Extended QRGCD Algorithm

Kosaku Nagasaka and Takaaki Masui

Kobe University and Kobe-Takatsuka High School

09:30-10:00, September 10th

This work was supported in part by Japanese Ministry of Education, Culture, Sports, Science and Technology under Grant-in-Aid for Young Scientists, MEXT KAKENHI (22700011).

What is
 "approxinnatersin?

Approximate GCD

GCD (Greatest Common Divisor) \Leftarrow Exact GCD

$$
f(x)=x^{2}+2 x+1, g(x)=x^{2}-1 \Rightarrow \operatorname{gcd}(f, g)=x+1
$$

The polynomial of maximum degree, which divides $f(x)$ and $g(x)$.

Approximate GCD

GCD (Greatest Common Divisor) \Leftarrow Exact GCD

$$
f(x)=x^{2}+2 x+1, g(x)=x^{2}-1 \Rightarrow \operatorname{gcd}(f, g)=x+1
$$

The polyno Adding Some Noise ree, which divides $f(x)$ and $g(x)$.

Approximate GCD (Greatest Common Divisor)

$$
\begin{aligned}
& f(x)=0.999 x^{2}+1.999 x+1.001, g(x)=1.001 x^{2}-0.999 \\
& \Rightarrow \operatorname{gcd}(f, g)=1 \quad(\text { coprime })
\end{aligned}
$$

GCD with some consideration of a priori error (perturbation) hence it's a GCD in the neighborhood of the given polynomials.

Approximate GCD

GCD (Greatest Common Divisor) \Leftarrow Exact GCD

$$
f(x)=x^{2}+2 x+1, g(x)=x^{2}-1 \Rightarrow \operatorname{gcd}(f, g)=x+1
$$

The polyno Adding Some Noise ree which divides $f(x)$ and $g(x)$.
Approximate GCD (Greatest Common Divisor)

$$
\begin{aligned}
& f(x)=0.999 x^{2}+1.999 x+1.001, g(x)=1.001 x^{2}-0.999 \\
& \Rightarrow \operatorname{gcd}(f, g)=1 \quad(\text { coprime }) \\
& \Rightarrow \operatorname{agcd}(f, g)=1.00063 x+0.999375
\end{aligned}
$$

GCD with some consideration of a priori error (perturbation) hence it's a GCD in the neighborhood of the given polynomials.

Approximate GCD

GCD (Greatest Common Divisor) \Leftarrow Exact GCD

$$
f(x)=x^{2}+2 x+1, g(x)=x^{2}-1 \Rightarrow \operatorname{gcd}(f, g)=x+1
$$

The pollyno Adding Some Noise ree, which divides $f(x)$ and $g(x)$.

Approximate GCD (Greatest Common Divisor)

$$
\begin{aligned}
& f(x)=0.999 x^{2}+1.999 x+1.001, g(x)=1.001 x^{2}-0.999 \\
& \Rightarrow \operatorname{gcd}(f, g)=1 \quad(\text { coprime }) \\
& \Rightarrow \operatorname{agcd}(f, g)=1.00063 x+0.999375 \\
& =\operatorname{gcd}\left(f+\left(-0.0003343 x^{2}+0.0003347 x-0.0003351\right),\right. \\
& \left.\quad g+\left(0.0001666 x^{2}-0.0001669 x+0.0001671\right)\right)
\end{aligned}
$$

GCD with some consideration of a priori error (perturbation) hence it's a GCD in the neighborhood of the given polynomials.

Problem Formulation of approximate GCD

Given: $f(x), g(x) \in \mathbb{R}[x]$, tolerance $\varepsilon \in \mathbb{R}_{\geq 0} \quad(\mathbb{R}[x]$ could be $\mathbb{C}[x])$ Find: $d(x) \in \mathbb{R}[x]\left(\Delta_{f}(x), \Delta_{g}(x), f_{1}(x), g_{1}(x) \in \mathbb{R}[x]\right)$

$$
f(x)+\Delta_{f}(x)=f_{1}(x) d(x), g(x)+\Delta_{g}(x)=g_{1}(x) d(x)
$$ $\operatorname{deg}\left(\Delta_{f}\right) \leq \operatorname{deg}(f), \operatorname{deg}\left(\Delta_{g}\right) \leq \operatorname{deg}(g),\left\|\Delta_{f}\right\|_{2}<\varepsilon\|f\|_{2},\left\|\Delta_{g}\right\|_{2}<\varepsilon\|g\|_{2}$ $d(x)$: approximate GCD, $f_{1}(x)$ and $g_{1}(x)$: approximate cofactors, $\Delta_{f}(x)$ and $\Delta_{g}(x)$: perturbations

Problem Formulation of approximate GCD

Given: $f(x), g(x) \in \mathbb{R}[x]$, tolerance $\varepsilon \in \mathbb{R}_{\geq 0} \quad(\mathbb{R}[x]$ could be $\mathbb{C}[x])$ Find: $d(x) \in \mathbb{R}[x]\left(\Delta_{f}(x), \Delta_{g}(x), f_{1}(x), g_{1}(x) \in \mathbb{R}[x]\right)$

$$
f(x)+\Delta_{f}(x)=f_{1}(x) d(x), g(x)+\Delta_{g}(x)=g_{1}(x) d(x)
$$

$\operatorname{deg}\left(\Delta_{f}\right) \leq \operatorname{deg}(f), \operatorname{deg}\left(\Delta_{g}\right) \leq \operatorname{deg}(g),\left\|\Delta_{f}\right\|_{2}<\varepsilon\|f\|_{2},\left\|\Delta_{g}\right\|_{2}<\varepsilon\|g\|_{2}$ $d(x)$: approximate GCD, $f_{1}(x)$ and $g_{1}(x)$: approximate cofactors, $\Delta_{f}(x)$ and $\Delta_{g}(x)$: perturbations

