Algebraic Attacks Using IP-Solvers

Ehsan Ullah

The 15th International Workshop on Computer Algebra in Scientific Computing September 9 - 13, 2013 Berlin, Germany

Outline

Algebraic Attacks

- Problem Statement
- Motivation
- Our Approach

2 Algebraic Attacks (Techniques) Using IP-Solvers

- Polynomial Conversion
- The Integer Polynomial Conversion (IPC)
- The Real Polynomial Conversion (RPC)
- The Logical Polynomial Conversion (LPC)
- The Hybrid IPC and RPC Conversions

Problem Statement

Finding \mathbb{F}_2 -rational Solutions

Consider the field \mathbb{F}_2 with two elements. Let $f_1, f_2 \in \mathbb{F}_2[x_1, x_2]$, where $f_1 = x_1x_2 + x_2$, and $f_2 = x_1x_2 + x_1 + 1$. Find a solution of the system

$$f_1 = 0, f_2 = 0$$

in \mathbb{F}_2^2 . The four possible solution candidates are:

(0,0), (0,1), (1,0), (1,1).

The only candidate that qualifies for a solution is (1,0).

Problem Statement

Finding \mathbb{F}_2 -rational Solutions

Consider the field \mathbb{F}_2 with two elements. Let $f_1, f_2 \in \mathbb{F}_2[x_1, x_2]$, where $f_1 = x_1x_2 + x_2$, and $f_2 = x_1x_2 + x_1 + 1$. Find a solution of the system

$$f_1 = 0, f_2 = 0$$

in \mathbb{F}_2^2 . The four possible solution candidates are:

(0,0), (0,1), (1,0), (1,1).

The only candidate that qualifies for a solution is (1,0).

Gröbner Bases Approach

Compute a Gröbner basis of the ideal

$$\langle f_1, f_2, x_1^2 + x_1, x_2^2 + x_2 \rangle$$

which is

$$\{x_1 + x_2 + 1, x_2\}$$

Algebraic Attacks & IP-Solvers 00000000000000

Problem Statement

Finding \mathbb{F}_q -rational Solutions

Let p be a prime and $q = p^e$ with e > 0. Let $K = \mathbb{F}_q$ be the finite field and let $F = \{f_1, \ldots, f_\ell\} \subseteq P = K[x_1, \ldots, x_n]$ be a set of polynomials. Find the K-rational solutions of the following system of equations.

$$f_1(x_1,\ldots,x_n) = 0$$

$$f_\ell(x_1,\ldots,x_n) = 0$$

Problem Statement

Finding \mathbb{F}_q -rational Solutions

Let p be a prime and $q = p^e$ with e > 0. Let $K = \mathbb{F}_q$ be the finite field and let $F = \{f_1, \ldots, f_\ell\} \subseteq P = K[x_1, \ldots, x_n]$ be a set of polynomials. Find the K-rational solutions of the following system of equations.

$$f_1(x_1,\ldots,x_n) = 0$$

$$f_\ell(x_1,\ldots,x_n) = 0$$

Special Properties of the System:

• The so-called field polynomials $x_1^q - x_1, \ldots, x_n^q - x_n$ play an essential role. For instance, the ideal $\langle f_1, \ldots, f_\ell, x_1^q - x_1, \ldots, x_n^q - x_n \rangle$ is a 0-dimensional radical ideal.

Problem Statement

Finding \mathbb{F}_q -rational Solutions

Let p be a prime and $q = p^e$ with e > 0. Let $K = \mathbb{F}_q$ be the finite field and let $F = \{f_1, \ldots, f_\ell\} \subseteq P = K[x_1, \ldots, x_n]$ be a set of polynomials. Find the K-rational solutions of the following system of equations.

$$f_1(x_1,\ldots,x_n) = 0$$

$$f_\ell(x_1,\ldots,x_n) = 0$$

Special Properties of the System:

• The so-called field polynomials $x_1^q - x_1, \ldots, x_n^q - x_n$ play an essential role. For instance, the ideal $\langle f_1, \ldots, f_\ell, x_1^q - x_1, \ldots, x_n^q - x_n \rangle$

is a 0-dimensional radical ideal.

 The system has a unique (or a few) K-rational solution(s). The polynomials f₁,..., f_ℓ are quadratic and p = 2.

