Algebraic Attacks Using IP-Solvers

Ehsan Ullah

The 15th International Workshop on
Computer Algebra in Scientific Computing
September 9-13, 2013
Berlin, Germany

Outline

(1) Algebraic Attacks

- Problem Statement
- Motivation
- Our Approach
(2) Algebraic Attacks (Techniques) Using IP-Solvers
- Polynomial Conversion
- The Integer Polynomial Conversion (IPC)
- The Real Polynomial Conversion (RPC)
- The Logical Polynomial Conversion (LPC)
- The Hybrid IPC and RPC Conversions

Finding \mathbb{F}_{2}-rational Solutions

Consider the field \mathbb{F}_{2} with two elements. Let $f_{1}, f_{2} \in \mathbb{F}_{2}\left[x_{1}, x_{2}\right]$, where $f_{1}=x_{1} x_{2}+x_{2}$, and $f_{2}=x_{1} x_{2}+x_{1}+1$. Find a solution of the system

$$
f_{1}=0, f_{2}=0
$$

in \mathbb{F}_{2}^{2}. The four possible solution candidates are:

$$
(0,0),(0,1),(1,0),(1,1) .
$$

The only candidate that qualifies for a solution is $(1,0)$.

Finding \mathbb{F}_{2}-rational Solutions

Consider the field \mathbb{F}_{2} with two elements. Let $f_{1}, f_{2} \in \mathbb{F}_{2}\left[x_{1}, x_{2}\right]$, where $f_{1}=x_{1} x_{2}+x_{2}$, and $f_{2}=x_{1} x_{2}+x_{1}+1$. Find a solution of the system

$$
f_{1}=0, f_{2}=0
$$

in \mathbb{F}_{2}^{2}. The four possible solution candidates are:

$$
(0,0),(0,1),(1,0),(1,1) .
$$

The only candidate that qualifies for a solution is $(1,0)$.

Gröbner Bases Approach

Compute a Gröbner basis of the ideal

$$
\left\langle f_{1}, f_{2}, x_{1}^{2}+x_{1}, x_{2}^{2}+x_{2}\right\rangle
$$

which is

$$
\left\{x_{1}+x_{2}+1, x_{2}\right\}
$$

Finding \mathbb{F}_{q}-rational Solutions

Let p be a prime and $q=p^{e}$ with $e>0$. Let $K=\mathbb{F}_{q}$ be the finite field and let $F=\left\{f_{1}, \ldots, f_{\ell}\right\} \subseteq P=K\left[x_{1}, \ldots, x_{n}\right]$ be a set of polynomials. Find the K-rational solutions of the following system of equations.

$$
\begin{aligned}
f_{1}\left(x_{1}, \ldots, x_{n}\right) & =0 \\
& \vdots \\
f_{\ell}\left(x_{1}, \ldots, x_{n}\right) & =0
\end{aligned}
$$

Finding \mathbb{F}_{q}-rational Solutions

Let p be a prime and $q=p^{e}$ with $e>0$. Let $K=\mathbb{F}_{q}$ be the finite field and let $F=\left\{f_{1}, \ldots, f_{\ell}\right\} \subseteq P=K\left[x_{1}, \ldots, x_{n}\right]$ be a set of polynomials. Find the K-rational solutions of the following system of equations.

$$
\begin{aligned}
f_{1}\left(x_{1}, \ldots, x_{n}\right) & =0 \\
& \vdots \\
f_{\ell}\left(x_{1}, \ldots, x_{n}\right) & =0
\end{aligned}
$$

Special Properties of the System:

- The so-called field polynomials $x_{1}^{q}-x_{1}, \ldots, x_{n}^{q}-x_{n}$ play an essential role. For instance, the ideal

$$
\left\langle f_{1}, \ldots, f_{\ell}, x_{1}^{q}-x_{1}, \ldots, x_{n}^{q}-x_{n}\right\rangle
$$

is a 0 -dimensional radical ideal.

Finding \mathbb{F}_{q}-rational Solutions

Let p be a prime and $q=p^{e}$ with $e>0$. Let $K=\mathbb{F}_{q}$ be the finite field and let $F=\left\{f_{1}, \ldots, f_{\ell}\right\} \subseteq P=K\left[x_{1}, \ldots, x_{n}\right]$ be a set of polynomials. Find the K-rational solutions of the following system of equations.

$$
\begin{aligned}
f_{1}\left(x_{1}, \ldots, x_{n}\right) & =0 \\
& \vdots \\
f_{\ell}\left(x_{1}, \ldots, x_{n}\right) & =0
\end{aligned}
$$

Special Properties of the System:

- The so-called field polynomials $x_{1}^{q}-x_{1}, \ldots, x_{n}^{q}-x_{n}$ play an essential role. For instance, the ideal

$$
\left\langle f_{1}, \ldots, f_{\ell}, x_{1}^{q}-x_{1}, \ldots, x_{n}^{q}-x_{n}\right\rangle
$$

is a 0 -dimensional radical ideal.

