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Doru Ştefănescu University of Bucharest Construction of Classes of Irreducible Bivariate Polynomials



Generalized difference polynomials
Factorization conditions

Applications

Outline

I Generalized difference polynomials

I Factorization conditions

I Irreducibility tests

I Applications
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Bivariate polynomials

We consider an algebraically closed field k of characteristic zero
and the ring k[X ,Y ] of bivariate polynomials over k .

There exist several results concerning the construction of bivariate
irreducible polynomials. They apply for polynomials for which the
leading coefficient of a variable is a nonzero constant, namely

F (X ,Y ) = cY n +
n∑

i=1

Pi (X )Y n−i , (1)

where c ∈ k \ {0}, ∈ N∗, Pi (X ) ∈ k[X ] .
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Generalized difference polynomials

I We remind that such a polynomial is called a generalized
difference polynomial if

deg(Pi ) < i
deg(Pn)

n
for all i , 1 ≤ i ≤ n − 1 .

I We consider the degree-index

pY (F ) = max

{
deg(Pi )

i
; 1 ≤ i ≤ n

}
see Panaitopol–Ştefănescu (1990).
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Generalized difference polynomials (contd.)

I For special values of pY (F ), Angermüller (1990),
Panaitopol–Ştefănescu (1990), Cohen–Movahhedi–Salinier
(2000), Bhatia–Khanduja (2001), Ayad (2002) proved that
the polynomial F (X ,Y ) is irreducible in k[X ,Y ].

I They key tool for constructing irreducible polynomials using
the degree index is the consideration of the Newton polygon
of a product of two polynomials. In fact, we have:
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A theorem of Panaitopol–Ştefănescu

Proposition (Panaitopol–Ştefănescu, 1990)

If F = F1F2 is factorization in k[X ,Y ] and pY (F ) = deg(Pn)/n,
we have

pY (F ) = pY (F1) = pY (F2) .

The previous result can be restated for univariate polynomials with
coefficients in a valued field, see, for example
Bishnoi–Khanduja–Sudesh (2010).
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A class of quasi–difference polynomials

Our purpose is to give a method for the construction of bivariate
irreducible polynomials of the form (1) for which the degree index
is not equal to deg(Pn)/n.

Such polynomials are not generalized difference polynomials but
belong to the family of quasi–difference polynomials, see
Bhatia-Khanduja (2001).

We will give factorization conditions in function of the difference
between the degree index pY (F ) and deg(Pn)/n .

From now on, we consider a family of polynomials F ∈ k[X ,Y ]
which contains the generalized difference polynomials.
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Factorization conditions

Theorem
Let F (X ,Y ) = cY n +

∑n
i=1 Pi (X )Y n−i ∈ k[X ,Y ], c ∈ k \ {0} ,

for which there exists s ∈ {1, 2, ..., n} such that the following
conditions are satisfied:

(a)
degPi

i
≤ degPs

s
, for all i ∈ {1, 2, ..., n}.

(b) (degPs , s) = 1.

(c)
degPs

s
− degPn

n
≤ 1

sn
.

Then F (X ,Y ) is irreducible in k[X ,Y ] or has a factor whose
degree with respect to Y is a multiple of s.
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Irreducibility tests

Corollary

If s ∈ {1, n− 1} and F has no linear factors with respect to Y , the
polynomial F is irreducible in k[X ,Y ] .

Corollary

If n > 3 and s > n/2 the polynomial F is irreducible or has a
divisor of degree s with respect to Y .
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Irreducibility tests (contd.)

Proposition

Let F (X ,Y ) = Y n +
n∑

i=1

Pi (X )Y n−i ∈ k[X ,Y ] and suppose that

there exists s ∈ {1, 2, ..., n} such that
(degPs , s) = 1 ,

degPi

i
≤ degPs

s
for all i ∈ {1, 2, ..., n}

and
degPs

s
− degPn

n
=

u

sn
where u ∈ {2, 3} .

Then one of the following statements is satisfied:
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Irreducibility tests (contd.)

1. The polynomial F (X ,Y ) is irreducible in k[X ,Y ].
2. The polynomial F has a divisor whose degree with respect to Y
is a multiple of s.
3. The polynomial F factors in a product of two polynomials such
that the difference of their degrees with respect to Y is a multiple
of s.
4. The polynomial F factors in a product of two polynomials such
that the difference between the double of the degree of one of them
and the degree of the other with respect to Y is a multiple of s.
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Irreducibility tests (contd.)

Remark: Note that if u = 2 we have the conclusions 1, 2 or 3,
while if u = 3 one of the statements 1, 2 or 4 is satisfied.
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Construction of irreducible polynomials

We use the previous results for studying factorization properties of
some families of polynomials and for the construction of classes of
irreducible polynomials.

Corollary 2 produces families of irreducible polynomials in k[X ,Y ].
It is sufficient to apply the following steps:
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Examples

I Fix n ≥ 4 and s = n − 1 .

