Construction of Classes of Irreducible Bivariate Polynomials

Doru Ștefănescu University of Bucharest

CASC 2013

Doru Ștefănescu University of Bucharest Construction of Classes of Irreducible Bivariate Polynomials

伺い イヨト イヨト

Outline

- Generalized difference polynomials
- Factorization conditions
- Irreducibility tests
- Applications

- - 4 回 ト - 4 回 ト

æ

Bivariate polynomials

We consider an algebraically closed field k of characteristic zero and the ring k[X, Y] of bivariate polynomials over k.

There exist several results concerning the construction of bivariate irreducible polynomials. They apply for polynomials for which the leading coefficient of a variable is a nonzero constant, namely

$$F(X,Y) = cY^{n} + \sum_{i=1}^{n} P_{i}(X)Y^{n-i}, \qquad (1)$$

where $c \in k \setminus \{0\}$, $\in \mathbb{N}^*$, $P_i(X) \in k[X]$.

Generalized difference polynomials

 We remind that such a polynomial is called a *generalized* difference polynomial if

$$\deg(P_i) < i \frac{\deg(P_n)}{n}$$
 for all $i, 1 \le i \le n-1$.

We consider the degree-index

$$p_Y(F) = \max\left\{\frac{\deg(P_i)}{i}; 1 \le i \le n
ight\}$$

see Panaitopol-Ștefănescu (1990).

Generalized difference polynomials (contd.)

- For special values of p_Y(F), Angermüller (1990), Panaitopol–Ştefănescu (1990), Cohen–Movahhedi–Salinier (2000), Bhatia–Khanduja (2001), Ayad (2002) proved that the polynomial F(X, Y) is irreducible in k[X, Y].
- They key tool for constructing irreducible polynomials using the degree index is the consideration of the Newton polygon of a product of two polynomials. In fact, we have:

- 4 回 ト 4 ヨ ト 4 ヨ ト

A theorem of Panaitopol–Ștefănescu

Proposition (Panaitopol–Ștefănescu, 1990) If $F = F_1F_2$ is factorization in k[X, Y] and $p_Y(F) = \deg(P_n)/n$, we have

$$p_Y(F) = p_Y(F_1) = p_Y(F_2).$$

The previous result can be restated for univariate polynomials with coefficients in a valued field, see, for example Bishnoi–Khanduja–Sudesh (2010).

(4 同) (4 回) (4 回)

A class of quasi-difference polynomials

Our purpose is to give a method for the construction of bivariate irreducible polynomials of the form (1) for which the degree index is not equal to $\deg(P_n)/n$.

Such polynomials are not generalized difference polynomials but belong to the family of *quasi-difference polynomials*, see Bhatia-Khanduja (2001).

We will give factorization conditions in function of the difference between the degree index $p_Y(F)$ and $\deg(P_n)/n$.

From now on, we consider a family of polynomials $F \in k[X, Y]$ which contains the generalized difference polynomials.

A (10) A (10) A (10) A

Factorization conditions

Theorem

Let $F(X, Y) = cY^n + \sum_{i=1}^n P_i(X)Y^{n-i} \in k[X, Y], c \in k \setminus \{0\}$, for which there exists $s \in \{1, 2, ..., n\}$ such that the following conditions are satisfied:

(a)
$$\frac{\deg P_{i}}{i} \leq \frac{\deg P_{s}}{s}$$
, for all $i \in \{1, 2, ..., n\}$.
(b) $(\deg P_{s}, s) = 1$.
(c) $\frac{\deg P_{s}}{s} - \frac{\deg P_{n}}{n} \leq \frac{1}{sn}$.
Then $F(X, Y)$ is irreducible in $k[X, Y]$ or has a factor whose degree with respect to Y is a multiple of s.

(1) マン・ション・

Irreducibility tests

Corollary

If $s \in \{1, n-1\}$ and F has no linear factors with respect to Y, the polynomial F is irreducible in k[X, Y].

Corollary

If n > 3 and s > n/2 the polynomial F is irreducible or has a divisor of degree s with respect to Y.

|| (同) || (三) (=)

Irreducibility tests (contd.)