Example: $f(x)=0.999 x^{2}+1.999 x+1.001, g(x)=1.001 x^{2}-0.999$

$$
\begin{aligned}
& d(x)=1.00063 x+0.999375, \varepsilon=0.0005796959 \\
& f_{1}(x)=0.998042 x+1.00129, g_{1}(x)=1.00054 x-0.999458, \\
& \Delta_{f}(x)=-0.000334269 x^{2}+0.000334687 x-0.000335106, \\
& \Delta_{g}(x)=0.000166643 x^{2}-0.000166851 x+0.00016706
\end{aligned}
$$

Known Methods (Revealing-Degree type, univariate polynomial)

QRGCD (by R.M.Corless, S.M.Watt and L.Zhi, 2004) (widely used) - Do this twice (QR factoring detects roots inside the unit circle).

UVGCD (by Z.Zeng, 2004 and 2011) (stable for multiple roots)

- QR factoring of subresultant matrices (for the smallest singular value and the corresponding vector).
- Tentative approximate GCD by the least squares.
- Refine approximate GCD by the Gauss-Newton method

Fastgcd (by D.A.Bini and P.Boito, 2007 and 2010) (fast and stable)

- Based on the LU factoring of Sylvester matrix (Toeplitz block).
- Transform it into Cauchy-like matrix and use a modified GKO (Gohberg-Kailath-Olshevsky) method for LU factoring.
- Refine approximate GCD by some refinement method.

Known Methods (Revealing-Degree type, univariate polynomial)

QRGCD (by R.M.Corless, S.M.Watt and L.Zhi, 2004) (widely used)

- QR factoring of Sylvester matrix (PRS appear on rows of R).
- Do this twice (QR factoring detects roots inside the unit circle).

UVGCD (by Z.Zeng, 2004 and 2011) (stable for multiple roots)

- QR factoring of subresultant matrices
(for the smallest singular value and the corresponding vector)
- Tentative approximate GCD by the least squares.
- Refine approximate GCD by the Gauss-Newton method

Fastgcd (by D.A.Bini and P.Boito, 2007 and 2010) (fast and stable)

Known Methods (Revealing-Degree type, univariate polynomial)

QRGCD (by R.M.Corless, S.M.Watt and L.Zhi, 2004) (widely used)

- QR factoring of Sylvester matrix (PRS appear on rows of R).
- Do this twice (QR factoring detects roots inside the unit circle). UVGCD (by Z.Zeng, 2004 and 2011) (stable for multiple roots)
- QR factoring of subresultant matrices
(for the smallest singular value and the corresponding vector).
- Tentative approximate GCD by the least squares.
- Refine approximate GCD by the Gauss-Newton method.

Fastgcd (by D.A.Bini and P.Boito, 2007 and 2010) (fast and stable)

Known Methods (Revealing-Degree type, univariate polynomial)

QRGCD (by R.M.Corless, S.M.Watt and L.Zhi, 2004) (widely used)

- QR factoring of Sylvester matrix (PRS appear on rows of R).
- Do this twice (QR factoring detects roots inside the unit circle).

UVGCD (by Z.Zeng, 2004 and 2011) (stable for multiple roots)

- QR factoring of subresultant matrices
(for the smallest singular value and the corresponding vector).
- Tentative approximate GCD by the least squares.
- Refine approximate GCD by the Gauss-Newton method.

Fastgcd (by D.A.Bini and P.Boito, 2007 and 2010) (fast and stable)

- Based on the LU factoring of Sylvester matrix (Toeplitz block).
- Transform it into Cauchy-like matrix and use a modified GKO (Gohberg-Kailath-Olshevsky) method for LU factoring.
- Refine approximate GCD by some refinement method.

Brief framework of QRGCD.

Brief framework of the QRGCD algorithm

Sylvester matrix (in this talk)

$$
\begin{aligned}
& f(x)=f_{m} x^{m}+f_{m-1} x^{m-1}+\cdots+f_{1} x+f_{0} \\
& g(x)=g_{n} x^{n}+g_{n-1} x^{n-1}+\cdots+g_{1} x+g_{0}
\end{aligned}
$$

$$
\operatorname{Syl}(f, g)=\left(\begin{array}{cccccccc}
f_{m} & f_{m-1} & \cdots & f_{1} & f_{0} & & & \\
& f_{m} & f_{m-1} & \cdots & f_{1} & f_{0} & & \\
& & \ddots & \ddots & \cdots & \ddots & \ddots & \\
& & & f_{m} & f_{m-1} & \cdots & f_{1} & f_{0} \\
g_{n} & g_{n-1} & \cdots & g_{1} & g_{0} & & & \\
& g_{n} & g_{n-1} & \cdots & g_{1} & g_{0} & & \\
& & \ddots & \ddots & \cdots & \ddots & \ddots & \\
& & & g_{n} & g_{n-1} & \cdots & g_{1} & g_{0}
\end{array}\right)
$$

$$
\in \mathbb{C}^{(m+n) \times(m+n)}
$$

How the QRGCD algorithm works

$$
d(x)=1
$$

$$
\operatorname{Syl}(f, g)=
$$

$$
\ell=m+n
$$

How the QRGCD algorithm works

$$
d(x)=1
$$

$$
\operatorname{Syl}(f, g)=
$$

$$
\frac{\left\|R^{(k-1)}\right\|_{2}}{\left\|R^{(k)}\right\|_{2}}<10 \varepsilon \Longrightarrow d_{1}(x):=r_{\ell-k, \ell-k} x^{k}+\cdots+r_{\ell-k, \ell-1} x+r_{\ell-k, \ell}
$$

