
On Stationary Sets of Euler’s Equations on
so(3, 1) and their Stability

Valentin Irtegov and Tatyana Titorenko

Institute for System Dynamics and Control Theory SB RAS,
134, Lermontov str., Irkutsk, 664033, Russia,

irteg@icc.ru

Abstract. With the use of computer algebra methods we investigate
two recent found cases of integrability of Euler’s equations on the Lie
algebra so(3, 1) when the equations possess additional polynomial first
integrals of degrees 3 and 6. The problems of obtaining stationary sets of
the equations and investigation of their stability are considered. In addi-
tion to the sets obtained earlier [1], we have found new zero-dimensional
and nonzero-dimensional stationary sets. For a number of the sets we
have derived sufficient conditions of their stability and instability.
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1 Introduction

It is known that configuration space in dynamics of a rigid body is, as a rule,
some natural Lie group SO(3), E(3), SO(4), etc. In [2], the connection of classical
Euler’s equations, describing the motion of a rigid body, with Lie algebras is
shown. Many problems of mechanics, mathematical physics and etc. [3] reduce
to Euler’s equations on Lie algebras. These equations are also a good model
for the study of singularities of integrable Hamiltonian systems. Therefore an
increased interest takes place to systems of a such type, in particular, finding
new cases of integrability of the systems and qualitative analysis of these cases.
So, the works [6]-[8] are devoted to investigation of new integrable cases of Euler’s
equations on Lie algebras e(3), so(4) [4], [5] when the equations admit additional
polynomial first integral of 4th degree. In these works, a topological analysis of
the cases has been conducted.

In the present paper, two recent found cases of integrability of Euler’s equa-
tions on the Lie algebra so(3, 1), when the equations possess additional polyno-
mial first integrals of degrees 3 and 6 [9], [10], are investigated. We find peculiar
solutions (stationary sets) of these equations and investigate their stability. For
solving these problems, we apply a technique based on computer algebra meth-
ods. The latter allows us not only to obtain desired solutions in an analytical
form, but and to investigate their stability, e.g., by Lyapunov’s methods. In [1],
some general analysis of stationary sets of the equations considered has been
conducted. Nonzero-dimensional stationary sets (stationary invariant manifolds



(IMs)) have been found, their stability and bifurcations have been investigated.
It was shown that the equations have zero-dimensional stationary sets in capacity
of their solutions. In the given paper, we have found these sets and investigated
their stability. We have also found complex IMs which possess, in our opinion,
an interest property: under some additional constraints, the motion on these
manifolds is described by real functions of time. For the purpose of solving com-
putational problems, we used the computer algebra systems (CAS) Mathematica
and Maple [11].

2 On Stationary Sets of Euler’s Equations with an
additional cubic first integral

2.1 Problem Formulation

In [10], the problem of revealing integrable equations in the family of Euler’s
equations with Hamiltonians of the form

H= c1 α3(M2
1 +M2

2 +M2
3 )+c2M3(α1M1+α3M3)+M1γ2 −M2γ1 (1)

is considered. HereMi, γi (i = 1, 2, 3) are the components of the two 3-dimensional
vectors, αj , cj are some constants.

It is noted that Hamiltonians (1) have numerous applications (two-spin inter-
actions, motion of a three dimensional rigid body in a constant-curvature space
or in an ideal fluid, motion of a body with ellipsoidal cavity filled with fluid
around a fixed point, etc.).

Several integrable cases of the equations discussed were found. The Hamil-
tonians corresponding to them are separated from family (1) by the constraints
imposed on parameters c1 and c2: (a) c1 is arbitrary, c2 = 0; (b) c1 = 1, c2 = −2;
(c) c1 = 1, c2 = −1; (d) c1 = 1, c2 = −1/2. In the present paper, cases (b) and
(d) are studied.

According to [10], in integrable case (b) there exists an additional cubic in-
tegral of the form

F = {2[α3(M1γ2 −M2γ1) + α1(M2γ3 −M3γ2)]− k(M2
1 +M2

2 +M2
3 )

+γ21 + γ22 + γ23}M3 = h1 = const. (2)

The latter integral has been found earlier in [9].

Euler’s equations corresponding to the Hamiltonian (b) write

Ṁ1 =2M2(α1M1+2α3M3)−(M3γ1−M1γ3),

Ṁ2 =M2γ3−M3γ2−2
[
α1(M2

1−M2
3 )+2α3M1M3

]
, Ṁ3 =−2α1M2M3,

γ̇1 =2(α1M1+α3M3) γ2+(2α3M2−γ1) γ3+kM1M3,

γ̇2 =2
[
(α1M3−α3M1) γ3−(α1M1+α3M3) γ1

]
+kM2M3−γ2γ3,

γ̇3 =2
[
α3(M1γ2 −M2γ1)−α1M3γ2

]
+γ21 +γ22−k(M2

1 +M2
2 ).