- The system has a unique (or a few) K-rational solution(s). The polynomials f_{1}, \ldots, f_{ℓ} are quadratic and $p=2$.

Cryptosystem

A cryptosystem consists of the following components:

- a set \mathcal{P} called plaintext space,
- a set \mathcal{C} called ciphertext space,
- a set \mathcal{K} called key space,
- for every $k \in \mathcal{K}$ an encryption map, $\varepsilon_{k}: \mathcal{P} \longrightarrow \mathcal{C}$ and a decryption map, $\delta_{k}: \mathcal{C} \longrightarrow \mathcal{P}$ such that $\delta_{k} \circ \varepsilon_{k}=\mathrm{id}_{\mathcal{P}}$.

Algebraic Attacks

Idea

Reduce the task of breaking a cryptosystem to the task of solving a polynomial system! How: Let the plaintext space and the ciphertext space be of the form $\mathcal{P}=K^{n}$ and $\mathcal{C}=K^{m}$ with a finite field K (usually $K=\mathbb{F}_{2}$). Then every map $\varphi: K^{n} \longrightarrow K^{m}$ is given by polynomials, i.e. there exist polynomials $f_{1}, \ldots, f_{m} \in K\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
\varphi\left(x_{1}, \ldots, x_{n}\right)=\left(f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

for all $\left(x_{1}, \ldots, x_{n}\right) \in K^{n}$.

Algebraic Attacks

Idea

Reduce the task of breaking a cryptosystem to the task of solving a polynomial system! How: Let the plaintext space and the ciphertext space be of the form $\mathcal{P}=K^{n}$ and $\mathcal{C}=K^{m}$ with a finite field K (usually $K=\mathbb{F}_{2}$). Then every map $\varphi: K^{n} \longrightarrow K^{m}$ is given by polynomials, i.e. there exist polynomials $f_{1}, \ldots, f_{m} \in K\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
\varphi\left(x_{1}, \ldots, x_{n}\right)=\left(f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)\right),
$$

for all $\left(x_{1}, \ldots, x_{n}\right) \in K^{n}$.

Standard Cryptographic Polynomial Systems

Courtois Toy Cipher (CTC)

CTC(S-Boxes,Rounds)	CTC(3,3)	CTC(4,4)	CTC(5,5)	CTC(6,6)	CTC(7,7)	CTC(8,8)
equations	216	380	605	864	1169	1496
variables	117	204	330	468	630	795
non-linear terms	162	288	450	648	882	1152

Small Scale Advanced Encryption Standard (AES)

AES($n, r, c, w)$	$\operatorname{AES}(9,1,1,4)$	AES(10,1,1,4)	AES(4,2,1,4)	AES (2,2,2,4)	AES(3,2,2,4)	AES(1,1,1,8)
equations	1184	1312	1088	1024	1472	640
variables	592	656	544	512	736	320
non-lin. terms	1584	1760	1408	1056	1584	2416

system of equations
over \mathbb{F}_{q}

Traditional techniques using Gröbner basis:
Improvements: Buchberg's algorithm using strategies such as normal selection, sugar cube, etc.
Variants: F_{4} and F_{5} algorithms, XL -algorithm and its mutant variants.
Border basis algorithm and its improvements.
SAT-Solvers and characteristic set methods.

system of equations
 over \mathbb{F}_{q}

solution over \mathbb{F}_{q}

Traditional techniques using Gröbner basis:
Improvements: Buchberg's algorithm using strategies such as normal selection, sugar cube, etc.
Variants: F_{4} and F_{5} algorithms, XL -algorithm and its mutant variants.
Border basis algorithm and its improvements.
SAT-Solvers and characteristic set methods.

Traditional techniques using Gröbner basis:
Improvements: Buchberg's algorithm using strategies such as normal selection, sugar cube, etc.
Variants: F_{4} and F_{5} algorithms, XL -algorithm and its mutant variants.
Border basis algorithm and its improvements.
SAT-Solvers and characteristic set methods.

solution over \mathbb{F}_{q}

Traditional techniques using Gröbner basis:
Improvements: Buchberg's algorithm using strategies such as normal selection, sugar cube, etc.
Variants: F_{4} and F_{5} algorithms, XL -algorithm and its mutant variants.
Border basis algorithm and its improvements.
SAT-Solvers and characteristic set methods.

