Singularities of Implicit Differential Equations and Static Bifurcations

Werner M. Seiler Institut für Mathematik Universität Kassel

Geometric Setting

Geometric Setting

Vessiot Distribution Geometric Singularities Quasi-Linear Equations Static Bifurcations *fibred manifold:* π : E → T with dim T = 1
trivial case: E = T × U, π = pr₁
local coordinates: (t, u) (*independent variable t*, *dependent variables* u) *section:* smooth map σ : T → E with π ∘ σ = id (locally: σ(t) = (t, s(t)) with function s : T → U) *q*-jet : class of all sections with same Taylor polynomial of degree q jet bundle J_qπ: set of all *q*-jets [σ]^(q)_t

 \Box local coordinates: $(t, \mathbf{u}^{(q)})$ (derivatives up to order q)

□ natural hierarchy with projections

$$\pi_r^{\boldsymbol{q}} : \mathcal{J}_{\boldsymbol{q}} \pi \longrightarrow \mathcal{J}_r \pi \qquad 0 \le r < \boldsymbol{q}$$

$$\pi^{\boldsymbol{q}}:\mathcal{J}_{\boldsymbol{q}}\pi\longrightarrow\mathcal{I}$$

Geometric Setting

Geometric Setting

Vessiot Distribution Geometric Singularities Quasi-Linear Equations Static Bifurcations ordinary differential equation of order $q \rightsquigarrow$ submanifold $\mathcal{R}_q \subseteq \mathcal{J}_q \pi$ such that $\operatorname{im} \pi^q |_{\mathcal{R}_q}$ dense in \mathcal{T} \Box no conditions on independent variable \Box no distinction scalar equation or system \Box basic assumption: equation formally integrable prolongation of section $\sigma : \mathcal{T} \to \mathcal{E} \rightsquigarrow$ section $j_q \sigma : \mathcal{T} \to \mathcal{J}_q \pi$ $j_q \sigma(t) = (t, \mathbf{s}(t), \dot{\mathbf{s}}(t), \dots, \mathbf{s}^{(q)}(t))$

classical solution: section $\sigma : \mathcal{T} \to \mathcal{E}$ such that $\operatorname{im}(j_q \sigma) \subseteq \mathcal{R}_q$

Geometric Setting Vessiot Distribution Geometric Singularities Quasi-Linear Equations Static Bifurcations

Def: contact distribution $C_q \subset T(\mathcal{J}_q \pi)$ generated by vector fields

$$C_{\text{trans}}^{(\boldsymbol{q})} = \partial_t + \sum_{\alpha=1}^m \sum_{j=0}^{\boldsymbol{q}-1} u_{j+1}^{\alpha} \partial_{u_j^{\alpha}}$$
$$C_{\alpha}^{(\boldsymbol{q})} = \partial_{u_{\boldsymbol{q}}^{\alpha}} \qquad 1 \le \alpha \le m$$

Prop: section $\gamma: \mathcal{T} \to \mathcal{J}_q \pi$ of the form $\gamma = j_q \sigma \iff Tim(\gamma) \subset \mathcal{C}_q$

Proof: chain rule!

Geometric Setting

Vessiot Distribution Geometric Singularities Quasi-Linear Equations Static Bifurcations Consider prolonged solution $j_q \sigma$ of equation $\mathcal{R}_q \subseteq \mathcal{J}_q \pi$:

- $\text{ integral elements } \xrightarrow{} T_{\rho}(\operatorname{im}(j_{q}\sigma)) \text{ for } \rho \in \operatorname{im}(j_{q}\sigma)$ $\text{ solution } \xrightarrow{} T_{\rho}(\operatorname{im}(j_{q}\sigma)) \subseteq T_{\rho}\mathcal{R}_{q}$
 - I prolonged section $\implies T_{\rho}(\operatorname{im}(j_q \sigma)) \subseteq \mathcal{C}_{\boldsymbol{q}}|_{\rho}$
- **Def:** Vessiot space at point $\rho \in \mathcal{R}_q$ $\mathcal{V}_{\rho}[\mathcal{R}_q] = T_{\rho}\mathcal{R}_q \cap \mathcal{C}_q|_{\rho}$
- generally: $\dim \mathcal{V}_{\rho}[\mathcal{R}_{q}]$ depends on $\rho \rightsquigarrow$ regular distribution only on open subset of \mathcal{R}_{q}
- computing Vessiot distribution $\mathcal{V}[\mathcal{R}_q]$ corresponds to "projective" form of prolonging from \mathcal{R}_q to \mathcal{R}_{q+1}
- I computation requires only linear algebra