Cryptosystem

- A cryptosystem consists of the following components:
 - a set \mathcal{P} called plaintext space,
 - a set C called ciphertext space,
 - a set \mathcal{K} called key space,
 - for every $k \in \mathcal{K}$ an encryption map, $\varepsilon_k : \mathcal{P} \longrightarrow \mathcal{C}$ and a decryption map, $\delta_k : \mathcal{C} \longrightarrow \mathcal{P}$ such that $\delta_k \circ \varepsilon_k = id_{\mathcal{P}}$.

Why is it Important?

Algebraic Attacks

Idea

Reduce the task of breaking a cryptosystem to the task of solving a polynomial system! How: Let the plaintext space and the ciphertext space be of the form $\mathcal{P} = K^n$ and $\mathcal{C} = K^m$ with a finite field K (usually $K = \mathbb{F}_2$). Then every map $\varphi : K^n \longrightarrow K^m$ is given by polynomials, i.e. there exist polynomials $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$ such that

$$\varphi(x_1,\ldots,x_n)=(f_1(x_1,\ldots,x_n),\ldots,f_m(x_1,\ldots,x_n)),$$

for all $(x_1, \ldots, x_n) \in K^n$.

Why is it Important?

Algebraic Attacks

Idea

Reduce the task of breaking a cryptosystem to the task of solving a polynomial system! How: Let the plaintext space and the ciphertext space be of the form $\mathcal{P} = K^n$ and $\mathcal{C} = K^m$ with a finite field K (usually $K = \mathbb{F}_2$). Then every map $\varphi : K^n \longrightarrow K^m$ is given by polynomials, i.e. there exist polynomials $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$ such that

$$\varphi(x_1,\ldots,x_n)=(f_1(x_1,\ldots,x_n),\ldots,f_m(x_1,\ldots,x_n)),$$

for all
$$(x_1, \ldots, x_n) \in K^n$$
.

Why is it Important?

Standard Cryptographic Polynomial Systems

Courtois Toy Cipher (CTC)

CTC(S-Boxes,Rounds)	CTC(3,3)	CTC(4,4)	CTC(5,5)	CTC(6,6)	CTC(7,7)	CTC(8,8)
equations	216	380	605	864	1169	1496
variables	117	204	330	468	630	795
non-linear terms	162	288	450	648	882	1152

Small Scale Advanced Encryption Standard (AES)

AES(n,r,c,w)	AES(9,1,1,4)	AES(10,1,1,4)	AES(4,2,1,4)	AES(2,2,2,4)	AES(3,2,2,4)	AES(1,1,1,8)
equations	1184	1312	1088	1024	1472	640
variables	592	656	544	512	736	320
non-lin. terms	1584	1760	1408	1056	1584	2416

Systems used are available at http://apcocoa.org/polynomialsystems/

Algebraic Attacks ○○○○○●○ Algebraic Attacks & IP-Solvers

Our Approach for Solving over Finite Fields

system of equations over $\dot{\mathbb{F}}_q$

Algebraic Attacks & IP-Solvers

Our Approach for Solving over Finite Fields

Traditional techniques using Gröbner basis:

Algebraic Attacks & IP-Solvers

Our Approach for Solving over Finite Fields

Traditional techniques using Gröbner basis:

Traditional techniques using Gröbner basis:

Traditional techniques using Gröbner basis:

Algebraic Attacks ○○○○●○

Traditional techniques using Gröbner basis:

Algebraic Attacks ○○○○●○

Traditional techniques using Gröbner basis:

Algebraic Attacks ○○○○●○

Our Approach for Solving over Finite Fields

Traditional techniques using Gröbner basis:

Improvements: Buchberg's algorithm using strategies such as normal selection, sugar cube, etc. Variants: F_4 and F_5 algorithms, XL-algorithm and its mutant variants.

Border basis algorithm and its improvements.

SAT-Solvers and characteristic set methods.

Algebraic Attacks ○○○○○●○

Our Approach for Solving over Finite Fields

Traditional techniques using Gröbner basis:

Improvements: Buchberg's algorithm using strategies such as normal selection, sugar cube, etc.

Variants: F_4 and F_5 algorithms, XL-algorithm and its mutant variants.

