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2 Description of the CLR  
Method 

CLR = Collocation and Least Residuals 

Stationary Navier-Stokes equations: 

Spatial region: 

Local coordinates: 

h 

New notations for dependent 
variables: 

NS equations in new notation: 

The basic idea of the CLR method is to use the collocation  
method in combination with the 
Least-squares method to obtain numerical solution. 

Linearization of the NS equations after Newton 



Collocation equations 

Matching conditions 

Details of the numerical algorithm 

The overdetermined system of equations (10) was solved 
numerically by the method of rotations with column pivoting. It is 
known that the application of this method to an overdetermined 
system is equivalent to the minimization of scalar product  (Ax-f, Ax-
f), where A is the matrix of system and f is the vector of right-hand 
sides. 

On the face y1 = 1, two matching points are specified as 
(1,ζ,ζ) and (1,-ζ,-ζ), and on the face y1= -1, two  
matching points are specified as (-1,-ζ,ζ) and (-1,ζ,-ζ). It 
was found by numerical experiments that the value ζ=0.6 
was generally better than the value ζ=0.5 in terms of 
convergence acceleration. 
  

The local coordinates of collocation points were 
specified as ( ω, ω, ω). It was found by  

numerical  experiments that the value ω=0.6 

was generally better than the value ω=0.5  

in terms of convergence  acceleration.  



3 The Multigrid Algorithm  
4 New version of the  

Krylov’s algorithm 

The purpose of this algorithm is the acceleration of convergence 
of the iterations in nonlinearity in the CLR method. 
     We at first unite the equations for   
from all cells into a single big algebraic system 
 
 
Let us assume that the iteration process for solving (1) 
converges and denote by X the converged solution. Then 
                        AX = f .                                                      (12b)      
Let us rearrange (12b) in the equivalent form              
                         X = TX + f.                                                (14)  

We now write the iteration process solving (14) as 
 
Let us now introduce the residual 
 
Then                         .   Let  
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The basic idea is to search for the error             in the form 
 
 
 
as an approximate value of the error that is this vector is sought 
in the Krylov’s  subspace    
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Then it is easy to show by using (13) and (14) that the 
solution error satisfies the equation 
 
We now use the relation  
 Then   
 
or 
 
 
Substituting in this equation the representation  
 
 
we  obtain the following system for determining the        at 
 n = k: 
 
 
The system of equations (7) was solved by the method of 
rotations. 
After that the new iteration            is computed as 
 
 
 
The overdetermined system for the coefficients of the 
solution expansion over the solenoidal basis was solved by 
the same method.  
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5 Numerical results  

Analytic test 

RMS errors 

Convergence orders 
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Influence of quantity k in (6) on convergence rate of the CLR 
method at Re = 1000: (a) the logarithm of the pseudo-error; (b)  
the logarithm  of the error in velocity. 

The definition of the pseudo-error: 

Flow in the Lid-Driven Cavity 

Pseudo-streamlines in different sections of the cubic cavity at Re = 100 
(see CASC 2012 Proc.) 



Flow in the Lid-Driven Cavity, Re = 1000 



5 Convergence acceleration  in 2D  
by a combined use of the multigrid and Krylov’s algorithm 

  



6 Conclusions  

Note 
A more detailed presentation of the above material may be found in the following recently published paper: 



V.P. Shapeev, E.V. Vorozhtsov, V.I. Isaev, S.V. Idimeshev. The method of 
collocations and least residuals for three-dimensional Navier-Stokes equations.  
Vychislitel’nye metody i programmirovanie. Vol. 14, P. 306-322 (2013) 
 
Abstract 
The method of collocations and least residuals, which was previously proposed for the 
numerical solution of two-dimensional Navier-Stokes equations, is extended here for the 
three-dimensional case. In the implemented version of the method, the solution is sought 
in the form of the expansion in the basis solenoidal functions. An overdetermined system 
of linear algebraic equations is obtained in each cell of the computational grid. This system 
is solved by the method of rotations. To accelerate the iteration process convergence a 
new algorithm is proposed, which is based on the Krylov's subspaces. The results of the 
verification of the method confirm its second order of convergence for the velocity vector 
components. The results of solving the benchmark problem of the lid-driven cubic 
cavityflow for the Reynolds numbers Re = 100 and Re = 1000 are presented. It is shown 
that the obtained results are very close to the most accurate results obtained by other 
authors with the aid of different numerical high-accuracy methods. 
 
 

http://num-meth.srcc.msu.ru/zhurnal/tom_2013/pdf/v14r134.pdf 


