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2 Description of the CLR

Method

CLR = Collocation and Least Residuals
Stationary Navier-Stokes equations:

(V.V)V4+Vp=(1/Re)AV —f, divV =0, (21,x0,23) € (2, (1)

Spatial region:
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Local coordinates:
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New notations for dependent Lini gk
variables: °
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NS equations in new notation:
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where A = 0% /0y? + 92 /0y3 + 9% /0y3, m = 1,2,3.

where s i1s the iteration number, s = 0,1,2,..., F,,, = Re[thm—h.(u{-us

u ;n SE2

The basic idea of the CLR method is to use the collocation
method in combination with the
Least-squares method to obtain numerical solution.

Linearization of the NS equations after Newton
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We now present the approximate solution in each cell (2; ;1 as a linear com-

bination of the basis vector functions

(w5, u3,u5.p%)" =Bk 0s (6)
i

Table 1. The form of basis functions
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Collocation equations
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Fig. 1. The variants of the specification of the collocation and matching points: (a) N. = 6,
N,, = 6; (b) N. =8, N,, =12; (¢) N, = 14, N,;, = 24; (d) N. = 27.

Substituting the coordinates of collocation points in equations we obtain
3N. equations of collocations:

al) bt =f2 v=1,....3N.; m=1,...,30. (7)

Matching conditions

RO(ut)" [On 4+ nr(ut )™ = ho(u™)"/In + (v )™

h.&)(u+)ﬂ/3n + m(u-'-)?'i _ hﬁ(u‘)”/é—)n. n T}'Q(U_)Ti; (8)
ho(u™)™ /On +ma(u™)™ = hO(u™)™/On +n2(u”)™;
pt=p".
Let usg write these equations in the form
alZ) bt =gt v =1,... 3N, + 64061005 m=1,...,30. (9)

Let us introduce the matrix A; ; x, which unites the matrices of systems ([7])
and (9), as well as the column vector of the right-hand sides f7" ;Il. The following

SLAE is then solved in each cell:
Ai‘j,k . b5+1 _ fs_.s+1! (10)

“‘:\j?k

. s+1 41 s+1 T
where b = (BT s 0 an)

Details of the numerical algorithm

The overdetermined system of equations (10) was solved
numerically by the method of rotations with column pivoting. It is
known that the application of this method to an overdetermined
system is equivalent to the minimization of scalar product (Ax-f, Ax-
f), where A is the matrix of system and fis the vector of right-hand
sides.

On the face y1 = 1, two matching points are specified as
(1,4,0) and (1,-4,-¢), and on the face y1= -1, two

matching points are specified as (-1,-¢,¢) and (-1,{,-(). It
was found by numerical experiments that the value =0.6
was generally better than the value {=0.5 in terms of
convergence acceleration.

The local coordinates of collocation points were
specified as ( ®, ®, ®). It was found by
numerical experiments that the value ®=0.6
was generally better than the value ®=0.5

in terms of convergence acceleration.



3 The Multigrid Algorithm

4 New version of the
Krylov’s algorithm

1°. Prolongation. Let us illustrate the prolongation algorithm by the exam-
ple of the velocity component uq(y1,¥y2,¥ys,b1,...,b30). Let hy = I, where I is
the half-step of the coarse grid, and let hy = h1/2 be the half-step of a fine grid
on which one must find the decomposition of the function u; over the basis.
Step 1. Let Xy, Xo, X3 be the global coordinates of the center of a coarse grid
cell. We make the following substitutions in the polynomial expression for uy:

v = (20— X))/l 1=1,2,3. (11)

Ag a result we obtain the function

— Xy 20—Xo 13— X

L= ?mw”mﬂ.um
11 hl
Step 2. Let ()Z’ 1,);' 2,);’3] be the global coordinates of the center of any of the
eight cells of the fine grid, which lie within the coarse grid cell. We make in (12
the substitution z; = Xj 4 y; - ho, [ = 1,2,3. As a result we obtain the tunction

Uy = by + baiis + b12§? + bioif + brfia — 2b1sin iz + baoija
+ b1o¥is — 2b179173 + baa¥ialia + s