(3)



The rest of the integrals of equations (3) has the form:

V1 =

3∑
i=1

Miγi = h2 = const, V2 =

3∑
i=1

(kM2
i + γ2i ) = h3 = const. (4)

We state the problem of finding stationary sets of equations (3) and investi-
gation of their stability in the sense of Lyapunov.

2.2 Finding Stationary Sets

In order to solve the stated problem, we shall apply the Routh-Lyapunov method
[12] and some its generalizations (see [13]). This method in combination with
computer algebra tools allows one not only to find desired solutions, but and
to investigate their stability. According to the method, stationary invariant sets
of the above differential equations are called solutions of conditional extremum
problem for the elements of algebra of the first integrals of these equations. To
obtain these sets, some linear or nonlinear combination from the problem’s first
integrals (a family of the first integrals) is constructed and necessary conditions
for this family to have an extremum with respect to phase variables are written.
Thereby, the problem of finding stationary invariant sets for the system of differ-
ential equations with polynomial first integrals is reduced to obtaining solutions
of some algebraic system. In our case, it will be a system of nonlinear equations.

Following the technique chosen, we construct the complete linear combination

K = λ0H − λ1V1 −
λ2
2
V2 − λ3F (5)

from the first integrals of the problem, and write down the necessary conditions
for the integral K to have an extremum with respect to phase variables Mi, γi:

∂K/∂M1 =λ0γ2−λ1γ1+(2α3λ0−kλ2)M1 − 2 [α1λ0 + λ3(α3γ2 − kM1)]M3 =0,

∂K/∂M2 =−λ0γ1−λ1γ2+(2α3λ0−kλ2)M2 + 2λ3 (α3γ1 + kM2 − α1γ3)M3 =0,

∂K/∂M3 = −λ1γ3 − 2α1λ0M1 − (2α3λ0 + kλ2)M3 + λ3 [k(M2
1 +M2

2 + 3M2
3 )

+2 (α3γ1−α1γ3)M2+2 (2α1M3−α3M1)γ2−(γ21 + γ22 + γ23)] = 0,

∂K/∂γ1 = −λ1M1 − λ0M2 − λ2γ1 + 2λ3(α3M2 − γ1)M3 = 0,

∂K/∂γ2 = λ0M1 − λ1M2 − λ2γ2 + 2λ3 [(α1M3 − α3M1)− γ2]M3 = 0,

∂K/∂γ3 = −λ1M3 − λ2γ3 − 2λ3(α1M2 + γ3)M3 = 0.

(6)

Here λi = const are the family parameters of the integral K.
Equations (6) (the equations of stationarity of the integral K) represent a

system of polynomial equations of 2nd degree with parameters λ0, λ1, λ2, λ3,
α1, α3. It should be noted that if some part of parameters λi in K assumes
zero values then we obtain an “incomplete” combination of the integrals. In this
case, both stationary equations and solutions of these equations correspond to
this “incomplete” combination of the integrals.

We applied computer algebra methods for qualitative analysis of the solution
set of equations (6) and for finding solutions of these equations.



It was shown in [1], equations (6) have a finite number of solutions (6 so-
lutions) over field Q(λi, αj)[M1,M2,M3, γ1, γ2, γ3]. The latter was revealed by
the programs IsZeroDimentional, NumberOfSolutions which are included in the
Maple-program package PolynomialIdeals.

The program IsPrime (which is also part of this package) allowed us to find
out that system (6) can be decomposed into more “simple” subsystems over the
above field. To this end, we applied triangular sets method [14]. The method
decomposes the algebraic variety of a polynomial system into subvarieties which
correspond to one or several solutions of the system. A special form, called
“triangular set”, is used for representing solutions. In the problem considered,
application of this method has not caused any computational difficulties. We used
the Maple-program Triangularize. The result of application of this program to
system (6) writes[

[ γ1, γ2, γ3,M1,M2,M3],

[M2, γ1(2λ3M3 + λ2) + λ1M1, γ3(2λ3M3 + λ2) + λ1M3,

γ2(2λ3M3 + λ2) +M1(2α3λ3M3 − λ0)− 2α1λ3M
2
3 ,

2M1 (α2
1(4λ23M

2
3 − λ22)− (λ0 + α3λ2)2 − λ21)

+α1(4α3λ
2
3M

2
3 + λ0(2λ3M3 + λ2))M3,

a0M
5
3 + a1M

4
3 + a2M

3
3 + a3M

2
3 + a4M3 + a5]

]
. (7)

Here a0, . . . , a5 are some expressions of λi, αj .
The program result is a list of the system solutions represented in “triangular”

form. The first element of the list defines a trivial solution of system (6), the
2nd element defines five solutions of this system, because the polynomial of
variable M3 has five roots. We have found multiple roots of this polynomial. The
conditions of existence of such roots can be obtained as conditions under which
the resultant of two polynomials (the polynomial considered and its derivative)
vanishes. The found conditions in the form of restrictions imposed on parameters
λi, αj and the solutions, corresponding to them, are given below.