I Fix the natural numbers a1, a2, . . . , an−2 and an .

I Compute M = max
{
ai
i ; 2 ≤ i ≤ n, i 6= s

}
.

I Compute a = as ∈ N∗ such that a
n−1 > M and (a, n− 1) = 1 .

I Compute polynomials Pi such that deg(Pi ) = ai for all
i ∈ {1, 2, . . . , n} .

I Check if the polynomial F (X ,Y ) = Y n +
∑n

i=1 Pi (X )Y n−i

has linear factors with respect to Y .

If F (X ,Y ) has no linear divisors with respect to Y conclude that it
is irreducible in k[X ,Y ] .
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An example

We consider

F (X ,Y ) = Y n + p(X )Y 2 + q(X ),

where p, q ∈ k[X ], n ∈ N, n ≥ 4, and 3 does not divide n .

Note that in this case m = deg(q).
We suppose that deg(p) and n − 2 are coprime and that

deg(p)

n − 2
>

deg(q)

n
.

and we can apply Theorem 1 or Proposition 2 provided we have

a

s
− m

n
=

deg(p)

n − 2
− deg(q)

n
≤ 3

(n − 2)n
.
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Particular cases

Particular case:
We consider deg(p) = n − 1 and deg(q) = n + 1 . Then we have

a

s
− m

n
=

n(n − 1)− (n − 2)(n + 1)

(n − 2)n
=

2

(n − 2)n
.

The hypotheses of Proposition 2 are fulfilled.
We have a = n − 1 and s = n − 2.
Indeed, n − 1 and n − 2 are coprime and

s = n − 2 ≥ n

2
.
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Particular cases (contd.)

If we are in case 2, let G be a nontrivial divisor. Then
degY (G ) = k(n − 2), with k ≥ 1 . It follows that k = 1, so
degY (G ) = n − 2. We deduce that the other divisor of F has the
Y -degree equal to 2, so F has a quadratic factor with respect to Y .
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Particular cases (contd.)

If we are in case 3, let F = GH be a nontrivial factorization in
k[X ,Y ]. Since | degY (G )− degY (H)| = k(n − 2) we have
| degY (G )− degY (H)| = n − 2.

Let us suppose that degY (G ) ≥ degY (H) . We have
degY (G )− degY (H) = n − 2 , hence
degY (G ) = degY (H) + n − 2 ≥ n − 1 .
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Particular cases (contd.)

Because degY (H) ≥ 1 we have degY (G ) = n − 1 and
degY (H) = 1 , therefore one of the divisors of F is linear with
respect to Y .

Therefore, if deg(p) = n − 1 and deg(q) = n + 1 the polynomial
F (X ,Y ) = Y n + p(X )Y 2 + q(X ) is irreducible or has a factor of
degree 1 or 2 with respect to Y .
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Particular cases (contd.)

Remark: If, in the previous case, the polynomial q(X ) is square
free, then F (X ,Y ) is irreducible or has a quadratic factor with
respect to Y . Indeed, if there is a linear factor Y − r(x) then
rn + pr2 + q = 0 , so r2 would divide q .
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Particular cases (contd.)

Example

The polynomial F (X ,Y ) = Y n + X 2Y 2 + X 3 is irreducible in
Z[X ,Y ] for all n ∈ N∗ , with n not divisible by 3 .

If n ≥ 7 we have
m

n
=

3

n
>

2

n − 2
=

a

s
,

so pY (F ) = 3/n and F is a generalized difference polynomial. By
hypotheses n is not a multiple of 3, by Corollary 3 from the paper
Panaitopol–Ştefănescu (1990), the polynomial F is irreducible.
For n < 7 we have to check the irreducibility for n ∈ {1, 2, 4, 5} .
In each case, the polynomial is irreducible.
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Another application

We consider F (X ,Y ) = Y n + p(X )Y 3 + q(X )Y 2 + r(X ) , where
p, q, r ∈ k[X ] , n ≥ 5 . In this case, m = deg(r).
We suppose that

deg(q)

n − 2
>

deg(r)

n
=

m

n

and we consider

deg(p) = n − 4 , deg(q) = n − 1 , deg(r) = n + 1 ,
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Another application (contd.)

so the previous conditions are satisfied.

We note that we have

a

s
− m

n
=

3

sn
,

so we can use Proposition 2.

If a factor has the degree multiple of s = n − 2, then it has degree
n − 2. So the other factor is quadratic or the square of a linear
factor.
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Another application (contd.)

If we are in case 4 from the conclusions, let G ,H be two factors
such that deg(G )− 3 deg(H) is a multiple of s = n− 2 . This gives
information on the divisors in particular cases.

In the case n = 5, for example, we have deg(G ) = 3 deg(H) + 3t
with t ∈ N, so deg(G ) is a multiple of 3. Therefore, deg(G ) = 3,
and the other factor is quadratic or the square of a linear factor.
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