$$
\ell=m+n
$$

How the QRGCD algorithm works

$$
\begin{aligned}
& d(x)=d_{1}(x), f_{1}(x) \approx f(x) \div d_{1}(x), g_{1}(x) \approx g(x) \div d_{1}(x) \\
& \quad \operatorname{Syl}\left(\operatorname{rev}\left(f_{1}\right), \operatorname{rev}\left(g_{1}\right)\right)= \\
& \quad\left(\begin{array}{ccccccc}
r_{1,1} & r_{1,2} & \cdots & \cdots & \cdots & \cdots & r_{1, \tilde{\ell}} \\
& r_{2,2} & r_{2,3} & \cdots & \cdots & \cdots & r_{2, \tilde{\ell}} \\
& & \ddots & \ddots & \ddots & \ddots & \vdots \\
& & & r_{\tilde{\ell}-k, \tilde{\ell}-k} & r_{\tilde{\ell}-k, \tilde{\ell}-k+1} & \cdots & r_{\tilde{\ell}-k, \tilde{\ell}} \\
& & & r_{\tilde{\ell}-(k-1), \tilde{\ell}-(k-1)} & \cdots & r_{\tilde{\ell}-(k-1), \tilde{\ell}} \\
& & & & & \ddots & \vdots \\
& & & & & & r_{\tilde{\ell}, \tilde{\ell}}
\end{array}\right)
\end{aligned}
$$

(the reversal of $h(x)$ is defined by $\operatorname{rev}(h)=h(x) \mapsto x^{\operatorname{deg}(h)} h(1 / x)$)

$$
\tilde{\ell}=\operatorname{deg}\left(f_{1}\right)+\operatorname{deg}\left(g_{1}\right)
$$

How the QRGCD algorithm works

$$
d(x)=d_{1}(x), f_{1}(x) \approx f(x) \div d_{1}(x), g_{1}(x) \approx g(x) \div d_{1}(x)
$$

$$
\operatorname{Syl}\left(\operatorname{rev}\left(f_{1}\right), \operatorname{rev}\left(g_{1}\right)\right)=
$$

$$
\begin{array}{r}
\frac{\left\|R^{(k-1)}\right\|_{2}}{\left\|R^{(k)}\right\|_{2}}<10 \varepsilon \Longrightarrow d_{2}(x):=\operatorname{rev}\left(r_{\tilde{\ell}-k, \tilde{\ell}-k} x^{k}+\cdots+r_{\tilde{\ell}-k, \tilde{\ell}-1} x+r_{\tilde{\ell}-k, \tilde{\ell})}\right) \\
\tilde{\ell}=\operatorname{deg}\left(f_{1}\right)+\operatorname{deg}\left(g_{1}\right)
\end{array}
$$

How the QRGCD algorithm works

$$
d(x)=d_{1}(x) d_{2}(x), f_{1}(x) \approx f(x) \div d(x), g_{1}(x) \approx g(x) \div d(x)
$$

$\operatorname{Syl}\left(\operatorname{rev}\left(f_{1}\right), \operatorname{rev}\left(g_{1}\right)\right)=$

$$
\frac{\left\|R^{(k-1)}\right\|_{2}}{\left\|R^{(k)}\right\|_{2}}<10 \varepsilon \Longrightarrow d_{2}(x):=\operatorname{rev}\left(r_{\tilde{\ell}-k, \tilde{\ell}-k} x^{k}+\cdots+r_{\tilde{\ell}-k, \tilde{\ell}-1} x+r_{\tilde{\ell}-k, \tilde{\ell}}\right)
$$

$$
\tilde{\ell}=\operatorname{deg}\left(f_{1}\right)+\operatorname{deg}\left(g_{1}\right)
$$

The QRGCD algorithm (briefly described)

1 Compute the QR decomposition of $\operatorname{Syl}(f, g): \operatorname{Syl}(f, g)=Q R$
2 For integer k satisfying $\left\|R^{(k)}\right\|_{2}>\varepsilon$ and $\left\|R^{(k-1)}\right\|_{2}<\varepsilon$, do Case1: approximately coprime

$$
\left\|R^{(0)}\right\|_{2}>\varepsilon
$$

Case2: absolute and relative gap found

$$
\frac{\left\|R^{(k-1)}\right\|_{2}}{\left\|R^{(k)}\right\|_{2}} \Longrightarrow d(x):=\text { the last } k \text {-th row of } R
$$

Case3: relative gap found

$$
\exists k_{1}, \frac{\left\|R^{\left(k_{1}-1\right)}\right\|_{2}}{\left\|R^{\left(k_{1}\right)}\right\|_{2}}<10 \varepsilon \Longrightarrow d(x):=\text { last } k_{1} \text {-th row }
$$

Case4: no gap found but not coprime
Otherwise (we will call the Split algorithm)
3 Do the above for the reversals of approximate cofactors. (the reversal of $h(x)$ is defined by $h(x) \mapsto x^{\operatorname{deg}(h)} h(1 / x)$)

The weak points of QRGCD

How to find candidates of approximate GCD

- QDGCD secks a row of P, which is absolutely close to $d(x)$
- This allows the QRGCD algorithm to detect a polynomial whose structure is far from the nearest approximate GCD

```
How to determine an approximate GCD among candidates
- QRGCD tries to detect a factor of maximum degree at once
- This has a non-preferred effect which was not shown in QRGCD
■ It may detect a fake common root inside the unit circle. ■ It may output a polynomial with \(\left\|\Delta_{f}\right\|>\varepsilon\|f\|,\left\|\Delta_{g}\right\|>\varepsilon \| g\)
```


The weak points of QRGCD

How to find candidates of approximate GCD

- QRGCD seeks a row of R, which is absolutely close to $d(x)$.
- This allows the QRGCD algorithm to detect a polynomial whose structure is far from the nearest approximate GCD.