i) λ1 = 0, α3 = 0 :

γ1 = 0, γ2 = −2α1λ2λ
−1
3 , γ3 = 0, M1 = 0, M2 = 0, M3 = −λ2λ−13 ; (8)

ii) λ1 = 0, α3 = α1 :

γ1 = 0, γ2 = 2(α1λ2 + λ0)λ−13 , γ3 = 0, M1 = −2(α1λ2 + λ0)α−11 λ−13 ,

M2 = 0, M3 = (α1λ2 + λ0)α−11 λ−13 ; (9)

iii) λ2 = 0, α1 = 0 :

γ1 = 0, γ2 = 0, γ3 = −λ1 λ−13 /2, M1 = 0, M2 = 0,

M3 = −(2λ0 ±
√

4λ20 + 3λ21)α−13 λ−13 /6; (10)

iv) λ0 =
λ21

2α3λ2
+

1

2
α3λ2, α1 = 0 :

γ1 = 0, γ2 = 0, γ3 = −(2λ1 ±
√
λ21 − 3α2

3λ
2
2 )λ−13 /2, M1 = 0,



M2 = 0, M3 = −(λ21 + 3α2
3λ

2
2 ∓ λ1

√
λ21 − 3α2

3λ
2
2)α−23 λ−12 λ−13 /6. (11)

The above expressions are the families of the stationary solutions of differential
equations (3) parameterized by λi. The latter is proved by direct substitution
of (8)–(11) into equations (3) and (6). As a result, these equations turn into
identities.

Geometrically, the elements of the families of real solutions (8)-(11) corre-
spond to the families of points in R6. According to [10], from a mechanical point
of view, under corresponding interpretation of the parameters and the phase
variables, these elements correspond to helical motions of a rigid body in fluid
(generalized Kirchhoff’s model), and permanent rotations of a rigid body with
cavity filled with fluid (generalized Poincaré’s model).

Next, we apply the triangular sets method for finding of nonzero-dimensional
stationary sets. Likewise [1], we consider some part of the phase variables and
some part of the parameters, e.g., γ1, γ2, γ3,M1,M2, λ1, in capacity of unknowns.
The Maple-programs IsZeroDimension, HilbertDimention, IsPrime have revealed
that equations (6) have infinite number of solutions with respect to the un-
knowns, the dimension of these solutions is 1, and the algebraic variety of the
equations can be decomposed into subvarieties. Below, the result of application
of the program Triangularize to system (6), when γ1, γ2, γ3,M1,M2, λ1 are the
unknowns, is given.[

[ γ1(2λ3M3 + λ2) + λ1M1 −M2(2α3λ3M3 − λ0),

γ2(2λ3M3 + λ2) + +M1(2α3λ3M3 − λ0) + λ1M2 − 2α1λ3M
2
3 ,

γ3(2λ3M3 + λ2) + (2α1λ3M2 + λ1)M3,

(2α1λ
2
3M1 + λ0λ3)M3 + 2α3λ

2
3M

2
3 + λ0λ2,

λ21 + (λ0 + α3λ2)2 + α2
1λ

2
2],

[M2, γ1(2λ3M3 + λ2) + λ1M1, γ3(2λ3M3 + λ2) + λ1M3,

γ2(2λ3M3 + λ2) +M1(2α3λ3M3 − λ0)− 2α1λ3M
2
3 ,

−M1((λ0 + α3λ2)2 + λ21 + α2
1λ

2
2 − 4α2

1λ
2
3M

2
3 )

+2α1(λ3(2α3λ3M3 + λ0)M3 + λ0λ2)M3),

b0λ
4
1 + b1λ

2
1 + b0]

]
. (12)

Here b0, b1, b2 are some expressions of λ0, λ2, λ3, αj ,M3.
The first element of list (12) defines two solutions of equations (6) which

write

M1 = −λ3(2α3λ3M3 + λ0)M3 + λ0λ2
2α1λ23M3

, M2 = − (2λ3M3 + λ2) γ3 + λ1M3

2α1λ3M3
,

γ1 =
λ0(γ3λ3 + λ1)− 2α3λ

2
3M3γ3

2α1λ23M3
,

γ2 =
λ3((α2

1 + α2
3)(2λ3M3 − λ2)M3 + λ1γ3)− λ20

2α1λ23M3
, (13)



λ1 = ±
√
−((λ0 + α3λ2)2 + α2

1λ
2
2). (14)

Expressions (13), taking into account (14), correspond to two families of station-
ary invariant manifolds of the initial differential equations. The latter is proved
by substitution of these expressions into (6) and by IMs definition (the deriva-
tive of (13) calculated by virtue of equations (3) vanishes on these sets). The
calculations are trivial and are not represented here.