Traditional techniques using Gröbner basis:
Improvements: Buchberg's algorithm using strategies such as normal selection, sugar cube, etc.
Variants: F_{4} and F_{5} algorithms, XL -algorithm and its mutant variants.
Border basis algorithm and its improvements. SAT-Solvers and characteristic set methods.

Traditional techniques using Gröbner basis:
Improvements: Buchberg's algorithm using strategies such as normal selection, sugar cube, etc.
Variants: F_{4} and F_{5} algorithms, XL -algorithm and its mutant variants.
Border basis algorithm and its improvements. SAT-Solvers and characteristic set methods.

Traditional techniques using Gröbner basis:
Improvements: Buchberg's algorithm using strategies such as normal selection, sugar cube, etc.
Variants: F_{4} and F_{5} algorithms, XL -algorithm and its mutant variants.
Border basis algorithm and its improvements. SAT-Solvers and characteristic set methods.

Traditional techniques using Gröbner basis:
Improvements: Buchberg's algorithm using strategies such as normal selection, sugar cube, etc.
Variants: F_{4} and F_{5} algorithms, XL -algorithm and its mutant variants.
Border basis algorithm and its improvements. SAT-Solvers and characteristic set methods.

Objectives

- Look for new techniques and strategies
- Study the impact of various newly developed strategies
- Get advantage of parallel computing, state-of-the-art solvers
- Provide tools for algebraic cryptanalysis through ApCoCoA

Techniques for Polynomial Conversion

Techniques for Polynomial Conversion

Step 1: transformation to \mathbb{R} or \mathbb{Z}

Step 2: modeling MILP problem, linearization (using strategies) + modeling Step 3: using an IP solver

MILP
 problems

Step 3 CPLEX, GLPK
solution over \mathbb{R}
(resp. \mathbb{Z})

Step 1: transformation to \mathbb{R} or \mathbb{Z}
Step 2: modeling MILP problem, linearization (using strategies) + modeling Step 3: using an IP solver Step 4: inverse transformation

```
MILP
problems
```

Step 3 cPLEX, Glpk

Step 4

solution over \mathbb{R}

 (resp. \mathbb{Z})Find a \mathbb{F}_{2}-rational solution of

$$
f_{1}\left(x_{1}, \ldots, x_{n}\right)=0, \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)=0,
$$

where $f_{1}, \ldots, f_{m} \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]$.

Find a \mathbb{F}_{2}-rational solution of

$$
f_{1}\left(x_{1}, \ldots, x_{n}\right)=0, \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)=0
$$

where $f_{1}, \ldots, f_{m} \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]$.
We are looking for a tuple $\left(a_{1}, \ldots, a_{n}\right) \in\{0,1\}^{n}$ such that

$$
\begin{aligned}
F_{1}\left(a_{1}, \ldots, a_{n}\right) & \equiv 0(\bmod 2) \\
& \vdots \\
F_{m}\left(a_{1}, \ldots, a_{n}\right) & \equiv 0(\bmod 2)
\end{aligned}
$$

where $F_{i} \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]\left(\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]\right)$ are liftings of the polynomials f_{i}.

Find a \mathbb{F}_{2}-rational solution of

$$
f_{1}\left(x_{1}, \ldots, x_{n}\right)=0, \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)=0
$$

where $f_{1}, \ldots, f_{m} \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]$.
We are looking for a tuple $\left(a_{1}, \ldots, a_{n}\right) \in\{0,1\}^{n}$ such that

$$
\begin{aligned}
F_{1}\left(a_{1}, \ldots, a_{n}\right) & \equiv 0(\bmod 2) \\
& \vdots \\
F_{m}\left(a_{1}, \ldots, a_{n}\right) & \equiv 0(\bmod 2)
\end{aligned}
$$

where $F_{i} \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]\left(\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]\right)$ are liftings of the polynomials f_{i}.

- standard representation:

$$
\begin{array}{lll}
\overline{0} & \rightarrow & 0 \\
\overline{1} & \rightarrow & 1
\end{array}
$$

iteratively replace each sum $X_{1}+X_{2}$ by $X_{1}+X_{2}-2 X_{1} X_{2}$

Techniques for Polynomial Conversion

$$
\text { Let } f=x_{1} x_{2}+x_{3} x_{4}+x_{5}+x_{6}+1 \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{6}\right]
$$

Let $f=x_{1} x_{2}+x_{3} x_{4}+x_{5}+x_{6}+1 \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{6}\right]$.