The weak points of QRGCD

How to find candidates of approximate GCD

- QRGCD seeks a row of R, which is absolutely close to $d(x)$.

■ This allows the QRGCD algorithm to detect a polynomial whose structure is far from the nearest approximate GCD.
\Longrightarrow It should be a relative closeness instead of absolute one.

The weak points of QRGCD

How to find candidates of approximate GCD

- QRGCD seeks a row of R, which is absolutely close to $d(x)$.
- This allows the QRGCD algorithm to detect a polynomial whose structure is far from the nearest approximate GCD.
\Longrightarrow It should be a relative closeness instead of absolute one.
How to determine an approximate GCD among candidates
- QRGCD tries to detect a factor of maximum degree at once.

■ This has a non-preferred effect which was not shown in QRGCD.

- It may detect a fake common root inside the unit circle.

■ It may output a polynomial with $\left\|\Delta_{f}\right\|>\varepsilon\|f\|,\left\|\Delta_{g}\right\|>\varepsilon\|g\|$.

The weak points of QRGCD

How to find candidates of approximate GCD

- QRGCD seeks a row of R, which is absolutely close to $d(x)$.
- This allows the QRGCD algorithm to detect a polynomial whose structure is far from the nearest approximate GCD.
\Longrightarrow It should be a relative closeness instead of absolute one.
How to determine an approximate GCD among candidates
- QRGCD tries to detect a factor of maximum degree at once.
- This has a non-preferred effect which was not shown in QRGCD.
- It may detect a fake common root inside the unit circle.
- It may output a polynomial with $\left\|\Delta_{f}\right\|>\varepsilon\|f\|,\left\|\Delta_{g}\right\|>\varepsilon\|g\|$.
\Longrightarrow It should be a factor with small perturbations regardless degrees.

How improved in ExQRGCD?

Important fact (1) used in our ExQRGCD

Relative closeness of the rows of R to the approximate GCD

Let $r(x)$ be a polynomial with coefficients \vec{r} which is a row of R, and $d_{r}(x)$ be a factor of $d(x)$, whose roots are $\left\{\omega_{1}, \ldots, \omega_{k}\right\}$. Then, an upper bound of relative distance of $r(x)$ from $d_{r}(x)$ is given by

$$
\frac{\left\|r(x)-d_{r}(x)\right\|_{2}}{\|r(x)\|_{2}} \leq \sqrt{k+1} \kappa_{2}\left(\Omega_{*}\left(d_{r}\right)\right) \frac{\left\|\operatorname{Syl}\left(\Delta_{f}, \Delta_{g}\right)\right\|_{2}}{\|r(x)\|_{2}}
$$

where $\Omega_{*}\left(d_{r}\right)$ is the matrix in $\mathbb{C}^{k \times(m+n)}$, whose (i, j)-element is ω_{i}^{m+n-j}, and $\kappa_{2}\left(\Omega_{*}\left(d_{r}\right)\right)$ denotes the condition number of $\Omega_{*}\left(d_{r}\right)$.
\Longrightarrow ExQRGCD seeks a row $\overrightarrow{r_{k}}$ such that $\frac{\left\|R^{(k-1)}\right\|_{2}}{\left\|r_{k}\right\|_{2}}$ is small.

$$
\text { (instead of } \frac{\left\|R^{(k-1)}\right\|_{2}}{\left\|R^{(k)}\right\|_{2}} \text { in QRGCD) }
$$

Important fact (2) used in our ExQRGCD

QR factoring may not detect common roots outside the unit circle
There exists a pair of polynomials $f(x)$ and $g(x)$ such that the QR decomposition of $\operatorname{Syl}(f, g)$ cannot detect any outside-root factor of the approximate GCD. Moreover, we need to detect such factors from $\operatorname{rev}(f)$ and $\operatorname{rev}(g)$ or their cofactors several times and combine them.

Note that $\operatorname{rev}(h)$ is defined by $h(x) \mapsto x^{\operatorname{deg}(h)} h(1 / x)$.
Please note that the same claim is also given in the original QRGCD. Our result is that we proved it more carefully by the different way (based on a property of Sylvester's single sum).
\Longrightarrow ExQRGCD seeks a row \vec{r}_{k} such that the resulting perturbations Δ_{f} and Δ_{g} are smallest among the candidates.

How our ExQRGCD algorithm works

$$
d(x)=1, f_{1}(x)=f(x), g_{1}(x)=g(x)
$$

$$
\operatorname{Syl}\left(f_{1}, g_{1}\right)=
$$

$Q\left(\begin{array}{ccccccc}r_{1,1} & r_{1,2} & \cdots & \cdots & \cdots & \cdots & r_{1, \ell} \\ & r_{2,2} & r_{2,3} & \cdots & \cdots & \cdots & r_{2, \ell} \\ & & \ddots & \ddots & \ddots & \ddots & \vdots \\ & & & r_{\ell-k, \ell-k} & \begin{array}{c}r_{\ell-k, \ell-k+1} \\ r_{\ell-(k-1), \ell-(k-1)}\end{array} & \cdots & \cdots \\ & & & & & r_{\ell-k, \ell} \\ & & & & & \ddots & \vdots \\ & & & & & & r_{\ell, \ell}\end{array}\right)$

$d_{1}(x):=r_{k}(x)$ s.t. the corresponding $\overrightarrow{r_{k}}$ meets the condition that
 $\left.\Delta_{g}\right)$ w.r.t. $d_{1}(x)$ satisfies the tolerance.
 $$
\ell=\operatorname{deg}\left(f_{1}\right)+\operatorname{deg}\left(g_{1}\right)
$$

