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Numerical Computational Geometry

Mairson, H., Stolfi, J.: Reporting and Counting Intersections Between Two Sets of Line
Segments. (1988):

As is the rule in computational geometry problems with discrete
output, we assume all the computations are performed with ex-
act (infinite-precision) arithmetic. Without this assumption it is
virtually impossible to prove the correctness of any geometric

algorithms.
Theory: Practice:
exact real arithmetic inherently imprecise

floating-point arithmetic



e false positives

o false negatives

S. Schirra: How Reliable Are Practical Point-in-Polygon Strategies?, ESA 2008: 744-755



Programs may crash, loop, or compute garbage:

segmentation fault



Correct Decisions Computation

correct decisions

4

correct combinatorics

numerical data might be inaccurate

Yap, C.: Towards Exact Geometric Computation. Comp. Geom. 7, 3-23 (1997)



Correct Signs Computation

07

VIIA

Fxryee e x,)

YES

sign( f(x1,...,%,) )
NO

Example: LEFTTURN((px, py), (@x: Gy), (Fx:7y)): )
((Qx—Px)(ry_Py)_(Qy_py)(rx_pX)) <Oy? //

Yap, C.: Towards Exact Geometric Computation. Comp. Geom. 7, 3-23 (1997)



Floating-Point Filter

input data

Floating—Point not verified

Filter —‘
[

%

verified signs

Fortune, S., Van Wyk, C.J.: Efficient Exact Arithmetic for Computational Geometry. In: 9th
ACM Symposium on Computational Geometry, pp. 163-172. ACM (1993)



& = exact value of expression E

CASCADEDFILTERING

1 compute floating-point approximation .{f for E

2 compute an error bound Agror > \E — €|

3 while (|&] < Acrror)

4 do compute a better floating-point approximation E
using higher precision (software) floating-point
arithmetic and a corresponding error bound Agiror
or compute a better error bound Aerror
for the already existing approximation 5

5 return sign(&)

How to detect £ =0 7



Zero Separation Bound

Given an arithmetic expression E over a set of allowed operations and
operands, a constructive zero separation bound comprises rules to derive
a value sep(E) which is a lower bound on the absolute value |&| of E,
unless & = 0.

§#0 = [5]=sep(E)

while (|§‘ < Aerror) and (\EI + Aerror > sep(E))
do ...

if (I€] < Aerror) i
then return sign(&)
else return 0

O ~NO Ok~ W



Expression DAGs




Some Algebraic Background

d
P(X) = asX’+aq 1 X" '+ +ag=a,[[(X — o) € Z[X]

i=1
d
length(P) : Z |ail
i=0

height(P):  max(laol,|ail,...,|aal)

d
measure(P) : |aq] Hmax(l, |a|)
i=1



Degree-Measure Bound

E M(E)
integer N V]
A-B M(A)PB) . 1 (B)PA)
A+B M(A)PB) . j(B)PA) . 2D(E)
VA M(A)

Then M(E)~! is a separation bound.



1+v2-v3+8

679,477,248




BFMS Bound

E U(E)
integer N V|
A+B U(A)+U(B)
A-B U(A)-U(B)
VA YU(A)

Then U(E)~(PE)=1) is a separation bound.



Sekigawa's Bound

E M(E)
integer N IN|
A-B M(A)P®) . M (B)PA)
A+B (%)
VA M(A)

where (%) is the product of the D(E) largest values of

M(A)+M(B),M(A)+1,..M(A)+ 1,M(B)+1,...M(B)+1, 2,...,2

D(B)—1 D(A)—1 (D(A)=1)(D(B)-1)

Then M(E)~! is a separation bound.



Comparison of Zero Separation Bounds

A separation bound sep dominates another bound sep’ for a class of arith-
metic expressions & if sep(E) > sep’(E) for all E in &.

A-Bound = B-Bound

A-Bound dominates B-Bound for division-free radical expressions,
i..e, arithmetic expressions with operations +,—,- and a
and integer operands



Known Domination Results

Lemma: Degree-Measure Bound
Degree-Measure Bound

BFMS Bound

BFMS Bound

Y Y Y

Degree-Height Bound
Degree-Length Bound
Degree-Measure Bound

Scheinerman’s Bound

Lemma: Sekigawa's Bound *= Degree-Measure Bound



Sekigawa vs. BFMS

Lemma: BFMS Bound *= Sekigawa's Bound

We prove
U(E)"® < M(E)

by structural induction:



Basis:

The claim holds for the base case where E is an integer N, since the rules
are identical and D(E) = 1.

Induction Hypothesis:

U(A)PW < M(A) and U(B)P®) < M(B).

Inductive Steps:

E=+vA E=A-B E—=A+B



D(E) = k-D(A)

and

VA I



E=A-B

B)D(A)

)
by I.H.

— —

25 5=
VI VIl



E=A+B

Let us first assume D(E) = D(A)-D(B). Then M(E) =
(M(A)+M(B))- (M(A) + 1)D(B)*' -(M(B) + 1)D(A)*1 .2(D(A)-1)(D(B)—1)

U(E)=U(A)+U(B)

UEPE = UA)+UE)®

(> x/mCa)+ "<B\)/M(19))D(E> by I.H.

IN

To complete the inductive step we use



Lemma: Let S be a set of pairs (i,j), 1 <i<m, 1<j<n, and let

F(-xlv"'7xm7y17'~'7yn): H (xl+yj)
(i.j)€s

For constants a,b > 1, the maximum value of the continous function F
on the compact set

m
[[xi=a x>1Li=1,....m

D=1 (X1, Xy V1, -, Yn) € R o
yj:b7 yj215j217"'?n

j=1

is not greater than the product of the |S| largest numbers among the
following mn numbers:

atba+1,...atlb+1,.. b+l, 2,...2
n—1 m—1 (n—1)(m—1)




Apply this Iemma Wlthm D PA/M(A) fori=1,.
a=M(A), n=D(B), y; = \/ for]—l,...,n,andb M( ):

(Pw/ay+ *4/m@) " =TT [T G+

< (a—l—b)~(a—|—1)” 1 (b+ )m 1 2(m7)n71)
= M(E)

If D(E) < D(A)D(B), apply the lemma with |S| = D(E) < nm.



Remarks

e The BFMS bound also dominates zero separation bounds derived
from the polynomial system bounds by Canny and by Emiris,
Mourrain, and Tsigaridas.

e Sekigawa does not provide rules for divisions.
Corresponding rules can be added.

e For radical expressions with divisions, BFMSS, Li-Yap, and
Degree-Measure Bound are incomparable.



Need for va
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Delaunay Triangulation of Intersection Points of Circles




C++ Number Types

New York University (Chee Yap et al.)
CORE: :Expr

Max Planck Institute for Computer Science (Kurt Mehlhorn et al.)
leda: :real

Otto von Guericke University Magdeburg (w. Marc Mérig)
RealAlgebraic