Geometric Setting Vessiot Distribution Geometric Singularities Quasi-Linear Equations Static Bifurcations Consider square first-order ordinary differential equation $\mathcal{R}_1 \subset \mathcal{J}_1 \pi$ with local representation $\Phi(t, \mathbf{u}, \dot{\mathbf{u}}) = 0$ where $\Phi : \mathcal{J}_1 \pi \to \mathbb{R}^m$

I define m imes m matrix A and m-dimensional vector ${f d}$

$$A = \mathbf{C}^{(1)} \mathbf{\Phi} = \frac{\partial \mathbf{\Phi}}{\partial \dot{\mathbf{u}}} \qquad \mathbf{d} = C_{\text{trans}}^{(1)} \mathbf{\Phi} = \frac{\partial \mathbf{\Phi}}{\partial t} + \frac{\partial \mathbf{\Phi}}{\partial \mathbf{u}} \cdot \dot{\mathbf{u}}$$

assume A almost everywhere non-singular
 (i. e. given equation *not* underdetermined)
 compute determinant δ = det A and adjugate C = adj A

Lemma: $\mathcal{V}[\mathcal{R}_1]$ almost everywhere generated by single vector field

$$X = \delta C_{\text{trans}}^{(1)} - (C\mathbf{d})^T \mathbf{C}^{(1)}$$

Geometric Setting Vessiot Distribution Geometric Singularities Quasi-Linear Equations Static Bifurcations **Def:** ordinary differential equation $\mathcal{R}_{q} \subseteq \mathcal{J}_{q}\pi$ generalised solution \rightsquigarrow integral curve $\mathcal{N} \subseteq \mathcal{R}_{q}$ of $\mathcal{V}[\mathcal{R}_{q}]$ geometric solution \rightsquigarrow projection $\pi_{0}^{q}(\mathcal{N})$ of generalised solution \mathcal{N}

- geometric solution in general *not* image of a section (thus *no* interpretation as a function!)
- geometric solution $\pi_0^q(\mathcal{N})$ is classical solution $\iff \mathcal{N}$ everywhere transversal to π^q
- geometric solutions allow for for modelling of *multi-valued* solutions (e.g. "breaking waves")

Geometric Setting Vessiot Distribution Geometric Singularities Quasi-Linear Equations Static Bifurcations Formally integrable ordinary differential equation: $\mathcal{R}_q \subset \mathcal{J}_q \pi$ local description: $\Phi(t, \mathbf{u}^{(q)}) = 0$ (dim $\mathbf{u} = m$) \mathcal{R}_q of finite type \rightsquigarrow almost everywhere dim $\mathcal{V}_\rho[\mathcal{R}_q] = 1$ Def: $\rho \in \mathcal{R}_q$ geometric singularity $\rightsquigarrow \rho$ critical point of $\pi_0^q|_{\mathcal{R}_q}$ point $\rho \in \mathcal{R}_q$ is called *regular* $\rightsquigarrow \mathcal{V}_\rho[\mathcal{R}_q]$ 1-dimensional and transversal to π^q *regular singular* $\rightsquigarrow \mathcal{V}_\rho[\mathcal{R}_q]$ 1-dimensional and *not* transversal to π^q

irregular singular (*s*-singular) $\rightsquigarrow \dim \mathcal{V}_{\rho}[\mathcal{R}_{q}] = 1 + s$ with s > 0

(regular) singularities are also called impasse points

Geometric Setting Vessiot Distribution Geometric Singularities Quasi-Linear Equations Static Bifurcations Formally integrable ordinary differential equation: $\mathcal{R}_q \subset \mathcal{J}_q \pi$ local description: $\Phi(t, \mathbf{u}^{(q)}) = 0$ (dim $\mathbf{u} = m$) \mathcal{R}_q of finite type \rightsquigarrow almost everywhere dim $\mathcal{V}_\rho[\mathcal{R}_q] = 1$ Prop: point $\rho \in \mathcal{R}_q$ ρ regular \iff rank $(\mathbf{C}^{(q)}\Phi)_\rho = m$ ρ regular singular $\iff \rho$ not regular and rank $(\mathbf{C}^{(q)}\Phi \mid C_{\text{trans}}^{(q)}\Phi)_\rho = m$