How our ExQRGCD algorithm works

$$
\begin{aligned}
& d(x)=1, f_{1}(x)=f(x), g_{1}(x)=g(x) \\
& \operatorname{Syl}\left(f_{1}, g_{1}\right)=
\end{aligned}
$$

$d_{1}(x):=r_{k}(x)$ s.t. the corresponding $\overrightarrow{r_{k}}$ meets the condition that $\frac{\left\|R^{(k-1)}\right\|_{2}}{\left\|r_{k}\right\|_{2}} \ll 1$ and $\left(\Delta_{f}, \Delta_{g}\right)$ w.r.t. $d_{1}(x)$ satisfies the tolerance.

$$
\ell=\operatorname{deg}\left(f_{1}\right)+\operatorname{deg}\left(g_{1}\right)
$$

How our ExQRGCD algorithm works

$$
d(x)=d_{1}(x), f_{2}(x)=f(x) \div d(x), g_{2}(x)=g(x) \div d(x)
$$

$$
\operatorname{Syl}\left(\operatorname{rev}\left(f_{2}\right), \operatorname{rev}\left(g_{2}\right)\right)=
$$

$Q\left(\begin{array}{ccccccc}r_{1,1} & r_{1,2} & \cdots & \cdots & \cdots & \cdots & r_{1, \ell} \\ & r_{2,2} & r_{2,3} & \cdots & \cdots & \cdots & r_{2, \ell} \\ & & \ddots & \ddots & \ddots & \ddots & \vdots \\ & & & r_{\ell-k, \ell-k} & r_{\ell-k, \ell-k+1} & \cdots & r_{\ell-k, \ell} \\ & & & & r_{\ell-(k-1), \ell-(k-1)} & \cdots & r_{\ell-(k-1), \ell} \\ & & & & & \ddots & \vdots \\ & & & & & & r_{\ell, \ell}\end{array}\right)$

How our ExQRGCD algorithm works

$$
d(x)=d_{1}(x), f_{2}(x)=f(x) \div d(x), g_{2}(x)=g(x) \div d(x)
$$

$$
\operatorname{Syl}\left(\operatorname{rev}\left(f_{2}\right), \operatorname{rev}\left(g_{2}\right)\right)=
$$

$d_{2}(x):=r_{k}(x)$ s.t. the corresponding $\overrightarrow{r_{k}}$ meets the condition that $\frac{\left\|R^{(k-1)}\right\|_{2}}{\left\|r_{k}\right\|_{2}} \ll 1$ and $\left(\Delta_{f}, \Delta_{g}\right)$ w.r.t. $d_{1}(x) d_{2}(x)$ satisfies the tolerance.

$$
\ell=\operatorname{deg}\left(f_{2}\right)+\operatorname{deg}\left(g_{2}\right)
$$

How our ExQRGCD algorithm works

$$
d(x)=d_{1}(x) d_{2}(x), f_{3}(x)=f(x) \div d(x), g_{3}(x)=g(x) \div d(x)
$$

$$
\operatorname{Syl}\left(f_{3}, g_{3}\right)=
$$

$Q\left(\begin{array}{ccccccc}r_{1,1} & r_{1,2} & \cdots & \cdots & \cdots & \cdots & r_{1, \ell} \\ & r_{2,2} & r_{2,3} & \cdots & \cdots & \cdots & r_{2, \ell} \\ & & \ddots & \ddots & \ddots & \ddots & \vdots \\ & & & r_{\ell-k, \ell-k} & \begin{array}{c}r_{\ell-k, \ell-k+1} \\ r_{\ell-(k-1), \ell-(k-1)}\end{array} & \cdots & \cdots \\ & & & & & r_{\ell-(k-\ell), \ell} \\ & & & & & \ddots & \vdots \\ & & & & & & r_{\ell, \ell}\end{array}\right)$

$$
\begin{aligned}
& d_{3}(x):=r_{k}(x) \text { s.t. the corresponding } \vec{r}_{k} \text { meets the condition that } \\
& \frac{\left\|R^{(k-1)}\right\|_{2}}{\left\|r_{k}\right\|_{2}}<1 \text { and }\left(\triangle_{f}, \Delta_{g}\right) \text { w.r.t. } d_{1} d_{2} d_{3} \text { satisfies the tolerance. } \\
& \qquad \ell=\operatorname{deg}\left(f_{3}\right)+\operatorname{deg}\left(g_{3}\right)
\end{aligned}
$$

How our ExQRGCD algorithm works

$$
d(x)=d_{1}(x) d_{2}(x), f_{3}(x)=f(x) \div d(x), g_{3}(x)=g(x) \div d(x)
$$

$$
\operatorname{Syl}\left(f_{3}, g_{3}\right)=
$$

$d_{3}(x):=r_{k}(x)$ s.t. the corresponding $\overrightarrow{r_{k}}$ meets the condition that $\frac{\left\|R^{(k-1)}\right\|_{2}}{\left\|r_{k}\right\|_{2}} \ll 1$ and $\left(\Delta_{f}, \Delta_{g}\right)$ w.r.t. $d_{1} d_{2} d_{3}$ satisfies the tolerance.

$$
\ell=\operatorname{deg}\left(f_{3}\right)+\operatorname{deg}\left(g_{3}\right)
$$

How our ExQRGCD algorithm works

$$
\begin{aligned}
& d(x)=d_{1}(x) d_{2}(x) d_{3}(x), f_{4}(x)=f(x) \div d(x), g_{4}(x)=g(x) \div d(x) \\
& \operatorname{Syl}\left(\operatorname{rev}\left(f_{4}\right), \operatorname{rev}\left(g_{4}\right)\right)= \\
& Q\left(\begin{array}{ccccccc}
r_{1,1} & r_{1,2} & \cdots & \cdots & \cdots & \cdots & r_{1, \ell} \\
& r_{2,2} & r_{2,3} & \cdots & \cdots & \cdots & r_{2, \ell} \\
& & \ddots & \ddots & \ddots & \ddots & \vdots \\
& & & r_{\ell-k, \ell-k} & r_{\ell-k, \ell-k+1} & \cdots & r_{\ell-k, \ell} \\
& & & r_{\ell-(k-1), \ell-(k-1)} & \cdots & r_{\ell-(k-1), \ell} \\
& & & & & & \ddots
\end{array}\right] \vdots \\
&
\end{aligned}
$$

