{2}\right), X_{4}\right)$	$\left(T_{2}=T_{3}^{\varsigma_{3}}, X_{4}=\varphi_{3}\left(T_{3}\right)\right)$

More generally, for $i=2, \ldots, s-1$, we define:

- $f_{i}:=r_{i}\left(X_{1}=T_{1}^{\varsigma 1}, X_{2}=\varphi_{1}\left(T_{1}\right), \ldots, X_{i}=\varphi_{i-1}\left(T_{i-1}\right), X_{i+1}\right) \in$ $\mathbb{C}\left\langle T_{i-1}\right\rangle\left[X_{i+1}\right]$,
- $\left(T_{i}:=T_{i-1}^{\varsigma_{i}}, X_{i+1}:=\varphi_{i}\left(T_{i}\right)\right)$.

New problem: compute Puiseux parametrizations of f_{i} of given accuracy.

Puiseux parametrizations of $f \in \mathbb{C}\langle X\rangle[Y]$ of finite accuracy

Definition

- Let $f=\sum_{i=0}^{\infty} a_{i} X^{i} \in \mathbb{C}[[X]]$.
- For any $\tau \in \mathbb{N}$, let $f^{(\tau)}:=\sum_{i=0}^{\tau} a_{i} X^{i}$.
- We call $f^{(\tau)}$ the polynomial part of f of accuracy $\tau+1$.

Definition

- Let $f \in \mathbb{C}\langle X\rangle[Y], \operatorname{deg}(f, Y)>0$.
- Let $\sigma, \tau \in \mathbb{N}_{>0}$ and $g(T)=\sum_{k=0}^{\tau-1} b_{k} T^{k}$.
- Let $\left\{T^{k_{1}}, \ldots, T^{k_{m}}\right\}$ be the support of $g(T)$.
- The pair $\left(T^{\sigma}, g(T)\right)$ is called a Puiseux parametrization of f of accuracy τ if there exists a Puiseux parametrization $\left(T^{\varsigma}, \varphi(T)\right)$ of f such that
(i) σ divides ς.
(ii) $\operatorname{gcd}\left(\sigma, k_{1}, \ldots, k_{m}\right)=1$.
(iii) $g\left(T^{\varsigma / \sigma}\right)$ is the polynomial part of $\varphi(T)$ of accuracy $(\varsigma / \sigma)(\tau-1)+1$.

Computing Puiseux parametrizations of $f \in \mathbb{C}\langle X\rangle[Y]$ of finite accuracy

Theorem

- Let $f=\sum_{i=0}^{d} \sum_{j=0}^{\infty} a_{i, j} Y^{i} \in \mathbb{C}\langle X\rangle[Y]$.
- Then we can compute $m \in \mathbb{N}$ such that the Puiseux parametrizations of f of accuracy τ are exactly the Puiseux parametrizations of $\sum_{i=0}^{d} \sum_{j=0}^{m-1} a_{i, j} Y^{i}$ of accuracy τ.

Lemma

- Let $f=a_{d}(X) Y^{d}+\cdots+a_{0}(X) \in \mathbb{C}\langle X\rangle[Y]$.
- Let $\delta:=\operatorname{ord}\left(a_{d}(X)\right)$.
- Then "generically", we can choose $m=\tau+\delta$.

Recall the back-substitution process for computing \mathfrak{G}_{R}

Algorithm

Polynomial	Substitution	Puiseux parametrsation
$r_{1}\left(X_{1}, X_{2}\right)$	N / A	$\left(X_{1}=T_{1}^{\varsigma_{1}}, X_{2}=\varphi_{1}\left(T_{1}\right)\right)$
$r_{2}\left(X_{1}, X_{2}, X_{3}\right)$	$r_{2}\left(T_{1}^{\varsigma_{1}}, \varphi_{1}\left(T_{1}\right), X_{3}\right)$	$\left(T_{1}=T_{2}^{\varsigma_{2}}, X_{3}=\varphi_{2}\left(T_{2}\right)\right)$
$r_{3}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$	$r_{3}\left(T_{2}^{\varsigma_{1} \varsigma_{2}}, \varphi_{1}\left(T_{2}^{\varsigma_{2}}\right), \varphi_{2}\left(T_{2}\right), X_{4}\right)$	$\left(T_{2}=T_{3}^{\zeta_{3}}, X_{4}=\varphi_{3}\left(T_{3}\right)\right)$

More generally, for $i=2, \ldots, s-1$, we define:

- $f_{i}:=r_{i}\left(X_{1}=T_{1}^{\varsigma_{1}}, X_{2}=\varphi_{1}\left(T_{1}\right), \ldots, X_{i}=\varphi_{i-1}\left(T_{i-1}\right), X_{i+1}\right) \in$ $\mathbb{C}\left\langle T_{i-1}\right\rangle\left[X_{i+1}\right]$,
- $\left(T_{i}:=T_{i-1}^{\varsigma_{i}}, X_{i+1}:=\varphi_{i}\left(T_{i}\right)\right)$.