Border basis algorithm and its improvements.

SAT-Solvers and characteristic set methods.

Algebraic Attacks ○○○○○○●

Our Approach for Solving over Finite Fields

Algebraic Attacks & IP-Solvers

Objectives

- Look for new techniques and strategies
- Study the impact of various newly developed strategies
- Get advantage of parallel computing, state-of-the-art solvers
- Provide tools for algebraic cryptanalysis through ApCoCoA

Algebraic Attacks & IP-Solvers

Techniques for Polynomial Conversion

Step 1: transformation to $\mathbb R$ or $\mathbb Z$

Techniques for Polynomial Conversion

Find a \mathbb{F}_2 -rational solution of

$$f_1(x_1,...,x_n) = 0,...,f_m(x_1,...,x_n) = 0,$$

where $f_1, \ldots, f_m \in \mathbb{F}_2[x_1, \ldots, x_n]$.

An overview given by R. Beigel (1993).

Find a $\mathbb{F}_2\text{-rational solution of}$

$$f_1(x_1,...,x_n) = 0,..., f_m(x_1,...,x_n) = 0,$$

where $f_1, \ldots, f_m \in \mathbb{F}_2[x_1, \ldots, x_n]$. We are looking for a tuple $(a_1, \ldots, a_n) \in \{0, 1\}^n$ such that

$$F_1(a_1, \dots, a_n) \equiv 0 \pmod{2}$$

 \vdots
 $F_m(a_1, \dots, a_n) \equiv 0 \pmod{2}$

where $F_i \in \mathbb{Z}[X_1, \ldots, X_n]$ ($\mathbb{R}[X_1, \ldots, X_n]$) are liftings of the polynomials f_i .

Find a \mathbb{F}_2 -rational solution of

$$f_1(x_1,...,x_n) = 0,...,f_m(x_1,...,x_n) = 0,$$

where $f_1, \ldots, f_m \in \mathbb{F}_2[x_1, \ldots, x_n]$. We are looking for a tuple $(a_1, \ldots, a_n) \in \{0, 1\}^n$ such that

$$F_1(a_1, \dots, a_n) \equiv 0 \pmod{2}$$

$$\vdots$$

$$F_m(a_1, \dots, a_n) \equiv 0 \pmod{2}$$

where $F_i \in \mathbb{Z}[X_1, ..., X_n]$ ($\mathbb{R}[X_1, ..., X_n]$) are liftings of the polynomials f_i . • standard representation:

$$\begin{array}{cccc} \overline{0} & \rightarrow & 0 \\ \overline{1} & \rightarrow & 1 \end{array}$$

iteratively replace each sum $X_1 + X_2$ by $X_1 + X_2 - 2X_1X_2$

An overview given by R. Beigel (1993).

Techniques for Polynomial Conversion

Let
$$f = x_1x_2 + x_3x_4 + x_5 + x_6 + 1 \in \mathbb{F}_2[x_1, \dots, x_6].$$

Algebraic Attacks & IP-Solvers

Techniques for Polynomial Conversion

Let
$$f = x_1 x_2 + x_3 x_4 + x_5 + x_6 + 1 \in \mathbb{F}_2[x_1, \dots, x_6]$$

Example

The standard representation of f is

$$\begin{split} F &= 8X_1X_2X_3X_4X_5X_6 - 4X_1X_2X_3X_4X_5 - 4X_1X_2X_3X_4X_6 \\ &+ 2X_1X_2X_3X_4 - 4X_1X_2X_5X_6 - 4X_3X_4X_5X_6 + 2X_1X_2X_5 \\ &+ 2X_3X_4X_5 + 2X_1X_2X_6 + 2X_3X_4X_6 - X_1X_2 - X_3X_4 \\ &+ 2X_5X_6 - X_5 - X_6 + 1 \in \mathbb{R}[X_1, \dots, X_6] \end{split}$$

The polynomial F has 16 terms in its support and degree 6.

Algebraic Attacks & IP-Solvers

Techniques for Polynomial Conversion

Let
$$f = x_1 x_2 + x_3 x_4 + x_5 + x_6 + 1 \in \mathbb{F}_2[x_1, \dots, x_6]$$
.