There is no vector \vec{r}_{k} satisfying the condition.
\longrightarrow Approximately coprime w.r.t. the ourside roots.

$$
\ell=\operatorname{deg}\left(f_{4}\right)+\operatorname{deg}\left(g_{4}\right)
$$

How our ExQRGCD algorithm works

$$
\begin{aligned}
& d(x)=d_{1}(x) d_{2}(x) d_{3}(x), f_{4}(x)=f(x) \div d(x), g_{4}(x)=g(x) \div d(x) \\
& \operatorname{Syl}\left(\operatorname{rev}\left(f_{4}\right), \operatorname{rev}\left(g_{4}\right)\right)=
\end{aligned}
$$

There is no vector $\overrightarrow{r_{k}}$ satisfying the condition.
\Longrightarrow Approximately coprime w.r.t. the ourside roots.

$$
\ell=\operatorname{deg}\left(f_{4}\right)+\operatorname{deg}\left(g_{4}\right)
$$

How our ExQRGCD algorithm works

$$
\begin{aligned}
& d(x)=d_{1}(x) d_{2}(x) d_{3}(x), f_{4}(x)=f(x) \div d(x), g_{4}(x)=g(x) \div d(x) \\
& \quad \operatorname{Syl}\left(f_{4}, g_{4}\right)= \\
& Q\left(\begin{array}{ccccccc}
r_{1,1} & r_{1,2} & \cdots & \cdots & \cdots & \cdots & r_{1, \ell} \\
& r_{2,2} & r_{2,3} & \cdots & \cdots & \cdots & r_{2, \ell} \\
& & \ddots & \ddots & \ddots & \ddots & \vdots \\
& & & r_{\ell-k, \ell-k} & r_{\ell-k, \ell-k+1} & \cdots & r_{\ell-k, \ell} \\
& & & & r_{\ell-(k-1), \ell-(k-1)} & \cdots & r_{\ell-(k-1), \ell} \\
& & & & & \ddots & \vdots \\
& & & & & & \\
\hline
\end{array}\right)
\end{aligned}
$$

There is no vector \vec{r}_{k} satisfying the condition.
\Longrightarrow Approximately coprime w.r.t. the ourside roots.

$$
\ell=\operatorname{deg}\left(f_{4}\right)+\operatorname{deg}\left(g_{4}\right)
$$

How our ExQRGCD algorithm works

$$
\begin{aligned}
& d(x)=d_{1}(x) d_{2}(x) d_{3}(x), f_{4}(x)=f(x) \div d(x), g_{4}(x)=g(x) \div d(x) \\
& \operatorname{Syl}\left(f_{4}, g_{4}\right)= \\
& Q\left(\begin{array}{ccccccc}
r_{1,1} & r_{1,2} & \cdots & \cdots & \cdots & \cdots & r_{1, \ell} \\
& r_{2,2} & r_{2,3} & \cdots & \cdots & \cdots & r_{2, \ell} \\
& \ddots & \ddots & \ddots & \ddots & \vdots \\
\hline & \overrightarrow{r_{k}} & & r_{\ell-k, \ell-k} & r_{\ell-k, \ell-k+1} & \cdots & r_{\ell-k, \ell} \\
\hline & & & \begin{array}{|cccc}
r_{\ell-(k-1), \ell-(k-1)} & \cdots & r_{\ell-(k-1), \ell} \\
& & & \\
R^{(k-1)} & \ddots & \vdots \\
\end{array}
\end{array}\right)
\end{aligned}
$$

There is no vector $\overrightarrow{r_{k}}$ satisfying the condition.
\Longrightarrow Approximately coprime w.r.t. the inside roots.

$$
\ell=\operatorname{deg}\left(f_{4}\right)+\operatorname{deg}\left(g_{4}\right)
$$

How our ExQRGCD algorithm works

$$
d(x)=d_{1}(x) d_{2}(x) d_{3}(x), f_{1}(x)=f(x) \div d(x), g_{1}(x)=g(x) \div d(x)
$$

$$
\operatorname{Syl}\left(f_{4}, g_{4}\right)=
$$

$Q\left(\begin{array}{ccccccc}r_{1,1} & r_{1,2} & \cdots & \cdots & \cdots & \cdots & r_{1, \ell} \\ & r_{2,2} & r_{2,3} & \cdots & \cdots & \cdots & r_{2, \ell} \\ & & \ddots & \ddots & \ddots & \ddots & \vdots \\ & r_{k} & & r_{\ell-k, \ell-k} & r_{\ell-k, \ell-k+1} & \cdots & r_{\ell-k, \ell} \\ & & & & r_{\ell-(k-1), \ell-(k-1)} & \cdots & r_{\ell-(k-1), \ell} \\ & & & & & \ddots & \vdots \\ & & & & R^{(k-1)} & & r_{\ell, \ell}\end{array}\right)$

There is no vector $\overrightarrow{r_{k}}$ satisfying the condition.
\Longrightarrow Approximately coprime w.r.t. the inside roots.
Done several times (Normal, Reversal, Normal, ...)