Example

The standard representation of f is

$$
\begin{aligned}
F= & 8 X_{1} X_{2} X_{3} X_{4} X_{5} X_{6}-4 X_{1} X_{2} X_{3} X_{4} X_{5}-4 X_{1} X_{2} X_{3} X_{4} X_{6} \\
& +2 X_{1} X_{2} X_{3} X_{4}-4 X_{1} X_{2} X_{5} X_{6}-4 X_{3} X_{4} X_{5} X_{6}+2 X_{1} X_{2} X_{5} \\
& +2 X_{3} X_{4} X_{5}+2 X_{1} X_{2} X_{6}+2 X_{3} X_{4} X_{6}-X_{1} X_{2}-X_{3} X_{4} \\
& +2 X_{5} X_{6}-X_{5}-X_{6}+1 \in \mathbb{R}\left[X_{1}, \ldots, X_{6}\right]
\end{aligned}
$$

The polynomial F has 16 terms in its support and degree 6.

Let $f=x_{1} x_{2}+x_{3} x_{4}+x_{5}+x_{6}+1 \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{6}\right]$.

Example

The standard representation of f is

$$
\begin{aligned}
F= & 8 X_{1} X_{2} X_{3} X_{4} X_{5} X_{6}-4 X_{1} X_{2} X_{3} X_{4} X_{5}-4 X_{1} X_{2} X_{3} X_{4} X_{6} \\
& +2 X_{1} X_{2} X_{3} X_{4}-4 X_{1} X_{2} X_{5} X_{6}-4 X_{3} X_{4} X_{5} X_{6}+2 X_{1} X_{2} X_{5} \\
& +2 X_{3} X_{4} X_{5}+2 X_{1} X_{2} X_{6}+2 X_{3} X_{4} X_{6}-X_{1} X_{2}-X_{3} X_{4} \\
& +2 X_{5} X_{6}-X_{5}-X_{6}+1 \in \mathbb{R}\left[X_{1}, \ldots, X_{6}\right]
\end{aligned}
$$

The polynomial F has 16 terms in its support and degree 6.

Splitting

- $y_{1}+x_{1} x_{2}=x_{3} x_{4}+x_{5}, y_{1}=x_{6}+1$.
- $y_{1}+y_{2}=y_{3}+x_{5}, y_{1}=x_{6}+1, y_{2}=x_{1} x_{2}, y_{3}=x_{3} x_{4}$.
- $Y_{1}+Y_{2}-2 Y_{1} Y_{2}=Y_{3}+X_{5}-2 Y_{3} X_{5}, Y_{1}=1-X_{6}$, $Y_{2}-X_{1} X_{2}=0, Y_{2}-X_{3} X_{4}=0$.

We require the solution of a polynomial system of equations

$$
f_{1}\left(x_{1}, \ldots, x_{n}\right)=0, \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)=0 .
$$

with polynomials $f_{1}, \ldots, f_{m} \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]$.

We require the solution of a polynomial system of equations

$$
f_{1}\left(x_{1}, \ldots, x_{n}\right)=0, \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)=0 .
$$

with polynomials $f_{1}, \ldots, f_{m} \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]$.
In other words, find a tuple $\left(a_{1}, \ldots, a_{n}\right) \in\{0,1\}^{n}$ such that

$$
F_{1}\left(a_{1}, \ldots, a_{n}\right) \equiv 0(\bmod 2), \ldots, F_{m}\left(a_{1}, \ldots, a_{n}\right) \equiv 0(\bmod 2)
$$

where $F_{i} \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ are liftings of the polynomials f_{i}.

We require the solution of a polynomial system of equations

$$
f_{1}\left(x_{1}, \ldots, x_{n}\right)=0, \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)=0 .
$$

with polynomials $f_{1}, \ldots, f_{m} \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]$.
In other words, find a tuple $\left(a_{1}, \ldots, a_{n}\right) \in\{0,1\}^{n}$ such that

$$
F_{1}\left(a_{1}, \ldots, a_{n}\right) \equiv 0(\bmod 2), \ldots, F_{m}\left(a_{1}, \ldots, a_{n}\right) \equiv 0(\bmod 2)
$$

where $F_{i} \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ are liftings of the polynomials f_{i}.

Idea: Formulate these congruences as a system of linear equalities or inequalities over \mathbb{Z} and solve it using an IP-solver.

