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Numerical Computational Geometry

Mairson, H., Stolfi, J.: Reporting and Counting Intersections Between Two Sets of Line
Segments. (1988):

As is the rule in computational geometry problems with discrete
output, we assume all the computations are performed with ex-
act (infinite-precision) arithmetic. Without this assumption it is
virtually impossible to prove the correctness of any geometric
algorithms.

Theory:
exact real arithmetic

Practice:
inherently imprecise
floating-point arithmetic
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• false positives

• false negatives

S. Schirra: How Reliable Are Practical Point-in-Polygon Strategies?, ESA 2008: 744-755
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Programs may crash, loop, or compute garbage:

segmentation fault
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Correct Decisions Computation

correct decisions

⇓
correct combinatorics

numerical data might be inaccurate

Yap, C.: Towards Exact Geometric Computation. Comp. Geom. 7, 3–23 (1997)
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Correct Signs Computation

f (x1, . . . ,xn)S 0 ?
YES

NO

f (x1, . . . ,xn)S 0 ?

⇓
sign( f (x1, . . . ,xn) )

Example: leftturn((px, py),(qx,qy),(rx,ry)):
((qx− px)(ry− py)− (qy− py)(rx− px)) < 0 ?

Yap, C.: Towards Exact Geometric Computation. Comp. Geom. 7, 3–23 (1997)
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Floating-Point Filter

verified signs

Filter
not verified

Filter

Floating−Point

input data

Fortune, S., Van Wyk, C.J.: Efficient Exact Arithmetic for Computational Geometry. In: 9th
ACM Symposium on Computational Geometry, pp. 163–172. ACM (1993)
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ξ = exact value of expression E

CascadedFiltering

1 compute floating-point approximation ξ̃ for E
2 compute an error bound ∆error ≥ |ξ̃ −ξ |
3 while (|ξ̃ |< ∆error)

4 do compute a better floating-point approximation ξ̃

using higher precision (software) floating-point
arithmetic and a corresponding error bound ∆error
or compute a better error bound ∆error
for the already existing approximation ξ̃

5 return sign(ξ̃ )

How to detect ξ = 0 ?
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Zero Separation Bound

Given an arithmetic expression E over a set of allowed operations and
operands, a constructive zero separation bound comprises rules to derive
a value sep(E) which is a lower bound on the absolute value |ξ | of E,
unless ξ = 0.

ξ 6= 0 ⇒ |ξ | ≥ sep(E)

3 while (|ξ̃ |< ∆error) and (|ξ̃ |+∆error ≥ sep(E))
4 do . . .
5 . . .

6 if (|ξ̃ | ≤ ∆error)

7 then return sign(ξ̃ )
8 else return 0
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Expression DAGs
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Some Algebraic Background

P(X) = adXd +ad−1Xd−1 + · · ·+a0 = ad

d

∏
i=1

(X−αi) ∈ Z[X ]

length(P) :
d

∑
i=0
|ai|

height(P) : max(|a0|, |a1|, . . . , |ad |)

measure(P) : |ad |
d

∏
i=1

max(1, |αi|)
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Degree-Measure Bound

E M̂(E)

integer N |N|

A ·B M̂(A)D(B) · M̂(B)D(A)

A±B M̂(A)D(B) · M̂(B)D(A) ·2D(E)

k
√

A M̂(A)

Then M̂(E)−1 is a separation bound.
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BFMS Bound

E U(E)

integer N |N|

A±B U(A)+U(B)

A ·B U(A) ·U(B)
k
√

A k
√

U(A)

Then U(E)−(D(E)−1) is a separation bound.
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Sekigawa’s Bound

E M(E)

integer N |N|

A ·B M(A)D(B) ·M(B)D(A)

A±B (∗)
k
√

A M(A)

where (∗) is the product of the D(E) largest values of

M(A)+M(B),M(A)+1, ...,M(A)+1︸ ︷︷ ︸
D(B)−1

,M(B)+1, ...,M(B)+1︸ ︷︷ ︸
D(A)−1

, 2, . . . ,2︸ ︷︷ ︸
(D(A)−1)(D(B)−1)

Then M(E)−1 is a separation bound.
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Comparison of Zero Separation Bounds

A separation bound sep dominates another bound sep′ for a class of arith-
metic expressions E if sep(E)≥ sep′(E) for all E in E .