Our ExQRGCD algorithm (briefly described)

■ Compute the Q decomposition of $\operatorname{Syl}(f, g): \operatorname{Syl}(f, g)=Q R$
2. Do until $\left\|R^{(k)}\right\|_{2}>\varepsilon \sqrt{m+n}$

Case1: approximately coprime

$$
\left\|R^{(0)}\right\|_{2}>\varepsilon \sqrt{m+n}
$$

Case2: a factor of approximate GCD found
$d(x):=r(x)$ having the smallest $\varepsilon_{r}=\frac{\left\|R^{(k-1)}\right\|_{2}}{\|r\|_{2}}$.
Case3: no factor found
The 3 smallest ε_{r} s found no factor \Rightarrow Split
Or goto Step 3 (if \#loop \geq the threshold)
(The threshold is 3 in our implementation)
B Do the above for the reversals of approximate cofactors. (Until approximately coprime is detected twice successively)

Short Summary: ExQRGCD against QRGCD

Advantage of ExQRGCD

- It seeks approximate GCD within the given tolerance.
- It seeks a factor such that the smallest perturbation among the candidates.
\Rightarrow The resulting degree may be larger than QRGCD in general.
- It uses the relative distance bound.
\Rightarrow It may not detect a factor having fake common roots. (even when the PRS has some outside roots instead of inside)
- Slower than QRGCD (since ExQRGCD computes QR factoring several times)

Short Summary: ExQRGCD against QRGCD

Advantage of ExQRGCD

- It seeks approximate GCD within the given tolerance.
- It seeks a factor such that the smallest perturbation among the candidates. \Rightarrow The resulting degree may be larger than QRGCD in general.
- It uses the relative distance bound.
\Rightarrow It may not detect a factor having fake common roots.
(even when the PRS has some outside roots instead of inside)
Weak point of ExQRGCD
- Slower than QRGCD.
(since ExQRGCD computes QR factoring several times)

Numerical Experiments

Numerical Experiments against SNAP's QRGCD

Random Polynomials (100 pairs of (f, g) for each $i=1, \ldots, 10$)

$$
\begin{aligned}
& f(x)=f_{1}(x) d(x), g(x)=g_{1}(x) d(x), d(x)=\sum_{j=0}^{5 i} d j x^{j}, \\
& f_{1}(x)=\sum_{j=0}^{5 i} f_{1, j} x^{j}, g_{1}(x)=\sum_{j=0}^{5 i} g_{1, j} x^{j}
\end{aligned}
$$

where $f_{1, j}, g_{1, j}, d_{j} \in[-99,99] \subset \mathbb{Z}$ is randomly chosen, $f(x), g(x)$ are normalized $\left(\|f\|_{2}=\|g\|_{2}=1\right)$ and rounded with Digits $:=10$. We computed with tolerance 10^{-5}. Moreover, we used Maple 16 with Digits $:=16$ on Linux ($i 73.30 \mathrm{GHz}$ and 64 GB mem.).

- EXQRGCD is 1.59 times slower than QRGCD.
- QRGCD failed 11 times and didn't meet the tolerance 6 times.

Numerical Experiments against SNAP's QRGCD

Random Polynomials (100 pairs of (f, g) for each $i=1, \ldots, 10$)

$$
\begin{aligned}
& f(x)=f_{1}(x) d(x), g(x)=g_{1}(x) d(x), d(x)=\sum_{j=0}^{5 i} d_{j} x^{j}, \\
& f_{1}(x)=\sum_{j=0}^{5 i} f_{1, j} x^{j}, g_{1}(x)=\sum_{j=0}^{5 i} g_{1, j} x^{j}
\end{aligned}
$$

- ExQRGCD is 1.59 times slower than QRGCD.
- QRGCD failed 11 times and didn't meet the tolerance 6 times.

Numerical Experiments against SNAP's QRGCD

Random Polynomials with Perturbations (100 pairs of (f, g) for i) $f(x)=f_{1}(x) d(x) /\left\|f_{1} d\right\|_{2}+10^{-8} \Delta_{f}(x) /\left\|\Delta_{f}\right\|_{2}, \Delta_{f}(x)=\sum_{j=0}^{10 i} \Delta_{f j} x^{j}$, $g(x)=g_{1}(x) d(x) /\left\|g_{1} d\right\|_{2}+10^{-8} \Delta_{g}(x) /\left\|\Delta_{g}\right\|_{2}, \Delta_{g}(x)=\sum_{j=0}^{10 i} \Delta_{g_{j}} x^{j}$ where $\Delta_{f j}, \Delta_{g_{j}} \in[-99,99] \subset \mathbb{Z}$ is randomly chosen, $f_{1}(x), g_{1}(x), d(x)$ are the polynomials of the previous Example and rounded with Digits $:=10$. We computed with tolerance 10^{-5}.

Sum of detected degrees The resulting perturbation

Numerical Experiments against SNAP's QRGCD

Random Polynomials with Perturbations (100 pairs of (f, g) for i)

$$
\begin{aligned}
& f(x)=f_{1}(x) d(x) /\left\|f_{1} d\right\|_{2}+10^{-8} \Delta_{f}(x) /\left\|\Delta_{f}\right\|_{2}, \Delta_{f}(x)=\sum_{j=0}^{10 i} \Delta_{f j} x^{j}, \\
& g(x)=g_{1}(x) d(x) /\left\|g_{1} d\right\|_{2}+10^{-8} \Delta_{g}(x) /\left\|\Delta_{g}\right\|_{2}, \Delta_{g}(x)=\sum_{j=0}^{100} \Delta_{g_{j}} x^{j}
\end{aligned}
$$

Sum of detected degrees

The resulting perturbation

- ExQRGCD is 1.99 times slower than QRGCD.
- QRGCD failed 315 times and didn't meet the tolerance 6 times.