Proposition Let $F(X, Y) = Y^n + \sum_{i=1}^{n} P_i(X)Y^{n-i} \in k[X, Y]$ and suppose that there exists $s \in \{1, 2, ..., n\}$ such that $(degP_s, s) = 1$, $\frac{degP_i}{i} \leq \frac{degP_s}{s} \text{ for all } i \in \{1, 2, ..., n\}$ and $\frac{degP_s}{s} - \frac{degP_n}{n} = \frac{u}{sn} \text{ where } u \in \{2,3\}.$ Then one of the following statements is satisfied:

Irreducibility tests (contd.)

- 1. The polynomial F(X, Y) is irreducible in k[X, Y].
- 2. The polynomial F has a divisor whose degree with respect to Y is a multiple of s.
- 3. The polynomial F factors in a product of two polynomials such that the difference of their degrees with respect to Y is a multiple of s.
- 4. The polynomial F factors in a product of two polynomials such that the difference between the double of the degree of one of them and the degree of the other with respect to Y is a multiple of s.

Irreducibility tests (contd.)

Remark: Note that if u = 2 we have the conclusions 1, 2 or 3, while if u = 3 one of the statements 1, 2 or 4 is satisfied.

- 4 回 2 4 三 2 4 三 2 4

Construction of irreducible polynomials

We use the previous results for studying factorization properties of some families of polynomials and for the construction of classes of irreducible polynomials.

Corollary 2 produces families of irreducible polynomials in k[X, Y]. It is sufficient to apply the following steps:

向下 イヨト イヨト

Examples

- Fix $n \ge 4$ and s = n 1.
- Fix the natural numbers $a_1, a_2, \ldots, a_{n-2}$ and a_n .
- Compute $M = \max\left\{\frac{a_i}{i}; 2 \le i \le n, i \ne s\right\}$.
- Compute $a = a_s \in \mathbb{N}^*$ such that $\frac{a}{n-1} > M$ and (a, n-1) = 1.
- Compute polynomials P_i such that deg(P_i) = a_i for all i ∈ {1, 2, ..., n}.
- Check if the polynomial F(X, Y) = Yⁿ + ∑ⁿ_{i=1} P_i(X)Yⁿ⁻ⁱ has linear factors with respect to Y.

If F(X, Y) has no linear divisors with respect to Y conclude that it is irreducible in k[X, Y].

イロト イボト イヨト イヨト 二日

An example

We consider

$$F(X,Y) = Y^n + p(X)Y^2 + q(X),$$

where $p, q \in k[X]$, $n \in \mathbb{N}$, $n \ge 4$, and 3 does not divide n. Note that in this case $m = \deg(q)$. We suppose that $\deg(p)$ and n - 2 are coprime and that

$$\frac{\deg(p)}{n-2} > \frac{\deg(q)}{n}$$

and we can apply Theorem 1 or Proposition 2 provided we have

$$\frac{a}{s}-\frac{m}{n} = \frac{\deg(p)}{n-2}-\frac{\deg(q)}{n} \leq \frac{3}{(n-2)n}$$

・ 同 ・ ・ ヨ ・ ・ ヨ ・

Particular cases

Particular case:

We consider deg(p) = n - 1 and deg(q) = n + 1. Then we have

$$\frac{a}{s} - \frac{m}{n} = \frac{n(n-1) - (n-2)(n+1)}{(n-2)n} = \frac{2}{(n-2)n}$$

The hypotheses of Proposition 2 are fulfilled. We have a = n - 1 and s = n - 2. Indeed, n - 1 and n - 2 are coprime and

$$s=n-2\geq \frac{n}{2}.$$

If we are in case 2, let G be a nontrivial divisor. Then $\deg_Y(G) = k(n-2)$, with $k \ge 1$. It follows that k = 1, so $\deg_Y(G) = n-2$. We deduce that the other divisor of F has the Y-degree equal to 2, so F has a quadratic factor with respect to Y.

If we are in case 3, let
$$F = GH$$
 be a nontrivial factorization in $k[X, Y]$. Since $|\deg_Y(G) - \deg_Y(H)| = k(n-2)$ we have $|\deg_Y(G) - \deg_Y(H)| = n-2$.
Let us suppose that $\deg_Y(G) \ge \deg_Y(H)$. We have $\deg_Y(G) - \deg_Y(H) = n-2$, hence $\deg_Y(G) = \deg_Y(H) + n-2 \ge n-1$.