Example

The standard representation of f is

$$\begin{split} F &= 8X_1X_2X_3X_4X_5X_6 - 4X_1X_2X_3X_4X_5 - 4X_1X_2X_3X_4X_6 \\ &+ 2X_1X_2X_3X_4 - 4X_1X_2X_5X_6 - 4X_3X_4X_5X_6 + 2X_1X_2X_5 \\ &+ 2X_3X_4X_5 + 2X_1X_2X_6 + 2X_3X_4X_6 - X_1X_2 - X_3X_4 \\ &+ 2X_5X_6 - X_5 - X_6 + 1 \in \mathbb{R}[X_1, \dots, X_6] \end{split}$$

The polynomial F has 16 terms in its support and degree 6.

Splitting

• $y_1 + x_1 x_2 = x_3 x_4 + x_5$, $y_1 = x_6 + 1$.

•
$$y_1 + y_2 = y_3 + x_5$$
, $y_1 = x_6 + 1$, $y_2 = x_1x_2$, $y_3 = x_3x_4$.

•
$$Y_1 + Y_2 - 2Y_1Y_2 = Y_3 + X_5 - 2Y_3X_5$$
, $Y_1 = 1 - X_6$,
 $Y_2 - X_1X_2 = 0$, $Y_2 - X_3X_4 = 0$.

We require the solution of a polynomial system of equations

$$f_1(x_1, \ldots, x_n) = 0, \ldots, f_m(x_1, \ldots, x_n) = 0.$$

with polynomials $f_1, \ldots, f_m \in \mathbb{F}_2[x_1, \ldots, x_n]$.

We require the solution of a polynomial system of equations

$$f_1(x_1, \ldots, x_n) = 0, \ldots, f_m(x_1, \ldots, x_n) = 0.$$

with polynomials $f_1, \ldots, f_m \in \mathbb{F}_2[x_1, \ldots, x_n]$.

In other words, find a tuple $(a_1,\ldots,a_n)\in\{0,1\}^n$ such that

 $F_1(a_1,\ldots,a_n)\equiv 0 \pmod{2},\ldots,F_m(a_1,\ldots,a_n)\equiv 0 \pmod{2}$

where $F_i \in \mathbb{Z}[X_1, \ldots, X_n]$ are liftings of the polynomials f_i .

We require the solution of a polynomial system of equations

$$f_1(x_1,...,x_n) = 0,..., f_m(x_1,...,x_n) = 0.$$

with polynomials $f_1, \ldots, f_m \in \mathbb{F}_2[x_1, \ldots, x_n]$.

In other words, find a tuple $(a_1,\ldots,a_n)\in\{0,1\}^n$ such that

$$F_1(a_1,\ldots,a_n) \equiv 0 \pmod{2}, \ldots, F_m(a_1,\ldots,a_n) \equiv 0 \pmod{2}$$

where $F_i \in \mathbb{Z}[X_1, \ldots, X_n]$ are liftings of the polynomials f_i .

Idea: Formulate these congruences as a system of linear equalities or inequalities over $\mathbb Z$ and solve it using an IP-solver.

The Integer Polynomial Conversion (IPC)

Integer Polynomial Conversion (IPC)

Assume we are given a congruence

$$F(a_1,\ldots,a_n)\equiv 0 \pmod{2}$$

with $F \in \mathbb{Z}[X_1, \ldots, X_n]$ and we are looking for solutions with $0 \le a_i \le 1$. For simplicity, assume $\deg(F) = 2$ and F is squarefree.

This technique is known due to M. Kreuzer, Algebraic Attacks (2009).

The Integer Polynomial Conversion (IPC)

Integer Polynomial Conversion (IPC)

Assume we are given a congruence

$$F(a_1,\ldots,a_n)\equiv 0 \pmod{2}$$

with $F \in \mathbb{Z}[X_1, \ldots, X_n]$ and we are looking for solutions with $0 \le a_i \le 1$. For simplicity, assume $\deg(F) = 2$ and F is squarefree.

() Using a new indeterminate K, form the inequality

 $K \leq \lfloor \# \mathsf{Supp}(F)/2 \rfloor.$

This technique is known due to M. Kreuzer, Algebraic Attacks (2009).