Numerical Experiments against SNAP's QRGCD

Fake Common Roots (100 pairs of (f, g) for each $i=1, \ldots, 10)$

$$
\begin{aligned}
& f=d \cdot \prod_{j=1}^{2 i}\left(x-\omega_{f, j}\right) \prod_{j=1}^{2 i}\left(x-\hat{\omega}_{f, j}\right), g=d \cdot \prod_{j=1}^{2 i}\left(x-\omega_{g, j}\right) \prod_{j=1}^{2 i}\left(x-\hat{\omega}_{g . j}\right), \\
& d=\prod_{j=1}^{3 i}\left(x-\omega_{d, j}\right) \prod_{j=1}^{3 i}\left(x-\hat{\omega}_{d, j}\right), \omega_{\cdot, j}=O\left(10^{-2}\right), \hat{\omega}_{\cdot, j}=O\left(10^{2}\right)
\end{aligned}
$$ where $\omega_{\cdot j}, \hat{\omega}_{\cdot j}$ are randomly chosen, $f(x), g(x)$ are normalized (i.e. $\left.\|f(x)\|_{2}=\|g(x)\|_{2}=1\right)$ and rounded with Digits $:=10$. We computed with tolerance 10^{-5}. Note that the degree of approximate GCD $\geq 6 i$.

- ExQRGCD is 39.8 times slower than QRGCD.
- QRGCD failed 624 times and didn't meet the tolerance 119 times.

Numerical Experiments against SNAP's QRGCD

Fake Common Roots (100 pairs of (f, g) for each $i=1, \ldots, 10)$

$$
\begin{aligned}
& f=d \cdot \prod_{j=1}^{2 i}\left(x-\omega_{f, j}\right) \prod_{j=1}^{2 i}\left(x-\hat{\omega}_{f, j}\right), g=d \cdot \prod_{j=1}^{2 i}\left(x-\omega_{g, j}\right) \prod_{j=1}^{2 i}\left(x-\hat{\omega}_{g . j}\right), \\
& d=\prod_{j=1}^{3 i}\left(x-\omega_{d, j}\right) \prod_{j=1}^{3 i}\left(x-\hat{\omega}_{d, j}\right), \omega \cdot{ }^{3}=O\left(10^{-2}\right), \hat{\omega}_{\cdot j}=O\left(10^{2}\right)
\end{aligned}
$$

Sum of detected degrees

The resulting perturbation

- ExQRGCD is 39.8 times slower than QRGCD.
- QRGCD failed 624 times and didn't meet the tolerance 119 times.

Numerical Experiments against Fastgcd/UVGCD

Examples in Bini and Boito (2007 and 2010)

- Mignotte-like polynomials (Ex 8.2.1 and 8.2.2 in Boito (2007)),
- An ill-conditioned case (Ex 8.4.1 in Boito (2007)),
- Other examples in Boito (2007), for real univariate polynomials.

Numerical Experiments against Fastgcd/UVGCD

Examples in Bini and Boito (2007 and 2010)

- Mignotte-like polynomials (Ex 8.2.1 and 8.2.2 in Boito (2007)),
- An ill-conditioned case (Ex 8.4.1 in Boito (2007)),
- Other examples in Boito (2007), for real univariate polynomials.

The results

- For Example 8.2.1,

ExQRGCD is not better than Fastgcd but same as UVGCD.

- For Example 8.2.2, ExQRGCD is almost better than others.
- For Example 8.4.1,

ExQRGCD is not good though it detected the correct degree.

- For most of other examples,

ExQRGCD is not better than Fastgcd and UVGCD.

Summary

The weak points of QRGCD and improvements in ExQRGCD

- Absolute closeness and once detection in QRGCD are the issue - Our contribution: relative closeness and conservative detection.

Numerical Experiments

- ExQRGCD is much better than QRGCD in the following points:
- Degree of detected approximate GCD: $\operatorname{deg}(d)$.
- Size of resulting perturbations: $\left\|\Delta_{f}\right\|_{2}$ and $\left\|\Delta_{g}\right\|_{2}$
- However, ExQRGCD still should be improved:
- ExQRGCD is slower than QRGCD
- ExQRGCD is still not better than UVGCD and Fastgcd.
- But there are polynomials for which ExQRGCD is better.

Summary

The weak points of QRGCD and improvements in ExQRGCD

- Absolute closeness and once detection in QRGCD are the issue.
- Our contribution: relative closeness and conservative detection.

Numerical Experiments

$$
\begin{aligned}
& \text { - ExQRGCD is much better than QRGCD in the following points: } \\
& \text { - Degree of detected approximate } G C D: \operatorname{deg}(d) \text {. } \\
& \text { - Size of resulting perturbations: }\left\|\Delta_{f}\right\|_{2} \text { and }\left\|\Delta_{g}\right\|_{2} \text {. } \\
& \text { - However, EXQRGCD still should be improved: } \\
& \text { - ExQRGCD is slower than QRGCD. } \\
& \text { EXQRGCD is still not better than UVGCD and Fastgcd. } \\
& \text { - But there are polynomials for which ExQRGCD is better. }
\end{aligned}
$$

Summary

The weak points of QRGCD and improvements in ExQRGCD

- Absolute closeness and once detection in QRGCD are the issue.
- Our contribution: relative closeness and conservative detection.

Numerical Experiments

- ExQRGCD is much better than QRGCD in the following points:
- Degree of detected approximate GCD: $\operatorname{deg}(d)$.
- Size of resulting perturbations: $\left\|\Delta_{f}\right\|_{2}$ and $\left\|\Delta_{g}\right\|_{2}$.
- However, ExQRGCD still should be improved:
- ExQRGCD is slower than QRGCD.
- ExQRGCD is still not better than UVGCD and Fastgcd.
- But there are polynomials for which ExQRGCD is better.

Thanks for your attention!

