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exploiting symmetry

The solution sets of many polynomial systems arising in practical

applications are invariant under permutations of the variables.

Solutions belong to orbits, so just compute one generator per orbit.

Our problems with exploiting symmetry started about 20 years ago...

joint with K. Gatermann: Symmetric Newton polytopes for solving

sparse polynomial systems. Adv. Appl. Math., 16(1):95–127, 1995.

Observe that, even if the coefficients of a system could be generic,

often the Newton polytopes have a symmetric structure.

Exploiting symmetry with polyhedral methods 20 years ago

was restricted to isolated solutions.

Today: exploiting symmetry in positive dimensional solution sets.
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polynomial systems

Consider f(x) = 0, a system of equations defined by

N polynomials f = (f0, f1, . . . , fN−1),

in n variables x = (x0, x1, . . . , xn−1).

A polynomial in n variables consists of a vector of nonzero complex

coefficients with corresponding exponents in A:

fk (x) =
∑

a∈Ak

caxa, ca ∈ C \ {0}, xa = x
a0

0 x
a1

1 · · · xan−1

n−1 .

Input data:

1 A = (A0,A1, . . . ,AN−1) are sets of exponents, the supports.

For a ∈ Zn, we consider Laurent polynomials, fk ∈ C[x±1]
⇒ only solutions with coordinates in C∗ = C \ {0} matter.

2 cA = (cA0
,cA1

, . . . ,cAN−1
) are vectors of complex coefficients.

Although A is exact, the coefficients may be approximate.
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the cyclic 4-roots system

f(x) =















x0 + x1 + x2 + x3 = 0

x0x1 + x1x2 + x2x3 + x3x0 = 0

x0x1x2 + x1x2x3 + x2x3x0 + x3x0x1 = 0

x0x1x2x3 − 1 = 0

Cyclic 4-roots x = (x0, x1, x2, x3) correspond to complex circulant

Hadamard matrices:

H =









x0 x1 x2 x3

x3 x0 x1 x2

x2 x3 x0 x1

x1 x2 x3 x0









,
|xk | = 1, k = 1,2,3,4

H∗H = 4I4.

Haagerup: for prime p, there are

(

2p − 2

p − 1

)

isolated roots.

Backelin: for n = ℓm2, there are infinitely many cyclic n-roots.
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solving polynomial systems

Systems like cyclic n-roots are

Sparse: relative to the degrees of the polynomials,

few monomials appear with nonzero coefficients

⇒ fewer roots than the Bézout bounds.

Symmetric: solutions are invariant under permutations, n = 4:

(x0, x1, x2, x3) → (x1, x2, x3, x0) and (x0, x1, x2, x3) → (x3, x2, x1, x0)
generate the permutation group.

In addition: (x0, x1, x2, x3) → (x−1
0 , x−1

1 , x−1
2 , x−1

3 ).

Not pure dimensional, for prime n, all solutions are isolated,

but for n = ℓm2, we have positive dimensional solution sets.

Our solution is to apply a hybrid symbolic-numeric approach.
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Puiseux series

The Newton polygon of f (x0, x1) is the convex hull, spanned by the

exponents (a0,a1) of monomials x
a0

0 x
a1

1 that occur in f with c(a0,a1) 6= 0.

Theorem (the theorem of Puiseux)

Let f (x0, x1) ∈ C(x0)[x1]: f is a polynomial in the variable x1 and its

coefficients are fractional power series in x0.

The polynomial f has as many series solutions as the degree of f .

Every series solution has the following form:

{

x0 = tu

x1 = ctv (1 + O(t)), c ∈ C∗

where (u, v) is an inner normal to an edge of the lower hull of the

Newton polygon of f .

The series are computed with the polyhedral Newton-Puiseux method.
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limits of space curves

Assume f(x) = 0 has a solution curve C,

which intersects x0 = 0 at a regular point.

For v = (v0, v1, . . . , vn−1) ∈ Zn, consider x = ztv(1 + O(t)):

x0 = z0tv0 , for t close to zero, z0 6= 0 and

for k = 1,2, . . . ,n − 1: xk = zk tvk (1 + O(t)), zk 6= 0.

Substitute x0 = z0tv0 , xk = zk tvk (1 + O(t)) in fℓ(x) =
∑

a∈Aℓ

cℓx
a:

fℓ(x = ztv(1 + O(t)) =
∑

a∈Aℓ

caz
a0

0 ta0v0

n−1
∏

k=1

zk tak vk (1 + O(t))

=
∑

a∈Aℓ

cazata0v0+a1v1+···+an−1vn−1(1 + O(t)).