The Integer Polynomial Conversion (IPC)

Integer Polynomial Conversion (IPC)

Assume we are given a congruence

$$
F\left(a_{1}, \ldots, a_{n}\right) \equiv 0(\bmod 2)
$$

with $F \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ and we are looking for solutions with $0 \leq a_{i} \leq 1$. For simplicity, assume $\operatorname{deg}(F)=2$ and F is squarefree.

Integer Polynomial Conversion (IPC)

Assume we are given a congruence

$$
F\left(a_{1}, \ldots, a_{n}\right) \equiv 0(\bmod 2)
$$

with $F \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ and we are looking for solutions with $0 \leq a_{i} \leq 1$. For simplicity, assume $\operatorname{deg}(F)=2$ and F is squarefree.
(1) Using a new indeterminate K, form the inequality

$$
K \leq\lfloor \# \operatorname{Supp}(F) / 2\rfloor .
$$

Integer Polynomial Conversion (IPC)

Assume we are given a congruence

$$
F\left(a_{1}, \ldots, a_{n}\right) \equiv 0(\bmod 2)
$$

with $F \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ and we are looking for solutions with $0 \leq a_{i} \leq 1$. For simplicity, assume $\operatorname{deg}(F)=2$ and F is squarefree.
(1) Using a new indeterminate K, form the inequality

$$
K \leq\lfloor \# \operatorname{Supp}(F) / 2\rfloor .
$$

(2) For each term $X_{i} X_{j}$ in the support of F introduce a new indeterminate $Y_{i j}$. Let L be the linear part of F. Form the equation

$$
\sum_{i, j} Y_{i j}+L-2 K=0
$$

Integer Polynomial Conversion (IPC)

Assume we are given a congruence

$$
F\left(a_{1}, \ldots, a_{n}\right) \equiv 0(\bmod 2)
$$

with $F \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ and we are looking for solutions with $0 \leq a_{i} \leq 1$. For simplicity, assume $\operatorname{deg}(F)=2$ and F is squarefree.
(1) Using a new indeterminate K, form the inequality

$$
K \leq\lfloor \# \operatorname{Supp}(F) / 2\rfloor .
$$

(2) For each term $X_{i} X_{j}$ in the support of F introduce a new indeterminate $Y_{i j}$. Let L be the linear part of F. Form the equation

$$
\sum_{i, j} Y_{i j}+L-2 K=0
$$

(3) Form the inequalities

$$
X_{i} \leq 1, Y_{i j} \leq X_{i}, Y_{i j} \leq X_{j} \text { and } Y_{i j} \geq X_{i}+X_{j}-1
$$

Real Polynomial Conversion (RPC)

Consider the polynomial equation $x_{1}+x_{2}=x_{3}+x_{4} x_{5}$ over \mathbb{F}_{2}.
(1) $x_{1}+x_{2}=x_{3}+x_{6}$, where $x_{6}=x_{4} x_{5}$

Real Polynomial Conversion (RPC)

Consider the polynomial equation $x_{1}+x_{2}=x_{3}+x_{4} x_{5}$ over \mathbb{F}_{2}.
(1) $x_{1}+x_{2}=x_{3}+x_{6}$, where $x_{6}=x_{4} x_{5}$
(2) Lift over \mathbb{R} using standard representation:

$$
X_{1}+X_{2}-2 X_{1} X_{2}-X_{3}-X_{6}+2 X_{3} X_{6}=0, X_{6}-X_{4} X_{5}=0
$$

Real Polynomial Conversion (RPC)

Consider the polynomial equation $x_{1}+x_{2}=x_{3}+x_{4} x_{5}$ over \mathbb{F}_{2}.
(1) $x_{1}+x_{2}=x_{3}+x_{6}$, where $x_{6}=x_{4} x_{5}$
(2) Lift over \mathbb{R} using standard representation:

$$
X_{1}+X_{2}-2 X_{1} X_{2}-X_{3}-X_{6}+2 X_{3} X_{6}=0, X_{6}-X_{4} X_{5}=0
$$

(3) Linearize: $X_{1}+X_{2}-2 Z_{1}-X_{3}-X_{6}+2 Z_{2}=0, X_{6}-Z_{3}=0$, where $X_{i} X_{j}$ is replaced by Z_{k}

Real Polynomial Conversion (RPC)