Geometric Setting Vessiot Distribution Geometric Singularities Quasi-Linear Equations Static Bifurcations Formally integrable ordinary differential equation: $\mathcal{R}_{q} \subset \mathcal{J}_{q}\pi$ local description: $\Phi(t, \mathbf{u}^{(q)}) = 0$ (dim $\mathbf{u} = m$) \mathcal{R}_{q} of finite type \rightsquigarrow almost everywhere dim $\mathcal{V}_{\rho}[\mathcal{R}_{q}] = 1$

Thm: assume \mathcal{R}_q has *no* irregular singularities

- $\ \, \rho \in \mathcal{R}_q \text{ regular point } \implies$
 - (i) unique classical solution σ exists with $\rho \in \operatorname{im} j_q \sigma$
 - (ii) solution σ can be extended in any direction until $j_q \sigma$ reaches either boundary of \mathcal{R}_q or a regular singularity
- - (i) either *two* classical solutions σ_1 , σ_2 exist with $\rho \in \operatorname{im} j_q \sigma_i$ (both ending or both starting in ρ)

(ii) or one classical solution σ exists with $\rho \in \operatorname{im} j_q \sigma$ whose derivative of order q+1 blows up at $x = \pi^q(\rho)$

Geometric Setting Vessiot Distribution Geometric Singularities Quasi-Linear Equations Static Bifurcations Formally integrable ordinary differential equation: $\mathcal{R}_{q} \subset \mathcal{J}_{q}\pi$ local description: $\Phi(t, \mathbf{u}^{(q)}) = 0$ (dim $\mathbf{u} = m$) \mathcal{R}_{q} of finite type \rightsquigarrow almost everywhere dim $\mathcal{V}_{\rho}[\mathcal{R}_{q}] = 1$

Proof: $\mathcal{V}[\mathcal{R}_q]$ locally generated by vector field X ρ regular singularity $\implies X$ vertical wrt π^q dichotomy $\rightsquigarrow \partial_t$ -component of X does or does not change sign at ρ

Geometric Setting Vessiot Distribution Geometric Singularities Quasi-Linear Equations Static Bifurcations Formally integrable ordinary differential equation: $\mathcal{R}_{q} \subset \mathcal{J}_{q}\pi$ local description: $\Phi(t, \mathbf{u}^{(q)}) = 0$ (dim $\mathbf{u} = m$) \mathcal{R}_{q} of finite type \rightsquigarrow almost everywhere dim $\mathcal{V}_{\rho}[\mathcal{R}_{q}] = 1$

let $\rho \in \mathcal{R}_q$ be an *irregular* singularities

- consider simply connected open set $\mathcal{U} \subset \overline{\mathcal{R}_q}$ without any irregular singularities such that $\rho \in \overline{\mathcal{U}}$
- in \mathcal{U} Vessiot distribution $\mathcal{V}[\mathcal{R}_q]$ generated by single vector field X

Thm: any smooth extension of X vanishes at ρ

Consequence: behaviour of solutions in neighbourhood of isolated irregular singularity ρ determined by *eigenstructure* of $\operatorname{Jac}_{\rho} X$

Geometric Setting Vessiot Distribution Geometric Singularities Quasi-Linear Equations Static Bifurcations **Example:** $\dot{u}^3 + u\dot{u} - t = 0$ (hyperbolic gather) neighbourhood of an irregular singularity ρ (folded saddle)

Geometric Setting Vessiot Distribution Geometric Singularities Quasi-Linear Equations Static Bifurcations Prop: $\pi_{q-1}^q : \mathcal{J}_q \pi \to \mathcal{J}_{q-1} \pi$ affine bundle Def: $\mathcal{R}_q \subseteq \mathcal{J}_q \pi$ quasi-linear equation $\rightsquigarrow \mathcal{R}_q$ affine subbundle In the sequel: square first-order equation $A(t, \mathbf{u})\dot{\mathbf{u}} = \mathbf{r}(t, \mathbf{u})$ (as before: $\delta = \det A, C = \operatorname{adj} A$)