Because z ∈ (C∗)n, there must be at least two terms in fℓ left as t → 0.
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initial forms and tropisms

Denote the inner product of vectors u and v as 〈u,v〉.

Definition

Let v ∈ Zn \ {0} be a direction vector. Consider f (x) =
∑

a∈A

caxa.

The initial form of f in the direction v is

inv(f ) =
∑

a ∈ A

〈a,v〉 = m

caxa, where m = min{ 〈a,v〉 | a ∈ A }.

Definition

Let the system f(x) = 0 define a curve. A tropism consists of the

leading powers (v0, v1, . . . , vn−1) of a Puiseux series of the curve.

The leading coefficients of the Puiseux series satisfy inv(f)(x) = 0.
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curves of cyclic 4-roots

f(x) =















x0 + x1 + x2 + x3 = 0

x0x1 + x1x2 + x2x3 + x3x0 = 0

x0x1x2 + x1x2x3 + x2x3x0 + x3x0x1 = 0

x0x1x2x3 − 1 = 0

One tropism v = (+1,−1,+1,−1) with inv(f)(z) = 0:

inv(f)(x) =















x1 + x3 = 0

x0x1 + x1x2 + x2x3 + x3x0 = 0

x1x2x3 + x3x0x1 = 0

x0x1x2x3 − 1 = 0.

We look for solutions of the form

(x0 = t+1, x1 = z1t−1, x2 = z2t+1, x3 = z3t−1).
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solving the initial form system

Substitute (x0 = t+1, x1 = z1t−1, x2 = z2t+1, x3 = z3t−1):

inv(f)(x0 = t+1, x1 = z1t−1, x2 = z2t+1, x3 = z3t−1)

=















(1 + z2)t
+1 = 0

z1 + z1z2 + z2z3 + z3 = 0

(z1z2 + z3z1)t
+1 = 0

z1z2z3 − 1 = 0.

We find two solutions: (z1 = −1, z2 = −1, z3 = +1)
and (z1 = +1, z2 = −1, z3 = −1).

Two space curves
(

t ,−t−1,−t , t−1
)

and
(

t , t−1,−t ,−t−1
)

satisfy the entire cyclic 4-roots system.

Jan Verschelde (UIC) polyhedral methods exploiting symmetry CASC 2013, 9-13 September 11 / 31



some references

D.N. Bernshteı̌n. The number of roots of a system of equations.
Functional Anal. Appl., 9(3):183–185, 1975.

B. Sturmfels. Gröbner Bases and Convex Polytopes, AMS, 1996.

M. Hampton and R. Moeckel. Finiteness of relative equilibria of the

four-body problem. Invent. math., 163:289–312, 2006.

T. Bogart, A.N. Jensen, D. Speyer, B. Sturmfels, and R.R. Thomas.

Computing tropical varieties. J. Symbolic Computation, 42(1):54–73,
2007.

A.N. Jensen, H. Markwig, and T. Markwig. An algorithm for lifting
points in a tropical variety. Collectanea Mathematica, 59(2):129–165,

2008.

S. Payne. Fibers of tropicalization. Mathematische Zeitschrift,

262(2):301–311, 2009.

F. Aroca, G. Ilardi, and L. López de Medrano. Puiseux power series

solutions for systems of equations. International Journal of
Mathematics, 21(11):1439–1459, 2011.

Jan Verschelde (UIC) polyhedral methods exploiting symmetry CASC 2013, 9-13 September 12 / 31



overview of our polyhedral methods

finding pretropisms and solving initial forms

Initial forms with at least two monomials in every equation

define the intersection points of the solution set with the

coordinate hyperplanes.

unimodular coordinate transformations

Via the Smith normal form we obtain nice representations

for solutions at infinity.

Solutions of binomial systems are monomial maps.

computing terms of Puiseux series

Although solutions to any initial forms may be monomial maps,
in general we need a second term in the Puiseux series
expansion to distinguish between

◮ a positive dimensional solution set, and
◮ an isolated solution at infinity.
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the Cayley embedding – an example
{

p = (x0 − x2
1 )(x0 + 1) = x2

0 + x0 − x2
1 x0 − x2

1 = 0

q = (x0 − x2
1 )(x1 + 1) = x0x1 + x0 − x3

1 − x2
1 = 0

The Cayley polytope

is the convex hull of

{(2,0,0), (1,0,0),
(1,2,0), (0,2,0)}

∪
{(1,1,1), (1,0,1),
(0,3,1), (0,2,1)}.
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facet normals and initial forms

The Cayley polytope

has facets spanned by

one edge of the

Newton polygon of p

and

one edge of the

Newton polygon of q.