Expression λ1 (14) is the first integral of a vector field on the found IMs that
is proved by first integral definition (the derivative of λ1 calculated by virtue of
equations of the vector field is identically equal to zero). In the case considered,
the integral is trivial.

The 2nd element of list (12) defines four solutions:

M1 =
2α1(2α3λ

2
3M

2
3 + λ0(λ3M3 + λ2))M3

λ21 + (α3λ2 + λ0)2 + α2
1(λ22 − 4λ23M

2
3 )
, M2 = 0,

γ1 = − 2α1λ1(2α3λ
2
3M

2
3 + λ0(λ3M3 + λ2))M3

(2λ3M3 + λ2)(λ21 + (α3λ2 + λ0)2 + α2
1(λ22 − 4λ23M

2
3 ))

,

γ2 =
2α1

[
λ20(2λ3M3 + λ2) + λ3M3(λ21 + (α2

1 + α2
3)(λ22 − 4λ23M

2
3 ))
]
M3

(2λ3M3 + λ2)[λ21 + (α3λ2 + λ0)2 + α2
1(λ22 − 4λ23M

2
3 )]

,

γ3 = − λ1M3

2λ3M3 + λ2
, (15)

λ1 = ± 1√
2

√
p0 ±

[2α3λ23M
2
3 + λ0(λ2 + λ3M3)]

√
z0

λ3M3 + λ2
, (16)

where p0 = −λ0(λ0 − 6α3λ3M3) +
2α3λ

2
3M

2
3 (λ0 + 2α3λ3M3)

λ3M3 + λ2

−2(α2
1 + α2

3)(λ22 − 4λ23M
2
3 ),

z0 = 4α3(3λ3M3 + 2λ2)[2α3(3λ3M3 + 2λ2) + λ0]

+16α2
1(λ2 + λ3M3)(λ2 + 2λ3M3) + λ20.

Expressions (15), taking into account (16), define four families of one-dimensional
stationary IMs of equations (3) which deliver a stationary value to already non-
linear combination of the basic integrals. Expression λ1 (16) is the first integral
of a vector field on the found IMs. These statements are proved as above.

2.3 Motions on the Invariant Manifolds

To analyze solutions on the above IMs, we investigate the differential equations
on these IMs. Computer algebra tools play an auxiliary role here.

The equations of the vector field on the elements of families IMs (13) write

Ṁ3 =
(2λ3M3 + λ2)γ3 + λ1M3

λ3
,



γ̇3 =
(λ3M3 + λ2)γ23

λ3M3
+
λ1
λ3

γ3 − (α2
1 + α2

3)M2
3 +

λ20λ2
λ33M3

. (17)

These are derived from equations (3) by eliminating variables γ1, γ2,M1,M2

from them with the help of (13). Here λ1 has the form (14).

Next, we consider the case when λ1 = −
√
−((λ0 + α3λ2)2 + α2

1λ
2
2).

Equations (17) admit first integrals which are obtained from initial first in-
tegrals by eliminating variables γ1, γ2,M1,M2 from them with the help of (13).
The integrals found by this technique will be, generally speaking, dependent.
Take one of them, e.g.,

Ṽ =
1

4α2
1λ

4
3M

2
3

(
(α3λ2 + λ0)λ20λ2 + λ2λ

2
3(λ0 + α3λ2)γ23

−2(λ0 + α3λ2)λ23

√
−((λ0 + α3λ2)2 + α2

1λ
2
2)M3γ3 + 2λ33(λ0 + α3λ2)M3γ

2
3

+λ23(2α3λ
2
0 + (3α2

1 + α2
3)λ0λ2 − α3(α2

1 + α2
3)λ22)M2

3

+2λ33(α2
1 + α2

3)(λ0 + α3λ2)M3
3

)
= c̃1 = const. (18)

Eliminate variable γ3 from equations (17) by expression (18). As a result, we
have the differential equations (written in corresponding maps) with respect to
M3:

Ṁ3 = ±
√
z√

λ0 + α3λ2λ23
,

z = −4λ43(α2
1 + α2

3)(λ0 + α3λ2)M4
3

+λ33(8α2
1c̃1λ

2
3 − 4λ0(2α2

1λ2 + α3(λ0 + α3λ2)))M3
3

+λ23(4α2
1c̃1λ2λ

2
3 − λ0(λ0(λ0 + 5α3λ2) + 4(α2

1 + α2
3)λ22))M2

3

−λ20λ22(λ0 + α3λ2)− 2λ20λ2(λ0 + α3λ2)λ3M3 − λ20λ22(λ0 + α3λ2).

The above equations are integrated in elliptic functions. We have the analogous
result when we take λ1 with positive sign. Hence, the motion on invariant sub-
manifolds of IMs (13), the equations of which are obtained by addition of integral
(18) to equations (13), is described by elliptic functions of time.