Putting everything together

Let $R:=\left\{r_{1}\left(X_{1}, X_{2}\right), \ldots, r_{s-1}\left(X_{1}, \ldots, X_{s}\right)\right\} \subset \mathbb{C}\left[X_{1}<\cdots<X_{s}\right]$. For $1 \leq i \leq s-1$, let

- $h_{i}:=\operatorname{init}\left(r_{i}\right)$
- $d_{i}:=\operatorname{deg}\left(r_{i}, X_{i+1}\right)$
- $\delta_{i}:=\operatorname{ord}\left(h_{i}\right)$.

Theorem

One can compute positive integer numbers $\tau_{1}, \ldots, \tau_{s-1}$ such that, in order to compute $\lim _{0}(W(R))$, it sufficies to compute Puiseux parametrizations of f_{i} of accuracy τ_{i}, for $i=1, \ldots, s-1$. Moreover, generically, we can choose $\tau_{i}, i=1, \ldots, s-1$, as follows

- $\tau_{s-1}:=1$
- $\tau_{s-2}:=\left(\prod_{k=1}^{s-2} \varsigma_{k}\right) \delta_{s-1}+1$
- $\tau_{i}=\left(\prod_{k=1}^{s-2} \varsigma_{k}\right)\left(\sum_{k=2}^{s-1} \delta_{i}\right)+1, i=1, \ldots, s-3$.

Moreover, the indices ς_{k} can be replaced with $d_{k}, k=1, \ldots, s-2$.

Plan

(1) The problem
(2) Motivation
(3) An introductory example (informal)
(4) A more advanced cxample (informal)
(5) Limit points and Puiseux expansions of an algebraic curve
(3) Puiscux cxpansions of a regular chain and $\lim (W(T))$
(7) Computation of $\lim (W(T))$

(8) Experimentation

(9) Demo
(10) Conclusion

Maple packages used: RegularChains and algcurves:-puiseux.

- T : timings of Triangularize
- \#(T): number of regular chains returned by Triangularize
- d-1, d-0: number of one and zero dimensional components
- R : timings spent on removing redundant components
- \#(R): number of irredundant components

Table: Removing redundant components in Kalkbrener decompositions.

Sys	T	$\#(\mathrm{~T})$	$\mathrm{d}-1$	$\mathrm{~d}-0$	R	$\#(\mathrm{R})$
f-744	14.360	4	1	3	432.567	1
Liu-Lorenz	0.412	3	3	0	216.125	3
MontesS3	0.072	2	2	0	0.064	2
Neural	0.296	5	5	0	1.660	5
Solotareff-4a	0.632	7	7	0	32.362	7
Vermeer	1.172	2	2	0	75.332	2
Wang-1991c	3.084	13	13	0	6.280	13

Plan

(1) The problem
(2) Motivation
(3) An introductory example (informal)
(4) A more advanced example (informal)
(5) Limit points and Puiseux expansions of an algebraic curve
(3) Puiscux cxpansions of a regular chain and $\lim (W(T))$
(7) Computation of $\lim (W(T))$
(3) Experimentation
(9) Demo
(1) Conclusion

Plan

(1) The problem
(2) Motivation
(3) An introductory example (informal)
(4) A more advanced example (informal)
(5) Limit points and Puiseux expansions of an algebraic curve
(3) Puiscux expansions of a regular chain and $\lim (W(T))$
(7) Computation of $\lim (W(T))$
(3) Experimentation
(9) Demo
(10) Conclusion

Concluding remarks

- We proposed an algorithm for computing the limit points of the quasi-component of a regular chain in dimension one.
- To this end, we make use of the Puiseux series expansions of a regular chain.
- In addition, we have sharp bounds on the degree of truncations that are required to compute approximate Puiseux series expansions from which the desired limit points can be obtained.
- Our experimental results show that this is a useful tool for dealing with triangular decompositions of polynomial systems.
- For instance, for testing inclusion between saturated ideals of regular chains in a direct manner (i.e. without computing a basis).
- Computing limit points in higher dimension may require the help of the Abhyankar-Jung theorem. This is work in progress.