Consider v = (2,1,0).

{

in(2,1)(p) = in(2,1)

(

x2
0 + x0 − x2

1 x0 − x2
1

)

= x0 − x2
1

in(2,1)(q) = in(2,1)

(

x0x1 + x0 − x3
1 − x2

1

)

= x0 − x2
1
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computing all pretropisms

Definition

A nonzero vector v is a pretropism for the system f(x) = 0

if #inv(fk ) ≥ 2 for all k = 0,1, . . . ,N − 1.

Application of the Cayley embedding to (A0,A1, . . . ,AN−1):

E = { (a,0) | a ∈ A0 } ∪
N−1
⋃

k=1

{ (a,ek ) | a ∈ Ak } ⊂ Zn+N−1,

where 0,e1 = (1,0, . . . ,0), e2 = (0,1, . . . ,0), . . ., eN−1 = (0,0, . . . ,1)
span the standard unit simplex in RN−1.

Definition

Given a tuple of Newton polytopes P of a system f(x) = 0,

the tropical prevariety of f is the common refinement of the normal

cones to the edges of the Newton polytopes in P.
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the Cayley embedding and the tropical prevariety

Proposition

Let EA be the Cayley embedding of the supports A of f(x) = 0.

The normals of those facets of EA that are spanned by at least two

points of each support in A form the tropical prevariety of f.

Proof. Let ΣA = A1 + A2 + · · · + AN denote the Minkowski sum of the

supports in A. Facets of ΣA spanned by at least two points of each

support define the generators of the cones of the tropical prevariety.

Cells in a polyhedral subdivision of EA are in one-to-one

correspondence with cells in a polyhedral subdivision of ΣA.

This correspondence implies that facet normals of ΣA occur as facet

normals of EA.

Thus the set of all facets of EA gives the tropical prevariety of f.
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cones of pretropisms

Definition

A cone of pretropism is a polyhedral cone spanned by pretropisms.

If we are looking for an algebraic set of dimension d and

if there are no cones of vectors perpendicular to edges of the

Newton polytopes of f (x) = 0 of dimension d ,

then the system f (x) = 0 has no solution set of dimension d

that intersects the first d coordinate planes properly; otherwise

if a d -dimensional cone of vectors perpendicular to edges of the

Newton polytopes exists, then that cone defines a part of the

tropical prevariety.

For the cyclic 9-roots system,

we found a two dimensional cone of pretropisms.
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the tropical prevariety of cyclic n-roots

All facets normals of the Cayley polytope computed with cddlib

on a 3.07GHz Linux computer with 4Gb RAM:

n #normals #pretropisms #generators user cpu time

8 831 94 11 < 1 sec

9 4,840 276 17 1 sec

12 907,923 5,582 290 148 hours 27 min

Tropical intersections with Gfan on a 2.26GHz MacBook:

n #rays f-vector user cpu time

8 94 1 94 108 48 15 sec

9 276 1 276 222 54 1 min 11 sec

12 5,582 1 5582 37786 66382 42540 8712 21 hours 1 min

Note that Gfan can exploit permutation symmetry.
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increasing cost with increasing dimensions

For the computation of the tropical prevariety,

the Sage 5.7/Gfan function tropical_intersection() ran

(with default settings without exploitation of symmetry)

on an AMD Phenom II X4 820 processor with 6 GB of RAM,

running GNU/Linux.

As the dimension n increases so does the running time,

but the relative cost factors are bounded by n:

n seconds hms format factor

8 16.37 16 s 1.0

9 79.36 1 m 19 s 4.8

10 503.53 8 m 23 s 6.3

11 3898.49 1 h 4 m 58 s 7.7

12 37490.93 10 h 24 m 50 s 9.6

Observe: for n = 12, it takes 9.6 times longer than for n = 11.
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Puiseux series for algebraic sets

Proposition

If f (x) = 0 is in Noether position and defines a d-dimensional solution

set in Cn, intersecting the first d coordinate planes in regular isolated

points, then there are d linearly independent tropisms

v0,v1, . . . vd−1 ∈ Qn so that the initial form system

inv0
(inv1

(· · · invd−1
(f ) · · · ))(x = yM) = 0 has a solution c ∈ (C \ {0})n−d .