Consider the polynomial equation $x_{1}+x_{2}=x_{3}+x_{4} x_{5}$ over \mathbb{F}_{2}.
(1) $x_{1}+x_{2}=x_{3}+x_{6}$, where $x_{6}=x_{4} x_{5}$
(2) Lift over \mathbb{R} using standard representation:

$$
X_{1}+X_{2}-2 X_{1} X_{2}-X_{3}-X_{6}+2 X_{3} X_{6}=0, X_{6}-X_{4} X_{5}=0
$$

(3) Linearize: $X_{1}+X_{2}-2 Z_{1}-X_{3}-X_{6}+2 Z_{2}=0, X_{6}-Z_{3}=0$, where $X_{i} X_{j}$ is replaced by Z_{k}
(4) $X_{i} \leq 1, Z_{k}-X_{i} \leq 0, Z_{k}-X_{j} \leq 0,-Z_{k}+X_{i}+X_{j}-1 \leq 0$

Converting Boolean Polynomials to CNF Clauses

Let $f \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]$ be a (squarefree) polynomial. Let $X=\left\{X_{1}, \ldots, X_{n}\right\}$ be a set of boolean variables (atomic formulas), and let \widehat{X} be the set of all (propositional) logical formulas that can be constructed (using \neg, \wedge, and \vee operations) from them.

Definition

A logical representation of f is a logical formula $F \in \widehat{X}$ such that $\varphi_{a}(F)=f\left(a_{1}, \ldots, a_{n}\right)+1$ for every $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{F}_{2}^{n}$, where φ_{a} denotes the boolean value of F at the tuple of boolean values a with $1=$ true and $0=$ false.

[^0]
Converting Boolean Polynomials to CNF Clauses

Let $f \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]$ be a (squarefree) polynomial. Let $X=\left\{X_{1}, \ldots, X_{n}\right\}$ be a set of boolean variables (atomic formulas), and let \widehat{X} be the set of all (propositional) logical formulas that can be constructed (using \neg, \wedge, and \vee operations) from them.

Definition

A logical representation of f is a logical formula $F \in \widehat{X}$ such that $\varphi_{a}(F)=f\left(a_{1}, \ldots, a_{n}\right)+1$ for every $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{F}_{2}^{n}$, where φ_{a} denotes the boolean value of F at the tuple of boolean values a with $1=$ true and $0=$ false.

Conversion Procedure

- Linearize: introduce a new indeterminate for each nonlinear term
- Cutting: cut the resulting linear polynomial after certain no. of terms
- Logical Equivalent: find logical equivalents using a XOR-CNF conversion
G. Bard (2007), B. Chen (2008), P. Jovanovic and M. Kreuzer (2010).
- Standard Strategy (SS): substitute a new variable y for t in f and form the clauses corresponding to $t+y$.
- Linear Partner Strategy (LPS): replace $x_{i} x_{j}+x_{i}$ in f by y and form the clauses corresponding to $x_{i}\left(x_{j}+1\right)+y$.
- Double Partner Strategy (DPS): replace $x_{i} x_{j}+x_{i}+x_{j}+1$ in f by y and form the clauses corresponding to $\left(x_{i}+1\right)\left(x_{j}+1\right)+y$.
- Quadratic Partner Substitution: replaces combinations of the form $x_{i} x_{j}+x_{i} x_{k}$.
- Cubic Partner Substitution: replaces combinations of the form $x_{i} x_{j} x_{k}+x_{i} x_{j} x_{l}$.

The Logic of 0-1 Inequalities

(1) Linear inequalities containing $0-1$ variables can be viewed as logical propositions.
(2) A clause is a special case of 0-1 inequality, namely a clausal inequality.

The Logic of 0-1 Inequalities

(1) Linear inequalities containing $0-1$ variables can be viewed as logical propositions.
(2) A clause is a special case of 0-1 inequality, namely a clausal inequality.

Any clause in propositional logic

$$
X_{1} \vee \cdots \vee X_{r} \vee \neg Y_{1} \vee \cdots \vee \neg Y_{s}
$$

can be translated into a clausal inequality

$$
\begin{gathered}
X_{1}+\cdots+X_{r}+\left(1-Y_{1}\right)+\cdots+\left(1-Y_{s}\right) \geq 1 \\
X_{1}+\cdots+X_{r}-Y_{1}+\cdots+-Y_{s} \geq 1-s
\end{gathered}
$$

A clause set is satisfiable if and only if the corresponding system of clausal inequalities together with the bounds $0 \leq X_{i}, Y_{j} \leq 1$ has an integer solution.

The LPC (using the LP strategy) of the polynomial $f=x_{1}+x_{2}+x_{3}+x_{3} x_{4}$ is:
(1) Let $x_{1}+x_{2}+y_{1}=0$ and form the clauses

$$
\neg Y_{1} \vee X_{3}, \neg Y_{1} \vee \neg X_{4}, Y_{1} \vee \neg X_{3} \vee X_{4}
$$

corresponding to $y_{1}=x_{3}+x_{3} x_{4}$.