The Integer Polynomial Conversion (IPC)

Integer Polynomial Conversion (IPC)

Assume we are given a congruence

$$F(a_1,\ldots,a_n)\equiv 0 \pmod{2}$$

with $F \in \mathbb{Z}[X_1, \ldots, X_n]$ and we are looking for solutions with $0 \le a_i \le 1$. For simplicity, assume $\deg(F) = 2$ and F is squarefree.

① Using a new indeterminate K, form the inequality

 $K \leq \lfloor \# \mathsf{Supp}(F)/2 \rfloor.$

② For each term X_iX_j in the support of F introduce a new indeterminate Y_{ij} . Let L be the linear part of F. Form the equation

$$\sum_{i,j} Y_{ij} + L - 2K = 0.$$

This technique is known due to M. Kreuzer, Algebraic Attacks (2009).

The Integer Polynomial Conversion (IPC)

Integer Polynomial Conversion (IPC)

Assume we are given a congruence

 $F(a_1,\ldots,a_n)\equiv 0 \pmod{2}$

with $F \in \mathbb{Z}[X_1, \ldots, X_n]$ and we are looking for solutions with $0 \le a_i \le 1$. For simplicity, assume $\deg(F) = 2$ and F is squarefree.

① Using a new indeterminate K, form the inequality

 $K \leq \lfloor \# \mathsf{Supp}(F)/2 \rfloor.$

② For each term X_iX_j in the support of F introduce a new indeterminate Y_{ij} . Let L be the linear part of F. Form the equation

$$\sum_{i,j} Y_{ij} + L - 2K = 0.$$

Form the inequalities

$$X_i \le 1, Y_{ij} \le X_i, Y_{ij} \le X_j$$
 and $Y_{ij} \ge X_i + X_j - 1$.

This technique is known due to M. Kreuzer, Algebraic Attacks (2009).

The Real Polynomial Conversion (RPC)

Real Polynomial Conversion (RPC)

Consider the polynomial equation $x_1 + x_2 = x_3 + x_4 x_5$ over \mathbb{F}_2 .

①
$$x_1 + x_2 = x_3 + x_6$$
, where $x_6 = x_4 x_5$

This method is known due to J. Borghoff et al., Bivium as MILP Problem (2009).

The Real Polynomial Conversion (RPC)

Real Polynomial Conversion (RPC)

Consider the polynomial equation $x_1 + x_2 = x_3 + x_4 x_5$ over \mathbb{F}_2 .

1
$$x_1 + x_2 = x_3 + x_6$$
, where $x_6 = x_4 x_5$

2 Lift over \mathbb{R} using standard representation:

$$X_1 + X_2 - 2X_1X_2 - X_3 - X_6 + 2X_3X_6 = 0, X_6 - X_4X_5 = 0$$

This method is known due to J. Borghoff et al., Bivium as MILP Problem (2009).

The Real Polynomial Conversion (RPC)

Real Polynomial Conversion (RPC)

Consider the polynomial equation $x_1 + x_2 = x_3 + x_4 x_5$ over \mathbb{F}_2 .

D
$$x_1 + x_2 = x_3 + x_6$$
, where $x_6 = x_4 x_5$

2 Lift over \mathbb{R} using standard representation:

$$X_1 + X_2 - 2X_1X_2 - X_3 - X_6 + 2X_3X_6 = 0, X_6 - X_4X_5 = 0$$

• Linearize: $X_1 + X_2 - 2Z_1 - X_3 - X_6 + 2Z_2 = 0$, $X_6 - Z_3 = 0$, where $X_i X_j$ is replaced by Z_k

This method is known due to J. Borghoff et al., Bivium as MILP Problem (2009).

The Real Polynomial Conversion (RPC)

Real Polynomial Conversion (RPC)

Consider the polynomial equation $x_1 + x_2 = x_3 + x_4 x_5$ over \mathbb{F}_2 .

D
$$x_1 + x_2 = x_3 + x_6$$
, where $x_6 = x_4 x_5$

2 Lift over \mathbb{R} using standard representation:

$$X_1 + X_2 - 2X_1X_2 - X_3 - X_6 + 2X_3X_6 = 0, X_6 - X_4X_5 = 0$$

- Linearize: $X_1 + X_2 2Z_1 X_3 X_6 + 2Z_2 = 0$, $X_6 Z_3 = 0$, where $X_i X_j$ is replaced by Z_k
- $X_i \le 1, \ Z_k X_i \le 0, \ Z_k X_j \le 0, \ -Z_k + X_i + X_j 1 \le 0$

This method is known due to J. Borghoff et al., Bivium as MILP Problem (2009).