This solution and the tropisms are the leading coefficients and powers
of a generalized Puiseux series expansion for the algebraic set:

x0 = t
v0,0

0

x1 = t
v0,1

0 t
v1,1

1
...

xd−1 = t
v0,d−1

0 t
v1,d−1

1 · · · tvd−1,d−1

d−1

xd = c0t
v0,d

0 t
v1,d

1 · · · tvd−1,d

d−1 + · · ·

xd+1 = c1t
v0,d+1

0 t
v1,d+1

1 · · · tvd−1,d+1

d−1 + · · ·
...

xn = cn−d−1t
v0,n−1

0 t
v1,n−1

1 · · · tvd−1,n−1

d−1 + · · ·
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our polyhedral approach

For every d -dimensional cone C of pretropisms:

1 We select d linearly independent generators to form the d -by-n

matrix A and the unimodular transformation x = yM .

2 If inv0
(inv1

(· · · invd−1
(f ) · · · ))(x = yM) = 0 has no solution in

(C∗)n−d , then return to step 1 with the next cone C, else continue.

3 If the leading term of the Puiseux series satisfies the entire

system, then we report an explicit solution of the system and

return to step 1 to process the next cone C.

Otherwise, we take the current leading term to the next step.

4 If there is a second term in the Puiseux series,

then we have computed an initial development for an algebraic set

and report this development in the output.

Note: to ensure the solution of the initial form system is not isolated,

it suffices to compute a series development for a curve.
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computing the second term

Proposition

Let v denote the pretropism and x = zM denote the unimodular

coordinate transformation, generated by v.

Let inv(f)(x = zM ) denote the transformed initial form system with

regular isolated solutions, forming the isolated solutions at infinity of

the transformed polynomial system f(x = zM).

If the substitution of the regular isolated solutions into the transformed

polynomial system f(x = zM ) does not satisfy the system entirely,

then the constant terms of f(x = zM ) have disappeared, leaving at least

one monomial cℓt
wℓ for some fℓ in f(x = zM ) with minimal value wℓ.

The minimal exponent wℓ is the candidate for the exponent of the

second term in the Puiseux series.
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series developments for cyclic 8-roots

A pretropism for cyclic 8-roots is v = (1,−1,0,1,0,0,−1,0).
The corresponding unimodular coordinate transformation x = zM is

x0 = z0, x1 = z1/z0, x2 = z2, x3 = z0z3,
x4 = z4, x5 = z5, x6 = z6/z0, x7 = z7.

Solving inv(f)(x = zM) = 0 gives as initial term of the series:

z0 = t , z1 = −I, z2 = −1
2 − I

2 , z3 = −1,

z4 = 1 + I, z5 = 1
2 + I

2 , z6 = I, z7 = −1 − I, I =
√
−1.

The series with its second term is

z0 = t , z1 = −I + (−1 − I)t , z2 = −1
2 − I

2 + 1
2 t , z3 = −1,

z4 = 1 + I − t , z5 = 1
2 + I

2 − 1
2 t , z6 = I + (1 + I)t , z7 = (−1 − I) + t .

Jan Verschelde (UIC) polyhedral methods exploiting symmetry CASC 2013, 9-13 September 24 / 31



relevant software

cddlib by Komei Fukuda and Alain Prodon implements the

double description method to efficiently enumerate all extreme

rays of a general polyhedral cone.

Gfan by Anders Jensen to compute Gröbner fans and tropical

varieties uses cddlib.

The Singular library tropical.lib by Anders Jensen,

Hannah Markwig and Thomas Markwig for computations in

tropical geometry.

Macaulay2 interfaces to Gfan.

Sage interfaces to Gfan.

PHCpack (published as Algorithm 795 ACM TOMS)

provides our numerical blackbox solver.
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computing isolated solutions exploiting symmetry

The first four equations of the cyclic 5-roots system:

f(x) =















x0 + x1 + x2 + x3 + x4 = 0

x0x1 + x0x4 + x1x2 + x2x3 + x3x4 = 0

x0x1x2 + x0x1x4 + x0x3x4 + x1x2x3 + x2x3x4 = 0

x0x1x2x3 + x0x1x2x4 + x0x1x3x4 + x0x2x3x4 + x1x2x3x4 = 0.

define solution curves. Moreover: f = inv(f), where v = (1,1,1,1,1).