A-Bound 3 B-Bound

A-Bound dominates B-Bound for division-free radical expressions,
i..e, arithmetic expressions with operations +,−, · and k

√
and integer operands
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Known Domination Results

Lemma: Degree-Measure Bound 3 Degree-Height Bound

Degree-Measure Bound 3 Degree-Length Bound

BFMS Bound 3 Degree-Measure Bound

BFMS Bound 3 Scheinerman’s Bound

Lemma: Sekigawa’s Bound 3 Degree-Measure Bound
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Sekigawa vs. BFMS

Lemma: BFMS Bound 3 Sekigawa’s Bound

We prove
U(E)D(E) ≤M(E)

by structural induction:
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Basis:

The claim holds for the base case where E is an integer N, since the rules
are identical and D(E) = 1.

Induction Hypothesis:

U(A)D(A) ≤M(A) and U(B)D(B) ≤M(B).

Inductive Steps:

E = k√A E = A ·B E = A±B
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E = k
√

A

M(E) = M(A) and U(E) = k
√

U(A) and D(E) = k ·D(A)

U(E)D(E) = ( k
√

U(A))k·D(A)

= U(A)D(A)

≤ M(A) by I.H.

= M(E)
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E = A ·B

M(E) = M(A)D(B)M(B)D(A)

U(E) = U(A) ·U(B)
D(E)≤ D(A)D(B)

U(E)D(E) = (U(A) ·U(B))D(E)

≤ (U(A) ·U(B))D(A)·D(B)

= U(A)D(A)·D(B) ·U(B)D(B)·D(A)

≤ M(A)D(B) ·M(B)D(A) by I.H.

= M(E)
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E = A±B

Let us first assume D(E) = D(A) ·D(B). Then M(E) =

(M(A)+M(B)) · (M(A)+1)D(B)−1 · (M(B)+1)D(A)−1 ·2(D(A)−1)(D(B)−1)

U(E) = U(A)+U(B)

U(E)D(E) = (U(A)+U(B))D(E)

≤
(

D(A)
√

M(A)+ D(B)
√

M(B)
)D(E)

by I.H.

To complete the inductive step we use
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Lemma: Let S be a set of pairs (i, j), 1≤ i≤ m, 1≤ j ≤ n, and let

F(x1, . . . ,xm,y1, . . . ,yn) = ∏
(i, j)∈S

(xi + y j).

For constants a,b≥ 1, the maximum value of the continous function F
on the compact set

D =

(x1, . . . ,xm,y1, . . . ,yn) ∈ Rm+n

∣∣∣∣∣∣∣∣∣
m

∏
i=1

xi = a, xi ≥ 1, i = 1, . . . ,m

m

∏
j=1

y j = b, y j ≥ 1, j = 1, . . . ,n


is not greater than the product of the |S| largest numbers among the
following mn numbers:

a+b,a+1, . . . ,a+1︸ ︷︷ ︸
n−1

,b+1, . . . ,b+1︸ ︷︷ ︸
m−1

, 2, . . . ,2︸ ︷︷ ︸
(n−1)(m−1)
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Apply this lemma with m = D(A), xi = D(A)
√

M(A) for i = 1, . . . ,m,

a = M(A), n = D(B), y j = D(B)
√

M(B) for j = 1, . . . ,n, and b = M(B):

(
D(A)
√

M(A)+ D(B)
√

M(B)
)D(E)

=
m

∏
i=1

n

∏
j=1

(xi + y j)

≤ (a+b) · (a+1)n−1 · (b+1)m−1 ·2(m−1)(n−1)

= M(E)

If D(E) < D(A)D(B), apply the lemma with |S|= D(E) < nm. �
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Remarks

• The BFMS bound also dominates zero separation bounds derived
from the polynomial system bounds by Canny and by Emiris,
Mourrain, and Tsigaridas.

• Sekigawa does not provide rules for divisions.
Corresponding rules can be added.

• For radical expressions with divisions, BFMSS, Li-Yap, and
Degree-Measure Bound are incomparable.
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Need for
√

Delaunay Triangulation of Intersection Points of Circles
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C++ Number Types

New York University (Chee Yap et al.)

CORE::Expr

Max Planck Institute for Computer Science (Kurt Mehlhorn et al.)

leda::real

Otto von Guericke University Magdeburg (w. Marc Mörig)

RealAlgebraic