The LPC (using the LP strategy) of the polynomial $f=x_{1}+x_{2}+x_{3}+x_{3} x_{4}$ is:
(1) Let $x_{1}+x_{2}+y_{1}=0$ and form the clauses

$$
\neg Y_{1} \vee X_{3}, \neg Y_{1} \vee \neg X_{4}, Y_{1} \vee \neg X_{3} \vee X_{4}
$$

corresponding to $y_{1}=x_{3}+x_{3} x_{4}$.
(2) Form the clauses

$$
\neg X_{1} \vee X_{2} \vee Y_{1}, X_{1} \vee \neg X_{2} \vee Y_{1}, X_{1} \vee X_{2} \vee \neg Y_{1}, \neg X_{1} \vee \neg X_{2} \vee \neg Y_{1}
$$

corresponding to $x_{1}+x_{2}+y_{1}=0$.

The LPC (using the LP strategy) of the polynomial $f=x_{1}+x_{2}+x_{3}+x_{3} x_{4}$ is:
(1) Let $x_{1}+x_{2}+y_{1}=0$ and form the clauses

$$
\neg Y_{1} \vee X_{3}, \neg Y_{1} \vee \neg X_{4}, Y_{1} \vee \neg X_{3} \vee X_{4}
$$

corresponding to $y_{1}=x_{3}+x_{3} x_{4}$.
(2) Form the clauses

$$
\neg X_{1} \vee X_{2} \vee Y_{1}, X_{1} \vee \neg X_{2} \vee Y_{1}, X_{1} \vee X_{2} \vee \neg Y_{1}, \neg X_{1} \vee \neg X_{2} \vee \neg Y_{1}
$$

corresponding to $x_{1}+x_{2}+y_{1}=0$.
(3) The clausal inequalities are

$$
\begin{gathered}
-X_{3}+Y_{1} \leq 0, X_{4}+Y_{1}-1 \leq 0, X_{3}-X_{4}-Y_{1} \leq 0 \\
X_{1}-X_{2}-Y_{1} \leq 0,-X_{1}+X_{2}-Y_{1} \leq 0 \\
-X_{1}-X_{2}+Y_{1} \leq 0, X_{1}+X_{2}+Y_{1}-2 \leq 0
\end{gathered}
$$

Hybrid Techniques for Polynomial Conversion

The newly developed strategies (LP, DLP, QP, CP) due to the LPC can be used in combination with the IPC and RPC for further optimizations.
(1) Hybrid IPC
(2) Hybrid RPC

Hybrid Techniques for Polynomial Conversion

The newly developed strategies (LP, DLP, QP, CP) due to the LPC can be used in combination with the IPC and RPC for further optimizations.
(1) Hybrid IPC
(2) Hybrid RPC

Example

The Hybrid IPC (using the LP strategy) of the equation $x_{1}+x_{2}+x_{3}+x_{4}+x_{4} x_{5}=0$ is:

Hybrid Techniques for Polynomial Conversion

The newly developed strategies (LP, DLP, QP, CP) due to the LPC can be used in combination with the IPC and RPC for further optimizations.
(1) Hybrid IPC
(2) Hybrid RPC

Example

The Hybrid IPC (using the LP strategy) of the equation $x_{1}+x_{2}+x_{3}+x_{4}+x_{4} x_{5}=0$ is:
(1) $X_{1}+X_{2}+X_{3}+\left(X_{4}+X_{4} X_{5}\right)-2 K=0$.

Hybrid Techniques for Polynomial Conversion

The newly developed strategies (LP, DLP, QP, CP) due to the LPC can be used in combination with the IPC and RPC for further optimizations.
(1) Hybrid IPC
(2) Hybrid RPC

Example

The Hybrid IPC (using the LP strategy) of the equation $x_{1}+x_{2}+x_{3}+x_{4}+x_{4} x_{5}=0$ is:
(1) $X_{1}+X_{2}+X_{3}+\left(X_{4}+X_{4} X_{5}\right)-2 K=0$.
(2) $K \leq\lfloor \# \operatorname{Supp}(f) / 2\rfloor=2$.