The families of IMs (13) are complex, because the equations of the IMs
contain complex coefficients. When λ0 = λ1 = λ2 = 0, these families have the
real invariant submanifold

M1 = −α3M3

α1
, M2 = − γ3

α1
, γ1 = −α3γ3

α1
, γ2 =

(α2
1 + α2

3)M3

α1
,

the motion on which is described by real elementary functions. Note, the sub-
manifold delivers a stationary value to integral F (2).

When λ0 = 0, λ1 = −
√
−(α2

1 + α2
3)λ2, the family of IMs (13) has the sub-

family of complex IMs

M1 = −α3M3

α1
, M2 =

√
−α2

1 − α2
3 λ2M3 − (2λ3M3 + λ2)γ3

2α1λ3M3
, γ1 = −α3γ3

α1
,



γ2 = −
√
−α2

1 − α2
3 λ2γ3 − (α2

1 + α2
3)(2λ3M3 − λ2)M3

2α1λ3M3
, (19)

which delivers a stationary value to integral K̃ = −
√
−(α2

1 + α2
3)V1− λ2V2/2−

λ3F .
The motion on the elements of subfamily (19) is defined by the differential

equations

Ṁ3 = ±2M3

√
α2
1λ2c̃1 + 2α2

1λ3c̃1M3 − α3(α2
1 + α2

3)λ2M2
3√

α3λ2
. (20)

Equations (20) are integrated in the elementary functions

M3(t) =
2α2

1c̃1 λ2

e
∓α1

√
c̃1(

2t√
α3
±
√
λ2c̃2) + α2

1c̃1 [e
±α1

√
c̃1(

2t√
α3
±
√
λ2c̃2)(α2

1c̃1λ
2
3 − α3λ22k)− 2λ3]

.

Here k = −(α2
1 + α2

3), c̃2 is a constant of integration.
As obvious from the latter expression, it assumes real values when α3 >

0, λ2 > 0, c̃1 > 0 or α3 < 0, λ2 < 0, c̃1 < 0. Hence, under the above restrictions
imposed on parameters α3, λ2, c̃1, the motion on the elements of the submanifold
of complex IMs (19) is described by the real functions of time.

Finally, let us consider the motion on the elements of families (15).
The vector field on the elements of these families is defined by equation

Ṁ3 = 0. Hence, geometrically, the elements of the families of real solutions (15)
correspond to curves in R6, each point of which is the degenerated stationary
solution of the initial differential equations.

3 On Stationary Sets of Euler’s Equations with an
additional first integral of 6th degree

3.1 Problem Formulation

According to [10], in integrable case (d) there exists an additional first integral
of 6th degree of the form

F = M2
3

[
(M2

1 +M2
3 )[(α3M1 + γ2)2 + α1M3(α1M3 − 2(α3M1 + γ2))]

+((α1M2 + γ3)M3 − (α3M2 − γ1)M1)2
]

= h1 = const

Euler’s equations corresponding to the Hamiltonian (d) write

Ṁ1 =2(M3γ1−M1γ3)−M2(α1M1+2α3M3),

Ṁ2 =2(M2γ3−M3γ2)+α1(M2
1−M2

3 )+2α3M1M3, Ṁ3 =α1M2M3,

γ̇1 =(2α3M3−α1M1) γ2−2(2α3M3−γ1) γ3−2kM1M3,

γ̇2 =α1(M1γ1−M3γ3)+2α3(2M1γ3−M3γ1)−2(kM2M3+γ2γ3),

γ̇3 =4α3(M2γ1−M1γ2)+α1M3γ2+2[k(M2
1 +M2

2 )−(γ21 +γ22)].

(21)

The rest of the integrals of these equations has the form (4).
Once again let us state the problem of finding stationary sets, now for equa-

tions (21), and investigation of their stability in the sense of Lyapunov.



3.2 Finding Stationary Sets

Following the technique chosen, we construct the complete linear combination

2K = 4λ0H − 2λ1V1 − λ2V2 − λ3F (λi = const)

from the problem’s first integrals, and write down the necessary conditions for
the integral K to have an extremum with respect to phase variables Mi, γi:

∂K/∂M1 =λ0(2η−α1M3)−λ1γ1−kλ2M1+λ3

[
α3(α1(M2

1 +M2
3 )−γ2M3)M3

+kM1M
2
3 +[(2α1M3−α3M1)σ−(ρ2+σ2)]M1−ρχM3

]
M2

3 = 0,

∂K/∂M2 =2λ0x5−λ1γ2−kλ2M2+λ3(α3M1−α1M3)(ρM1+χM3)M2
3 = 0,

∂K/∂M3 =λ0(2α3M3−α1M1)−λ1γ3−kλ2M3−λ3
[
(ρ2+σ2)M2

1

+3ρχM1M3+2χ2M2
3 +(2α2

3M
2
1 +α2

1(2M2
1 +3M2

3 )+2ηγ2)M2
3

−α1(3M2
1 +5M2

3 )σM3

]
M3 = 0,

∂K/∂γ1 = −2λ0M2 − λ1M1 − λ2γ1 − λ3(ρM1 + χM3)M1M
2
3 = 0,

∂K/∂γ2 = 2λ0M1 − λ1M2 − λ2γ2 + λ3(M2
1 +M2

3 )(α1M3 − σ)M2
3 = 0,

∂K/∂γ3 = −λ1M3 − λ2γ3 − λ3(ρM1 + χM3)M3
3 = 0.