The first four equations are homogeneous

⇒ we have lines as solution curves

To exploit symmetry, we intersect the generating solution lines of the

first four equations with the last equation.
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unimodular coordinate transformation
For v = (1,1,1,1,1) we have the coordinate transformation x = zM :

M =













1 1 1 1 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1













x = zM :























x0 = z0

x1 = z0z1

x2 = z0z2

x3 = z0z3

x4 = z0z4.

Applying x = zM to the first 4 equations of the cyclic 5-roots system:

inv(f)(x = zM) =















z1 + z2 + z3 + z4 + 1 = 0

z1z2 + z2z3 + z3z4 + z1 + z4 = 0

z1z2z3 + z2z3z4 + z1z2 + z1z4 + z3z4 = 0

z1z2z3z4 + z1z2z3 + z1z2z4 + z1z3z4 + z2z3z4 = 0.

There are 14 solution lines of the form

x0 = t , x1 = tc1, x2 = tc2, x3 = tc3, x4 = tc4

where (c1, c2, c3, c4) are solutions of inv(f)(x = zM) = 0.
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positive dimensional sets of cyclic n-roots

n = 8: Tropisms, their cyclic permutations, and degrees:

(1,−1, 1,−1, 1,−1, 1,−1) 8 × 2 = 16
(1,−1, 0, 1, 0, 0,−1, 0) → (1, 0, 0,−1, 0, 1,−1, 0) 8 × 2 + 8 × 2 = 32

(1, 0,−1, 0, 0, 1, 0,−1) → (1, 0,−1, 1, 0,−1, 0, 0) 8 × 2 + 8 × 2 = 32
(1, 0,−1, 1, 0,−1, 0, 0) → (1, 0,−1, 0, 0, 1, 0,−1) 8 × 2 + 8 × 2 = 32

(1, 0, 0,−1, 0, 1,−1, 0) → (1,−1, 0, 1, 0, 0,−1, 0) 8 × 2 + 8 × 2 = 32

TOTAL = 144

n = 9: A 2-dimensional cone of tropisms spanned by

v0 = (1, 1,−2, 1, 1,−2, 1, 1,−2) and v1 = (0, 1,−1, 0, 1,−1, 0, 1,−1).

Denoting by u = ei2π/3 the primitive third root of unity, u3 − 1 = 0:

x0 = t0
x1 = t0t1
x2 = u2t−2

0 t−1
1

x3 = ut0
x4 = ut0t1
x5 = t−2

0 t−1
1

x6 = u2t0
x7 = u2t0t1
x8 = ut−2

0 t−1
1 .

n = 12: Computed 77 quadratic space curves.
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results in the literature

Our results for n = 9 and n = 12 are in agreement with

J.C. Faugère. Finding all the solutions of Cyclic 9 using Gröbner
basis techniques. In Computer Mathematics - Proceedings of the Fifth

Asian Symposium (ASCM 2001), pages 1–12. World Scientific, 2001.

R. Sabeti. Numerical-symbolic exact irreducible decomposition of

cyclic-12. London Mathematical Society Journal of Computation and
Mathematics, 14:155–172, 2011.
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a tropical version of Backelin’s Lemma

Lemma (Tropical Version of Backelin’s Lemma)

For n = m2ℓ, where ℓ ∈ N \ {0} and ℓ is no multiple of k2, for k ≥ 2,

there is an (m − 1)-dimensional set of cyclic n-roots, represented

exactly as

xkm+0 = uk t0
xkm+1 = uk t0t1
xkm+2 = uk t0t1t2

...

xkm+m−2 = uk t0t1t2 · · · tm−2

xkm+m−1 = γuk t−m+1
0 t−m+2

1 · · · t−2
m−3t−1

m−2

for k = 0,1,2, . . . ,m − 1, free parameters t0, t1, . . . , tm−2, constants

u = e
i2π
mℓ , γ = e

iπβ

mℓ , with β = (α mod 2), and α = m(mℓ− 1).
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summary

Promising results on the cyclic n-roots problem give a proof of concept

for a new polyhedral method to compute algebraic sets:

hybrid symbolic-numeric algorithm for Puiseux series;

for highly structured systems we may find exact monomial maps.

For the computation of pretropisms, we rely on

cddlib on the Cayley embedding of the Newton polytopes, or

Gfan for the tropical intersection.

To process the pretropisms, we

use Sage to extract initial form systems

and look for the second term in the Puiseux series;

solve initial form systems with the blackbox solver of PHCpack.
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