Hybrid Techniques for Polynomial Conversion

The newly developed strategies (LP, DLP, QP, CP) due to the LPC can be used in combination with the IPC and RPC for further optimizations.
(1) Hybrid IPC
(2) Hybrid RPC

Example

The Hybrid IPC (using the LP strategy) of the equation $x_{1}+x_{2}+x_{3}+x_{4}+x_{4} x_{5}=0$ is:
(1) $X_{1}+X_{2}+X_{3}+\left(X_{4}+X_{4} X_{5}\right)-2 K=0$.
(2) $K \leq\lfloor \# \operatorname{Supp}(f) / 2\rfloor=2$.
(3) $X_{1}+X_{2}+X_{3}+Y-2 K=0$, where $X_{4}+X_{4} X_{5}$ is replaced by Y.

Hybrid Techniques for Polynomial Conversion

The newly developed strategies (LP, DLP, QP, CP) due to the LPC can be used in combination with the IPC and RPC for further optimizations.
(1) Hybrid IPC
(2) Hybrid RPC

Example

The Hybrid IPC (using the LP strategy) of the equation $x_{1}+x_{2}+x_{3}+x_{4}+x_{4} x_{5}=0$ is:
(1) $X_{1}+X_{2}+X_{3}+\left(X_{4}+X_{4} X_{5}\right)-2 K=0$.
(2) $K \leq\lfloor \# \operatorname{Supp}(f) / 2\rfloor=2$.
(3) $X_{1}+X_{2}+X_{3}+Y-2 K=0$, where $X_{4}+X_{4} X_{5}$ is replaced by Y.
(c) $X_{i} \leq 1,-X_{4}+Y \leq 0, X_{5}+Y-1 \leq 0,-X_{5}-Y+X_{4} \leq 0$.

The Hybrid IPC and RPC Conversions

Comparison With IPC and RPC

system	m	n	LPC(QPS)	HRPC(SS)	HRPC(QPS)	HIPC(QPS)	RPC	IPC
AES(8,1,1,4)	1056	528	3908	21921	298	226	8351	1986
AES (9,1,1,4)	1184	592	26406	2493	814	236	2493	417
$\operatorname{AES}(10,1,1,4)$	1312	656	6994	9521	13211	1982	9521	2655
$\operatorname{AES}(4,2,1,4)$	1088	544	1377	6391	62338	3147	6391	789
$\operatorname{AES}(2,2,2,4)$	1024	512	19970	19243	74982	81014	19243	7830
AES ($3,2,2,4$)	1472	736	523240	339069	279126	61020	532100	525226
$\operatorname{AES}(1,1,1,8)$	640	220	42354	2043	207180	9323	10370	4684

system	m	n	LPC(LP)	LPC(DLP)	HIPC(LP)	HIPC(DLP)	HRPC(SS)	RPC	IPC
CTC(5,5)	605	330	691	679	1798	552	$\mathbf{4 8 0}$	1356	2708
CTC(5,6)	705	375	$\mathbf{2 7 0}$	1875	9332	2421	1041	1227	3088
CTC(6,5)	708	378	15540	16707	14661	11621	10723	$\mathbf{7 7 4 3}$	15656
CTC(6,6)	864	458	16941	12264	$\mathbf{1 0 7 1 6}$	16757	11572	25978	45272
CTC(6,7)	984	522	30868	18660	$\mathbf{2 2 8 5}$	11031	7716	9224	26209
CTC(7,6)	987	525	91358	97985	68146	$\mathbf{9 4 3 6}$	73090	11904	22198

CPLEX running on a laptop with a 2.13 GHz Intel Pentium P6200 Dual Core processor and 4GB RAM.

The Hybrid IPC and RPC Conversions

Summary of Contributions

- We study the IPC and RPC conversions
- A new conversion technique called LPC
- Several new strategies to use with IPC and RPC

Summary of Contributions

- We study the IPC and RPC conversions
- A new conversion technique called LPC
- Several new strategies to use with IPC and RPC

Invitation:

- Solve your favorite systems with our techniques

The Hybrid IPC and RPC Conversions

Summary of Contributions

- We study the IPC and RPC conversions
- A new conversion technique called LPC
- Several new strategies to use with IPC and RPC

Invitation:

- Solve your favorite systems with our techniques
- Implementations are available in the CAS ApCoCoA http://apcocoa.org/

Summary of Contributions

- We study the IPC and RPC conversions
- A new conversion technique called LPC
- Several new strategies to use with IPC and RPC

Invitation:

- Solve your favorite systems with our techniques
- Implementations are available in the CAS ApCoCoA http://apcocoa.org/
- Polynomial systems available at: http://apcocoa.org/polynomialsystems/

The Hybrid IPC and RPC Conversions

for your attention.
Tuestions?
K ${ }_{2}$ emarks ?

[^0]: G. Bard (2007), B. Chen (2008), P. Jovanovic and M. Kreuzer (2010).