(22)

Here the following denotations η=2α3M1+γ2, ρ=γ1−α3M2, σ=α3M1+γ2, χ =
α1M2 + γ3 are used.

The above equations (the equations of stationarity of the integral K) repre-
sent a system of polynomial algebraic equations of 5th degree with parameters
λi, αj .

Likewise the previous problem, some qualitative analysis of the solution set of
equations (22) by the Maple-programs IsZeroDimentional, NumberOfSolutions,
HilbertDimendion was conducted [1]. It was revealed that system (22) has infinite
number of solutions with respect to the phase variables, and the dimension of
these solutions is 1.

The above system was decomposed into two subsystems. To this end, Gröbner
basis and polynomial factorization methods were used. The 1st subsystem con-
sists of 20 polynomial equations of degrees from 2 to 9. The 2nd subsystem
consists of 16 polynomial equations of degrees from 1 to 9. The coefficients of
equations belong to field Q(λi, αj). The solutions, the dimension of which is 1,
form the solution set of the 1st subsystem. The 2nd subsystem has a finite num-
ber of solutions which is 33. Each of solutions of the subsystem corresponds to
a single point.

The solutions of the 1st subsystem obtained with respect to the phase vari-
ables, and the solutions of the 2nd subsystem obtained with respect to some
part of the phase variables and some part of the parameters can be found in [1].
These represent IMs of equations (21).

In the given work, we stated the problem of finding solutions for the 2nd
subsystem with respect to the phase variables. We tried to obtain solutions
corresponding to the complete linear combination of the problem’s first integrals
(the integral K).



It is known, lexicographic basis is the most suitable for computing the roots
of a polynomial algebraic system. We have not managed to construct a lexi-
cographic basis for the subsystem considered without imposing any additional
restrictions on parameters λi, αj neither with the use of Gröbner basis method
(the programs GroebnerBasis and gbasis of CAS Mathematica and Maple were
applied), neither with the use of the Maple-program FGLM. The computations
were executed for over 12 hours on Intel CPU 3.6 GHz, 32 GB RAM running
under Windows 7 Professional.

To find the desired solutions we have constructed the Gröbner basis with
respect to elimination monomial order. It writes:

M2 = 0, f1(γ1,M1,M3, λi, αi) = 0, f2(γ2,M1,M3, λi, αi) = 0,
f3(γ3,M1,M3, λi, αi) = 0, (23)

gr(M1,M3, λi, αi) = 0 (r = 1, . . . , 7). (24)

Here fs are the 5th degree polynomials of variables M1,M3, γ1, γ2, γ3, gr are the
6-9 degree polynomials of variables M1,M3. The coefficients of the polynomials
fs, gr represent some expressions of λi, αj .

A number of solutions of equations (24) was obtained by computing resultants
for polynomials gr. Indeed, having computed the resultant of any two polyno-
mials gl, gm (24) with respect to, e.g., variable M1, we obtain some polynomial
of variable M3. Each root M3 of this polynomial corresponds to common roots
M1 of polynomials gl, gm. Since system (24) is compatible, some of the common
roots of polynomials gl, gm are the roots of all the rest of the polynomials gr.

Following the technique chosen, compute the resultant for two polynomials
of system (24) (e.g., for polynomials having the least degree with respect to
variable M1). It writes:

Res = α1((2λ0 + α3λ
2
2)2 + α2

1λ
2
2)DM3 (a0M

12
3 + a1M

8
3 + a2M

4
3 + a4)

×(b0M
20
3 + b1M

16
3 + b2M

12
3 + b3M

8
3 + b4M

4
3 + b5) (25)

Here D, aσ, bρ are some expressions of λi, αj .
As obvious from (25), the resultant expression is factorized and, consequently,

computing the roots of the polynomials chosen is reduced to finding the roots
of 12th and 20th degree bipolynomials. Under some restrictions imposed on pa-
rameters λi, αj , we have found several solutions of these equations. Substituting
the obtained values of M3 into the polynomials chosen, we find common roots
of these polynomials and equations (24).

