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Typical Example

Given a forcing function f (t, x , y) and
initial data f1(x , y), f2(x , y), find u(t, x , y) such that:

utt − 4 utx + 4 uxx − 9 uyy = f
u(0, x , y) = f1(x , y), ut(0, x , y) = f2(x , y)

How can we capture this algebraically, abstractly?
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Abstract Setup: Recap

Starting Point: [RegensburgerRosenkranz2009]

Definition

A generic boundary problem is given by a pair (T ,B), where
T : F → G is an epimorphism between vector spaces F ,G and
B ≤ F∗ is an orthogonally closed subspace of boundary conditions.

It is called regular if Ker(T ) u B⊥ = F

Definition and Proposition

Define the product of two boundary problems (T ,B) and (T̃ , B̃) by

(T ,B)(T̃ , B̃) = (TT̃ ,BT̃ + B̃).

Then (T ,B)(T̃ , B̃) is regular if both factors are.
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Three Specific Incarnations

Fully Inhomogeneous Boundary Problem:

Tu = Forcing function
β(u) = Boundary data

Full Solution Operator
F : (Forcing function,Boundary data) 7→ u

Semi-Inhomogeneous Boundary Problem:

Tu = Forcing function
β(u) = 0

Signal Operator
G : Forcing function 7→ u

Semi-Homogeneous Boundary Problem:

Tu = 0
β(u) = Boundary data

State Operator
H : Boundary data 7→ u

Fully Homogeneous Boundary Problem:

Tu = 0
β(u) = 0

Trivial: u = 0
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Abstract Setup: What is “Boundary Data”?


β1(u) = 0

...
βn(u) = 0

“basis-free”−−−−−−−→
B = [β1, . . . , βn] ≤ F∗

Note: Inhomogeneous boundary conditions trivial for ODEs only!

Question: How to represent (c1, . . . , cn) in a “basis-free” manner?

Answer: (c1, . . . , cn) ∈ B∗ !

In this special case:

(∀β ∈ B) (c1, . . . , cn)(β) = c1b1 + · · ·+ cnbn,

where β = b1β1 + · · ·+ bnβn.

Generalize to PDEs.
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Abstract Setup: Trace Map

Definition

Let F ,G be K -vector spaces and B ≤ F∗ an orthogonally closed
subspace of boundary conditions. The trace map trc : F → B∗
sends f ∈ F to the functional β 7→ β(f ) with B′ := Im(trc) ≤ B∗.

“Boundary Data” := Elements of B′

Boundary Data
Boundary Basis (βi )i∈I−−−−−−−−−−−−−→ Boundary Values

B ∈ B′ B̄ = B(βi )i∈I ∈ K I

basis-free basis-dependent

Lemma

Let B ≤ F∗ be a boundary space with boundary basis (βi |∈ I ). If
for any B, B̃ ∈ B′ one has B(βi )i∈I = B̃(βi )i∈I then also B = B̃.
In particular, for any f ∈ F , the trace f ∗ := trc : F → B∗ depends
only on the boundary values f (βi )i∈I .
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Abstract Setup: Right Inverse and Interpolator

Definition

We write T3 for any right inverse of T . An interpolator for B is
any right inverse B3 : B′ → F of the trace map trc : F → B∗.

Computation of Green’s Operator decomposes into differential
equation/boundary conditions.

Proposition

Let (T ,B) be regular boundary problem. Then G = (1− P)T3

and H = PB3, hence F = (1− P)T3 ⊕ PB3. Here P : F → F is
the projector determined by Im(P) = Ker(T ) and Ker(P) = B⊥.
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How Do We Get the Kernel Projector?

In the ODE case:

Proposition

For a regular boundary problem (T ,B) with Ker(T ) = [u1, . . . , un]
and B = [β1, . . . , βn], the kernel projector is given
by P = (u1, . . . , un) β(u)−1(β1, . . . , βn)ᵀ.

Problem: Row elimination on infinitely many rows?!
Need more intuitive description of P.