イロン イヨン イヨン イヨン

æ

Because $\deg_Y(H) \ge 1$ we have $\deg_Y(G) = n - 1$ and $\deg_Y(H) = 1$, therefore one of the divisors of F is linear with respect to Y.

Therefore, if $\deg(p) = n - 1$ and $\deg(q) = n + 1$ the polynomial $F(X, Y) = Y^n + p(X)Y^2 + q(X)$ is irreducible or has a factor of degree 1 or 2 with respect to Y.

▲□→ ▲目→ ▲目→

Remark: If, in the previous case, the polynomial q(X) is square free, then F(X, Y) is irreducible or has a quadratic factor with respect to Y. Indeed, if there is a linear factor Y - r(x) then $r^n + pr^2 + q = 0$, so r^2 would divide q.

Example

The polynomial $F(X, Y) = Y^n + X^2Y^2 + X^3$ is irreducible in $\mathbb{Z}[X, Y]$ for all $n \in \mathbb{N}^*$, with *n* not divisible by 3.

If $n \ge 7$ we have

$$\frac{m}{n} = \frac{3}{n} > \frac{2}{n-2} = \frac{a}{s},$$

so $p_Y(F) = 3/n$ and F is a generalized difference polynomial. By hypotheses n is not a multiple of 3, by Corollary 3 from the paper Panaitopol–Ștefănescu (1990), the polynomial F is irreducible. For n < 7 we have to check the irreducibility for $n \in \{1, 2, 4, 5\}$. In each case, the polynomial is irreducible.

Another application

We consider $F(X, Y) = Y^n + p(X)Y^3 + q(X)Y^2 + r(X)$, where $p, q, r \in k[X], n \ge 5$. In this case, $m = \deg(r)$. We suppose that

$$rac{\deg(q)}{n-2} > rac{\deg(r)}{n} = rac{m}{n}$$

and we consider

$$\deg(p) = n-4, \quad \deg(q) = n-1, \quad \deg(r) = n+1,$$

Another application (contd.)

so the previous conditions are satisfied.

We note that we have

$$\frac{a}{s}-\frac{m}{n}=\frac{3}{sn},$$

so we can use Proposition 2.

If a factor has the degree multiple of s = n - 2, then it has degree n - 2. So the other factor is quadratic or the square of a linear factor.

< 同 > < 臣 > < 臣 >

Another application (contd.)

If we are in case 4 from the conclusions, let G, H be two factors such that $\deg(G) - 3\deg(H)$ is a multiple of s = n - 2. This gives information on the divisors in particular cases.

In the case n = 5, for example, we have $\deg(G) = 3 \deg(H) + 3t$ with $t \in \mathbb{N}$, so $\deg(G)$ is a multiple of 3. Therefore, $\deg(G) = 3$, and the other factor is quadratic or the square of a linear factor.

Some references

- Angermüller, G.: A generalization of Ehrenfeucht's irreducibility criterion. J. Number Theory 36, 80–84 (1990)
- Ayad, M.: Sur les polynômes f(X,Y) tels que K[f] est intégralement fermé dans K[X,Y]. Acta Arith. 105, 9–28 (2002)
- Bhatia, S., Khanduja, S.K.: Difference polynomials and their generalizations. Mathematika 48, 293–299 (2001)

|| (同) || (三) (=)

Some references

- Bishnoi, A., Khanduja, S.K., Sudesh, K.: Some extensions and applications of the Eisenstein irreducibility criterion. Developments in Mathematics 18, 189–197 (2010)
- Cohen, S.D., Movahhedi, A., Salinier, A.: Factorization over local fields and the irreducibility of generalized difference polynomials. Mathematika 47, 173–196 (2000)

Some references

- Panaitopol, L., Ștefănescu, D.: On the generalized difference polynomials. Pacific J. Math. 143, 341–348 (1990)
- Rubel, L.A., Schinzel, A., Tverberg, H.: On difference polynomials and hereditary irreducible polynomials. J. Number Theory 12, 230–235 (1980)

(4 同) (4 回) (4 回)

Thanks

Doru Ștefănescu University of Bucharest Construction of Classes of Irreducible Bivariate Polynomials

・ロト ・日本 ・モート ・モート