Next, we substitute the found values of M1,M3 into equations (23) and find
the values of γ1, γ2, γ3 corresponding to them. Some of the solutions of equations
(23), (24) obtained by the technique described are given below.

i) λ1 = 0, λ2 = λ53, α3 = 0 :

γ1 = 0, γ2 = ±1

2
α1λ3, γ3 = 0,M1 = 0,M2 = 0,M3 = ±λ3;

ii) λ1 = 0, λ2 = λ35, α3 = 0 :



γ1 = 0, γ2 = ±1

2
α1

√
−λ3, γ3 = 0,M1 = 0,M2 = 0,M3 = ±

√
−λ3;

iii) λ1 = 0, λ2 = −λ3 :

γ1 =
α1

√
[(2λ0 − α3λ3)2(4α3λ0 − (3α2

1 + 2α2
3)λ3)− α4

1λ
3
3]λ3

2(α3λ3 − 2λ0)3/2[(2λ0 − α3λ3)2 + α2
1λ

2
3 ]1/4

,

γ2 =
α1((α2

1 + α2
3)λ23)− 4λ20

2(α3λ3 − 2λ0)3/2[(2λ0 − α3λ3)2 + α2
1λ

2
3 ]1/4

,

γ3 =

√
(2λ0 − α3λ3)2(4α3λ0 − (3α2

1 + 2α2
3)λ3)− α4

1λ
3
3

2
√

(α3λ3 − 2λ0)λ3 [(2λ0 − α3λ3)2 + α2
1λ

2
3 ]1/4

,

M1 = − α1λ3√
(α3λ3 − 2λ0)λ3 [(2λ0 − α3λ3)2 + α2

1λ
2
3 ]1/4

,

M2 = 0, M3 = −
√
α3λ3 − 2λ0

[(2λ0 − α3λ3)2 + α2
1λ

2
3 ]1/4

. (26)

These represent the families of stationary solutions of equations (22) param-
eterized by λi. Likewise above, the latter is proved by direct substitution of
expressions (26) into the stationary equations and the initial differential ones
(i.e., equations (21) and (22)).

From a mechanical point of view and geometrically, the above solutions are
interpreted similar to the stationary solutions of integrable case (b).

4 On Stability of the Stationary Sets

Now, we shall consider the problem of stability for the above stationary solutions.
We shall investigate stability of the solutions on the base of Lyapunov’s stability
theorems: the 2nd method [15], in particular, the Routh-Lyapunov method [12]
which is its modification, theorems for linear approximation [15] and theorems
for stability with respect to part of variables [16].

First, let us investigate a trivial solution by the Routh-Lyapunov method.
This method allows one to obtain sufficient conditions of stability.

The family of Hamiltonians (1) corresponds to a family of Euler’s equations
on Lie algebras e(3), so(4) so(3, 1). We shall investigate stability of a trivial
solution of equations of this family. This solution is peculiar stationary one,
because it delivers a stationary value to all the above first integrals, and it is the
solution for all equations of the family. Hence, investigation of its stability has
a special interest.

Application of the Routh-Lyapunov method, in the case considered, reduces
the stability problem to analysing the sign definiteness of variation of integral
K̃= λ0H − λ1V1− λ2V2 obtained in the neighbourhood of the given solution. It
writes

∆K̃ = −λ2(z21 + z22 + z23)− λ1(z1z4 + z2z5 + z3z6) + λ0(z2z4 − z1z5
+α1c2z4z6) + (α3c1λ0 + (α2

1 + α2
3)λ2)z24 + (α3c1λ0 + (α2

1 + α2
3)λ2)z25

+(α3(c1 + c2)λ0 + (α2
1 + α2

3)λ2)z26 .



Here zi are deviations of the perturbed solution from the unperturbed one.
According to Sylvester’s criterion, the quadratic form ∆K̃ is sign definite

when the following conditions

∆1 = −λ2 > 0, ∆2 = −(λ20 + λ21 + 4α3c1λ0λ2 + 4(α2
1 + α2

3)λ22) > 0,

∆3 = ∆2(4α3(c1 + c2)λ30λ2 + 4α3(2c1 + c2)λ0λ2(λ21 + 4(α2
1 + α2

3)λ22)

+(λ21 + 4(α2
1 + α2

3)λ22)2 + λ20(λ21 + 4(α2
3(4c1(c1 + c2) + 1)− α2

1(c22 − 1))λ22)).

hold.
The above inequalities are compatible under the following restrictions:(
α3 > 0 ∧ α1 6= 0 ∧ λ2 < 0 ∧

(
(λ0 < 0 ∧ c1 > A1 ∧B2 < c2 < B1)

∨(λ0 > 0 ∧ c1 < A1 ∧B2 < c2 < B1)
))
∨
(
α3 < 0 ∧ α1 6= 0 ∧ λ2 < 0

∧
(

(λ0 < 0 ∧ c1 < A1 ∧B2 < c2 < B1) ∨ (λ0 > 0 ∧ c1 > A1 ∧B2 < c2 < B1)
))