Converting Boolean Polynomials to CNF Clauses

Let $f \in \mathbb{F}_2[x_1, \ldots, x_n]$ be a (squarefree) polynomial. Let $X = \{X_1, \ldots, X_n\}$ be a set of boolean variables (atomic formulas), and let \widehat{X} be the set of all (propositional) logical formulas that can be constructed (using \neg , \land , and \lor operations) from them.

Definition

A logical representation of f is a logical formula $F \in \widehat{X}$ such that $\varphi_a(F) = f(a_1, \ldots, a_n) + 1$ for every $a = (a_1, \ldots, a_n) \in \mathbb{F}_2^n$, where φ_a denotes the boolean value of F at the tuple of boolean values a with 1 = true and 0 = false.

G. Bard (2007), B. Chen (2008), P. Jovanovic and M. Kreuzer (2010).

Converting Boolean Polynomials to CNF Clauses

Let $f \in \mathbb{F}_2[x_1, \ldots, x_n]$ be a (squarefree) polynomial. Let $X = \{X_1, \ldots, X_n\}$ be a set of boolean variables (atomic formulas), and let \widehat{X} be the set of all (propositional) logical formulas that can be constructed (using \neg , \land , and \lor operations) from them.

Definition

A logical representation of f is a logical formula $F \in \widehat{X}$ such that $\varphi_a(F) = f(a_1, \ldots, a_n) + 1$ for every $a = (a_1, \ldots, a_n) \in \mathbb{F}_2^n$, where φ_a denotes the boolean value of F at the tuple of boolean values a with 1 = true and 0 = false.

Conversion Procedure

- Linearize: introduce a new indeterminate for each nonlinear term
- Cutting: cut the resulting linear polynomial after certain no. of terms
- Logical Equivalent: find logical equivalents using a XOR-CNF conversion

G. Bard (2007), B. Chen (2008), P. Jovanovic and M. Kreuzer (2010).

- Standard Strategy (SS): substitute a new variable y for t in f and form the clauses corresponding to t + y.
- Linear Partner Strategy (LPS): replace $x_i x_j + x_i$ in f by y and form the clauses corresponding to $x_i(x_j + 1) + y$.
- Double Partner Strategy (DPS): replace $x_ix_j + x_i + x_j + 1$ in f by y and form the clauses corresponding to $(x_i + 1)(x_j + 1) + y$.
- Quadratic Partner Substitution: replaces combinations of the form $x_i x_j + x_i x_k$.
- Cubic Partner Substitution: replaces combinations of the form $x_i x_j x_k + x_i x_j x_l$.

Added by P. Jovanovic and M. Kreuzer (2010).

Algebraic Attacks & IP-Solvers

The Logical Polynomial Conversion (LPC)

The Logic of 0-1 Inequalities

- Linear inequalities containing 0-1 variables can be viewed as logical propositions.
- A clause is a special case of 0-1 inequality, namely a clausal inequality.

The Logical Polynomial Conversion (LPC)

The Logic of 0-1 Inequalities

- Linear inequalities containing 0-1 variables can be viewed as logical propositions.
- A clause is a special case of 0-1 inequality, namely a clausal inequality.

Any clause in propositional logic

$$X_1 \lor \cdots \lor X_r \lor \neg Y_1 \lor \cdots \lor \neg Y_s$$

can be translated into a clausal inequality

$$X_1 + \dots + X_r + (1 - Y_1) + \dots + (1 - Y_s) \ge 1$$

$$X_1 + \dots + X_r - Y_1 + \dots + -Y_s \ge 1 - s$$

A clause set is satisfiable if and only if the corresponding system of clausal inequalities together with the bounds $0 \le X_i, Y_j \le 1$ has an integer solution.

The LPC (using the LP strategy) of the polynomial $f = x_1 + x_2 + x_3 + x_3x_4$ is:

1 Let $x_1 + x_2 + y_1 = 0$ and form the clauses

 $\neg Y_1 \lor X_3, \neg Y_1 \lor \neg X_4, Y_1 \lor \neg X_3 \lor X_4$

corresponding to $y_1 = x_3 + x_3 x_4$.