Proposition

Let (T ,B) be a regular boundary problem with E : Ker(T )→ B′
being the restricted trace map. Then E is bijective with the state
operator H as its inverse, and P = H ◦ trc is the projector
with Im(P) = Ker(T ) and Ker(P) = B⊥.
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Back to Real: Cauchy Problem for Analytic Functions

Theorem (Global Cauchy-Kovalevskaya) [Knapp2005]

Let T ∈ C[Dt ,D1, . . . ,Dn] be a differential operator in
Cauchy-Kovalevskaya form with respect to t,
meaning T = Dm

t + T̃ with deg(T̃ , t) < m and deg(T̃ ) ≤ m.
Then the Cauchy problem

Tu = 0

D i−1
t u(0, x1, . . . , xn) = fi (x1, . . . , xn) for i = 1, . . . ,m

}
(1)

has a unique solution u ∈ Cω(Rn+1) for
given (f1, . . . , fm) ∈ Cω(Rn)m.

Note: Boundary problem is regular but may be ill-posed.
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Let T ∈ C[Dt ,D1, . . . ,Dn] be a differential operator in
Cauchy-Kovalevskaya form with respect to t,
meaning T = Dm

t + T̃ with deg(T̃ , t) < m and deg(T̃ ) ≤ m.
Then the Cauchy problem

Tu = 0

D i−1
t u(0, x1, . . . , xn) = fi (x1, . . . , xn) for i = 1, . . . ,m

}
(1)

has a unique solution u ∈ Cω(Rn+1) for
given (f1, . . . , fm) ∈ Cω(Rn)m.

Note: Boundary problem is regular but may be ill-posed.
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Composition of Boundary Problem

Since we restrict ourselves to completely reducible T :

Proposition

Let (T ,B) and (T̃ , B̃) be regular problems with the signal
operators G , G̃ and the state operators H, H̃. Then (T ,B)(T̃ , B̃)
has the signal operator G̃G and the state operator (BT̃ + B̃)′ → F
acting by B + B̃ 7→ G̃H(BT̃ ∗) + H̃(B̃).

Lemma

Let T = a + a0∂t + a1∂1 + · · ·+ an∂n ∈ C[D] be a first-order
operator with all ai 6= 0. Then the Cauchy problem Tu = 0,
u(0, x1, . . . , xn) = f (x1, . . . , xn) has state operator
H(f ) = e−at/a0 Z ∗Z̃ ∗x f and signal operator
G = a−1

0 eat/a0 Z ∗ At e
−at/a0 Z̃ ∗, with Z = Z (a0, a1, . . . , an) where

Z has inverse Z̃ .
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Partial Integro-Differential Operators (PIDOS)

Definition

The partial integro-differential operators are the complex algebra
generated by the indeterminates below, modulo certain rewrite
rules. Notation F [∂x , ∂y ,

r x
,
r y

].

Name Indeterminates Range Action on u(x , y)

Substitutions
(

a b
c d

)∗
a,b,c,d∈C u(ax + by , cx + dy)

Rotations Q∗α α∈[0,2π] u(γx − σy , σx + γy)

Multipliers eλxxm, eµyyn
m,n∈N+, λ,µ∈C eλxxm u(x , y), eµyyn u(x , y)

Integrations Ax ,Ay –
r x

0
u(ξ, y) dξ,

r y

0
u(x , η) dη

Derivations Dx ,Dy – ux (x , y), uy (x , y)

Note: Still lacking confluence proof for rewrite system!
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PIDOS: Some Rewrite Rules

One-Dimensional Substitution Rule:

Axx
µ
(

a b
0 d

)∗
=



1
aµ+1dµ (1− Lx )

(
a b
0 d

)∗
Ax (dx − by)µ for ad 6= 0

1
aµ+1 (1− Lx )

(
a b
0 1

)∗
Ax (x − by)µLy for ab 6= 0, d = 0

1
aµ+1

(
a 0
0 0

)∗
Ax x

µ for a 6= 0, b = d = 0

1
µ+1 x

µ+1
(

0 b
0 d

)∗
for a = 0

Here Lx ≡
(

0 0
0 1

)∗
, Ly ≡

(
1 0
0 0

)∗
are the evaluations x 7→ 0, y 7→ 0.