∨
(
α3 > 0 ∧ α1 = 0 ∧ λ2 < 0 ∧

(
(λ0 < 0 ∧ c1 > A2 ∧ c2 > B3)

∨(λ0 > 0 ∧ c1 < A2 ∧ c2 < B3)
))
∨
(
α3 < 0 ∧ α1 = 0 ∧ λ2 < 0

∧
(

(λ0 < 0 ∧ c1 < A2 ∧ c2 < B3) ∨ (λ0 > 0 ∧ c1 > A2 ∧ c2 > B3)
))
. (27)

These have been obtained with the Mathematica-program Reduce. Here A1 =
−(λ20 + λ21 + 4(α2

1 + α2
3)λ22)/(4α3λ0λ2), A2 = −(λ20 + λ21 + 4α2

3λ
2
2)/(4α3λ0λ2),

B1,2 = 1/(2α2
1λ0λ2) [α3(λ20 + λ21 + 4α3c1λ0λ2 + 4(α2

1 + α2
3)λ22) ±

√
D], D =

(λ20 +λ21 +4α3c1λ0λ2 +4(α2
1 +α2

3)λ22)(α2
1λ

2
1 +α2

3(λ20 +λ21)+4α3(α2
1 +α2

3)c1λ0λ2 +
4(α2

1 + α2
3)2λ22), B3 = −(λ21 + 4α3c1λ0λ2 + 4α2

3λ
2
2)/(4α3λ0λ2).

It should be noted that correctness of the above conditions can be verified,
e.g., by other CAS programm (similar to Reduce) or by special numeric tests. In
the given work, the latter way was used.

Conditions (27) saparate from the family of Euler’s equations with Hamilto-
nians (1) some subfamily of systems of the equations, a trivial solution of which
is stable.

To verify whether or not integrable cases (a) − (d) (section 2.1) enter into
this subfamily it is sufficient, e.g., to test the compatibility of the conditions of
integrability with conditions (27) by applying the program Reduce. As a result,
we have that one integrable case (when c1 is arbitrary, c2 = 0) enters into the
above subfamily only.

We have managed to obtain conditions of stability for the trivial solution
of system (21) (the integrable case (d)) with respect to some part of the phase
variables [16]. To this end, we analyzed the variation of integral K̄=−λ2(2α3H+
V2) (where α1 = 0) written in the neighbourhood of this solution. It writes:

2∆K̃ = −λ2 [z23 + (z2 + α3z4)2 + (z1 − α3z5)2].

Introduce variables y1 = z2 + α3z4, y2 = z1 − α3z5 and write down ∆K̃ in
terms of y1, y2, z3:

2∆K̃ = −λ2(y21 + y22 + z23). (28)



Quadratic form (28) is sign definite with respect to y1, y2, z3 when λ2 6= 0.
Hence, the conditions α1 = 0, λ2 6= 0 are sufficient for the stability of the trivial
solution with respect to variables y1, y2, z3.

Next, we investigate one of the families of stationary solutions (26), e.g.,

γ1 = 0, γ2 =
1

2
α1λ3, γ3 = 0, M1 = 0, M2 = 0, M3 = λ3. (29)

We show that the elements of family (29) are instability when α1 6= 0 and
λ3 6= 0. To this end, we consider this solution in capacity of the unperturbed
one and write down the equations of first approximation:

ż1 =
3

2
α2
1λ3z4, ż2 = 2α2

1λ3z5, ż3 =
1

2
α1λ3(−2z2 + α1z6),

ż4 = 2λ3z1, ż5 = λ3(2z2 − α1z6), ż6 = α1λ3z5.

The characteristic equation of the above linear system writes µ2(µ2−3α2
1λ

2
3)2 =

0 and has four nonzero roots µ1 = −
√

3α1λ3, µ2 = −
√

3α1λ3, µ3 =
√

3α1λ3,
µ4 =

√
3α1λ3, among of which are real positive when α1 6= 0, λ3 6= 0. The

latter, according to Lyapunov’s stability theorem for linear approximation [15],
means instability of the elements of family (29).

The rest of the families of stationary solutions (26) have been investigated
by this technique. We have obtained results analogous above.

5 Conclusion

Practically, the completed analysis for stationary sets of Euler’s equations on
the Lie algebra so(3, 1) when the equations possess additional polynomial first
integrals of degrees 3 and 6 has been performed. We considered the case when
the sets correspond to the complete linear combination of the problem’s first
integrals. The obtained results can be a base for further qualitative analysis of the
considered integrable cases. The approach applied in this work to investigation
of integrable systems may be of interest for the study of new integrable cases
of equations of a such type when the problem’s algebraic first integrals have
degree higher than 2. This approach may also be of interest for the problems
of parametric analysis where properties of solutions in relation to continuous
change of parameters of these solutions are investigated.

The work was supported by the Presidium of the Russian Academy of Sci-
ences, basic research program no. 17.1.
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