The LPC (using the LP strategy) of the polynomial $f = x_1 + x_2 + x_3 + x_3 x_4$ is:

① Let
$$x_1 + x_2 + y_1 = 0$$
 and form the clauses

 $\neg Y_1 \lor X_3, \neg Y_1 \lor \neg X_4, Y_1 \lor \neg X_3 \lor X_4$

corresponding to $y_1 = x_3 + x_3 x_4$.

2 Form the clauses

 $\neg X_1 \lor X_2 \lor Y_1, X_1 \lor \neg X_2 \lor Y_1, X_1 \lor X_2 \lor \neg Y_1, \neg X_1 \lor \neg X_2 \lor \neg Y_1$

corresponding to $x_1 + x_2 + y_1 = 0$.

The LPC (using the LP strategy) of the polynomial $f = x_1 + x_2 + x_3 + x_3 x_4$ is:

① Let
$$x_1 + x_2 + y_1 = 0$$
 and form the clauses

$$\neg Y_1 \lor X_3, \neg Y_1 \lor \neg X_4, Y_1 \lor \neg X_3 \lor X_4$$

corresponding to $y_1 = x_3 + x_3 x_4$.

2 Form the clauses

 $\neg X_1 \lor X_2 \lor Y_1, X_1 \lor \neg X_2 \lor Y_1, X_1 \lor X_2 \lor \neg Y_1, \neg X_1 \lor \neg X_2 \lor \neg Y_1$

corresponding to $x_1 + x_2 + y_1 = 0$.

One clausal inequalities are

$$-X_3 + Y_1 \le 0, X_4 + Y_1 - 1 \le 0, X_3 - X_4 - Y_1 \le 0,$$
$$X_1 - X_2 - Y_1 \le 0, -X_1 + X_2 - Y_1 \le 0,$$
$$-X_1 - X_2 + Y_1 \le 0, X_1 + X_2 + Y_1 - 2 \le 0.$$

Algebraic Attacks & IP-Solvers

The Hybrid IPC and RPC Conversions

Hybrid Techniques for Polynomial Conversion

The newly developed strategies (LP, DLP, QP, CP) due to the LPC can be used in combination with the IPC and RPC for further optimizations.

- Hybrid IPC
- 2 Hybrid RPC

Algebraic Attacks & IP-Solvers

The Hybrid IPC and RPC Conversions

Hybrid Techniques for Polynomial Conversion

The newly developed strategies (LP, DLP, QP, CP) due to the LPC can be used in combination with the IPC and RPC for further optimizations.

- Hybrid IPC
- 2 Hybrid RPC

Example

Algebraic Attacks & IP-Solvers

The Hybrid IPC and RPC Conversions

Hybrid Techniques for Polynomial Conversion

The newly developed strategies (LP, DLP, QP, CP) due to the LPC can be used in combination with the IPC and RPC for further optimizations.

- Hybrid IPC
- 2 Hybrid RPC

Example

The Hybrid IPC (using the LP strategy) of the equation $x_1 + x_2 + x_3 + x_4 + x_4x_5 = 0$ is:

 $X_1 + X_2 + X_3 + (X_4 + X_4 X_5) - 2K = 0.$

Algebraic Attacks & IP-Solvers

The Hybrid IPC and RPC Conversions

Hybrid Techniques for Polynomial Conversion

The newly developed strategies (LP, DLP, QP, CP) due to the LPC can be used in combination with the IPC and RPC for further optimizations.

- Hybrid IPC
- 2 Hybrid RPC

Example

- $X_1 + X_2 + X_3 + (X_4 + X_4 X_5) 2K = 0.$
- $K \leq \lfloor \# \mathsf{Supp}(f)/2 \rfloor = 2.$

Algebraic Attacks & IP-Solvers

The Hybrid IPC and RPC Conversions

Hybrid Techniques for Polynomial Conversion

The newly developed strategies (LP, DLP, QP, CP) due to the LPC can be used in combination with the IPC and RPC for further optimizations.