Lemma: Outside of irregular singularities, vector field X generating $\mathcal{V}[\mathcal{R}_1]$ projectable to vector field $Y \in \mathfrak{X}(\pi_0^1(\mathcal{R}_1))$ and

$$Y = (\pi_0^1)_* X = \delta \partial_t + (C\mathbf{r})^T \partial_\mathbf{u}$$

Note: *Y* extendable to any point $\xi \in \mathcal{E}$ where *A*, **r** defined

Geometric Setting Vessiot Distribution Geometric Singularities Quasi-Linear Equations Static Bifurcations **Def:** point $\xi \in \mathcal{E}$ such that $Y_{\mathcal{E}}$ defined regular \rightsquigarrow Y_{ξ} transversal to $\pi: \mathcal{E} \to \mathcal{T}$ irregular impasse point \rightsquigarrow $Y_{\xi} = 0$ *regular impasse point* \longrightarrow otherwise geometric solution \rightsquigarrow integral curve of Y **Prop:** point $\xi \in \mathcal{E}$ such that Y_{ξ} defined • ξ regular $\iff \operatorname{rank} A(\xi) = m$ \blacksquare ξ regular impasse point \iff $\operatorname{rank} A(\xi) = m - 1 \text{ and } \mathbf{r}(\xi) \notin \operatorname{im} A(\xi)$ Note: $\mathbf{r}(\xi) \notin \operatorname{im} A(\xi)$ means $\xi \notin \pi_0^1(\mathcal{R}_1)$

Geometric Setting Vessiot Distribution Geometric Singularities Quasi-Linear Equations Static Bifurcations Consider *parametrised* algebraic equation for **u**: $\varphi(t, \mathbf{u}) = 0 \quad \rightsquigarrow$ how do solutions change when parameter *t* varies?

Def: point $\xi = (t, \mathbf{u}) \in \mathcal{E}$

turning point, if

$$\varphi(\xi) = 0 \quad \dim \ker \frac{\partial \varphi}{\partial \mathbf{u}}(\xi) = 1 \quad \frac{\partial \varphi}{\partial t}(\xi) \notin \operatorname{im} \frac{\partial \varphi}{\partial \mathbf{u}}(\xi)$$

bifurcation point, if

$$\varphi(\xi) = 0 \quad \dim \ker \frac{\partial \varphi}{\partial \mathbf{u}}(\xi) = 1 \quad \frac{\partial \varphi}{\partial t}(\xi) \in \operatorname{im} \frac{\partial \varphi}{\partial \mathbf{u}}(\xi)$$

(Literature: further distinction into *simple* and *higher* turning/bifurcation points — here irrelevant)

Geometric Setting Vessiot Distribution Geometric Singularities Quasi-Linear Equations Static Bifurcations Consider *parametrised* algebraic equation for **u**: $\varphi(t, \mathbf{u}) = 0 \quad \rightsquigarrow$ how do solutions change when parameter *t* varies?

try to construct bifurcation diagram as graph of function $\mathbf{u}(t) \longrightarrow$ quasi-linear differential equation

$$\frac{\partial \varphi}{\partial \mathbf{u}}(t,\mathbf{u})\dot{\mathbf{u}} + \frac{\partial \varphi}{\partial t}(t,\mathbf{u}) = 0$$

Prop:

- ξ turning point $\iff \xi$ regular impasse point
- ξ bifurcation point \iff

 ξ irregular impasse point with $\operatorname{rank} A(\xi) = m-1$

(each branch tangent to real eigenvector of $\operatorname{Jac} Y_{\mathcal{E}}$)

Geometric Setting Vessiot Distribution Geometric Singularities Quasi-Linear Equations Static Bifurcations

in numerical computations

no difference in determining *integral curves* hysteresis point *multiple* zero of ∂_t -component of Y

Geometric Setting Vessiot Distribution Geometric Singularities **Quasi-Linear Equations** Static Bifurcations

Pitchfork bifurcation
$$\varphi(t, u) = tu - u^3$$

$$Y = (t - 3u^2)\partial_t - u\partial_u \qquad \text{Jac } Y_0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

non-generic bifurcation \rightsquigarrow two simple turning points collide

-