Two-Dimensional Substitution Rule:

Ax Q∗αAx Q∗α̃ = 1
σ

(1− Lx )
[
(σσ̃ − γγ̃) Ax Q∗α+α̃ + σ̃

(−σ −γ
0 0

)∗
Ax Q∗α̃−π

2
+ γ̃ Q∗αAx Q∗α̃

]
Ay

Ax Q∗αAy Q∗α̃ = 1
γ

(1− Lx )
[
(γγ̃ − σσ̃) Ax Q∗α+α̃ − γ̃

(
γ −σ
0 0

)∗
Ax Q∗α̃ + σ̃Q∗α−π

2
Ax Q∗α̃+ π

2

]
Ay
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Back to the Initial Example

utt − 4 utx + 4 uxx − 9 uyy = f ,
u(0, x , y) = f1(x , y), ut(0, x , y) = f2(x , y)

The signal and state operators:

Gf (t, x , y) =
r t

0

r σ
0
f (τ, x + 2t − 2τ, y − 3t − 3τ + 6σ) dτ dσ.

H(f1, f2) = f1(x+2t, y−3t)+
r t

0
(f2−2Dx f1+3Dy f1)(x+2t, y−3t+6τ) dτ

Factor problems:

ut − 2 ux ± 3 uy = f ,
u(0, x , y) = f ±(x , y).

H±f ± (t, x , y) = f ±(x + 2t, y ∓ 3t)

G±f (t, x , y) =
r t

0
f (τ, x + 2t − 2τ, y ∓ 3t ± 3τ) dτ
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OPIDO Package

OPIDO = Ordinary and Partial Integro-Differential Operators

Under development.

Written in FUNPRO language.

Mathematical domains:

Every domain is represented by unique tag D.

Every domain is generated with signature.

Every domain has various operations e.g. +D.

A domain can be created from another domain.

Parsing and formatting:

Automated generation of special parsing and formatting
per-domain basis.

Allow us to write integro-differential operators in a notation
close to that on paper.
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OPIDO versus GenPolyDom

Previous Implementation Current Implementation
GenPolyDom OPIDO

Written in the Standalone Mathematica
THEOREMA language package

Uses underscripts Uses subscripts:
a +
D
b a +D b

Uses currying: Uses tagging:
a +
D
b ; D[+][a, b] a +D b ; DomOp[D,+, a, b]

Markus Rosenkranz, Nalina Phisanbut A Symbolic Approach to Boundary Problems for Linear Partial Differential Equations



OPIDO versus GenPolyDom

Previous Implementation Current Implementation
GenPolyDom OPIDO

Written in the Standalone Mathematica
THEOREMA language package

Uses underscripts Uses subscripts:
a +
D
b a +D b

Uses currying: Uses tagging:
a +
D
b ; D[+][a, b] a +D b ; DomOp[D,+, a, b]

Markus Rosenkranz, Nalina Phisanbut A Symbolic Approach to Boundary Problems for Linear Partial Differential Equations



OPIDO versus GenPolyDom

Previous Implementation Current Implementation
GenPolyDom OPIDO

Written in the Standalone Mathematica
THEOREMA language package

Uses underscripts Uses subscripts:
a +
D
b a +D b

Uses currying: Uses tagging:
a +
D
b ; D[+][a, b] a +D b ; DomOp[D,+, a, b]

Markus Rosenkranz, Nalina Phisanbut A Symbolic Approach to Boundary Problems for Linear Partial Differential Equations



OPIDO versus GenPolyDom

Previous Implementation Current Implementation
GenPolyDom OPIDO

Written in the Standalone Mathematica
THEOREMA language package

Uses underscripts Uses subscripts:
a +
D
b a +D b

Uses currying: Uses tagging:
a +
D
b ; D[+][a, b] a +D b ; DomOp[D,+, a, b]

Markus Rosenkranz, Nalina Phisanbut A Symbolic Approach to Boundary Problems for Linear Partial Differential Equations



Examples

See Mathematica notebook.
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Conclusion and Outlook

Existing setup:

Abstract setup suitable for LPDE boundary problems.

Algebraic representation of operators via PIDOS.

Implementation in progress.

Future steps:

Finish completely reducible case: Stay within PIDOS.

Hyperbolic IVPs: Probably need Fourier transform.

General case: Use Ehrenpreis-Palamodov Theorem?

Thank you!
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In Ulrich Langer and Peter Paule, editors, Numerical and Symbolic Scientific Computing: Progress and
Prospects. Springer, 2012.

Loredana Tec.

A Symbolic Framework for General Polynomial Domains in Theorema: Applications to Boundary Problems.
PhD thesis, Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria, 2011.

Markus Rosenkranz, Nalina Phisanbut A Symbolic Approach to Boundary Problems for Linear Partial Differential Equations