- Hybrid IPC
- 2 Hybrid RPC

Example

- $X_1 + X_2 + X_3 + (X_4 + X_4 X_5) 2K = 0.$
- $\ 2 \ K \leq \lfloor \# \mathsf{Supp}(f)/2 \rfloor = 2.$
- $X_1 + X_2 + X_3 + Y 2K = 0$, where $X_4 + X_4X_5$ is replaced by *Y*.

Algebraic Attacks & IP-Solvers

The Hybrid IPC and RPC Conversions

Hybrid Techniques for Polynomial Conversion

The newly developed strategies (LP, DLP, QP, CP) due to the LPC can be used in combination with the IPC and RPC for further optimizations.

- Hybrid IPC
- 2 Hybrid RPC

Example

- $X_1 + X_2 + X_3 + (X_4 + X_4 X_5) 2K = 0.$
- $\ 2 \ K \leq \lfloor \# \mathsf{Supp}(f)/2 \rfloor = 2.$
- $X_1 + X_2 + X_3 + Y 2K = 0$, where $X_4 + X_4X_5$ is replaced by *Y*.
- $X_i \le 1, \ -X_4 + Y \le 0, \ X_5 + Y 1 \le 0, \ -X_5 Y + X_4 \le 0.$

Algebraic Attacks & IP-Solvers

The Hybrid IPC and RPC Conversions

The Hybrid IPC and RPC Conversions

Comparison With IPC and RPC

system	m	n	LPC(QPS)	HRPC(SS)	HRPC(QPS)	HIPC(QPS)	RPC	IPC
AES(8,1,1,4)	1056	528	3908	21921	298	226	8351	1986
AES(9,1,1,4)	1184	592	26406	2493	814	236	2493	417
AES(10,1,1,4)	1312	656	6994	9521	13211	1982	9521	2655
AES(4,2,1,4)	1088	544	1377	6391	62338	3147	6391	789
AES(2,2,2,4)	1024	512	19970	19243	74982	81014	19243	7830
AES(3,2,2,4)	1472	736	523240	339069	279126	61020	532100	525226
AES(1,1,1,8)	640	220	42354	2043	207180	9323	10370	4684

system	m	n	LPC(LP)	LPC(DLP)	HIPC(LP)	HIPC(DLP)	HRPC(SS)	RPC	IPC
CTC(5,5)	605	330	691	679	1798	552	480	1356	2708
CTC(5,6)	705	375	270	1875	9332	2421	1041	1227	3088
CTC(6,5)	708	378	15540	16707	14661	11621	10723	7743	15656
CTC(6,6)	864	458	16941	12264	10716	16757	11572	25978	45272
CTC(6,7)	984	522	30868	18660	2285	11031	7716	9224	26209
CTC(7,6)	987	525	91358	97985	68146	9436	73090	11904	22198

CPLEX running on a laptop with a 2.13 GHz Intel Pentium P6200 Dual Core processor and 4GB RAM.

Algebraic Attacks & IP-Solvers

The Hybrid IPC and RPC Conversions

Summary of Contributions

- We study the IPC and RPC conversions
- A new conversion technique called LPC
- Several new strategies to use with IPC and RPC

Algebraic Attacks & IP-Solvers

The Hybrid IPC and RPC Conversions

Summary of Contributions

- We study the IPC and RPC conversions
- A new conversion technique called LPC
- Several new strategies to use with IPC and RPC

Invitation:

• Solve your favorite systems with our techniques

Algebraic Attacks & IP-Solvers

The Hybrid IPC and RPC Conversions

Summary of Contributions

- We study the IPC and RPC conversions
- A new conversion technique called LPC
- Several new strategies to use with IPC and RPC

Invitation:

- Solve your favorite systems with our techniques
- Implementations are available in the CAS ApCoCoA http://apcocoa.org/

Algebraic Attacks & IP-Solvers

The Hybrid IPC and RPC Conversions

Summary of Contributions

- We study the IPC and RPC conversions
- A new conversion technique called LPC
- Several new strategies to use with IPC and RPC

Invitation:

- Solve your favorite systems with our techniques
- Implementations are available in the CAS ApCoCoA http://apcocoa.org/
- Polynomial systems available at: http://apcocoa.org/polynomialsystems/

for your attention.

Questions ?

Remarks ?