The analytic expressions for coefficients 51, ... ,ng were found efficiently with
the aid of the Mathematica function Coefficient[...]. To reduce the length
of the obtained expressions for the above coeflicients we have applied a number of
transformation rules as well as the Mathematica function FullSimplify[...].
As a result, the length of the final expressions for 51, .. 530 proved to be five
times shorter than the length of the original expressions. It turns out that the
coordinates X, X5, X3 and )S]_,)SQ )&3 enter the & (I = 1,...,30) only in the
form of combinations dr; = (X; — )s;)fhl For example, b4 = (ha/h1) - (by —
2b19dxy — 2b1gdxy + 2b15d7o + 2b1782x3). In accordance with (II]) the quantity
—dr; = (X’; — X;)/hq has the meaning of the local coordinate on the coarse grid
of the coordinate X’; of the center of the fine grid cell.

The purpose of this algorithm is the acceleration of convergence
of the iterations in nonlinearity in the CLR method.

We at first unite the equations for
from all cells into a single big algebraic system

AX™ = f. (12a)

Let us assume that the iteration process for solving (1)
converges and denote by X the converged solution. Then

AX=f. (12b)
Let us rearrange (12b) in the equivalent form
X=TX+f1. (14)
We now write the iteration process solving (14) as
X" =TX"+f. @3
Let us now introduce the residual
n+1 Xn+1 Xn
Then "™ =Tr". Let
Z"=X-X".

The basic idea is to search for the error 7™ in the form
k
Yn+1 — Zai rl
i=1

as an approximate value of the error that is this vector is sought
in the Krylov’s subspace

Ki (7, T) = span{7*, TF",

where span{?',

’ T.‘c—l 7—,'1}1

7%} is a 11nea,r span of vectors ¥, ..., ¥



Then it is easy to show by using (13) and (14) that the
solution error satisfies the equation 7™ =Tz".

We now use the relation r"=2z"-z"*,
Then
Zn — Zn+1 + I,.n,

(—l_EZnA — rn.

or

Substituting in this equation the representation

Zm = Za r (6)

we obtain the foIIowmg system for determining the «, at
n=k:
-1

€C-rg+.+€-rig =-r- (7

The system of equations (7) was solved by the method of
rotations.
After that the new iteration X"* is computed as

X*n+1 — Xn+1 +Zn+1

The overdetermined system for the coefficients of the
solution expansion over the solenoidal basis was solved by
the same method.

One of the advantages of the above method for convergence acceleration is that it can
easily be applied to already programmed iteration processes. To this end, it is sufficient
to introduce in the existing computer code a small procedure for correction computation.

5 Numerical results

Analytic test
uy = —cos(xy) sin(xg) sin(zs), wus = 0.58in(xy) cos(zz) sin(xs),
uz = 0.5sin(xy ) sin(rg) cos(zz), (11)

p=cos(xq) + cos(xy) + cos(xg) — (3/X ) sin(X).
It is to be noted here that the solution satisfies the continuity equation (2).
We now write down the right-hand sides fi, fa, f3 of equations (1):
f1 = (3cos{xy) sin(xg) sin(xz) + Re sin(:r:l)(l + cos{x1)(0.5 cos?(x3) sin? (z3)
+ (0.5 cos? (:9) + sin®(22)) sin®(23)))) /Re,
f2

(—1.5cos(xa) sin(ay) sin(zz) + Resin(za)(1 + cos(za) x

(—0.25 cos®(x3) sin? (1) + (0.5 cos®(z:1) 4 0.25 sin’ (1)) sin®(2:3))))/Re,

fz = (Resin(ag) + cos(zz)(— 1.5 sin(xy ) sin(za) + 0.5Re cos? (2 ) sin®(25) sin(z3)
+ Resin?(a1)(—0.25 cos?(x2) 4 0.25 sin?(x2)) sin(x3)))/Re.

RMS errors

To determine the absolute numerical errors of the method on a specific uniform
erid with half-step h we have computed the following root mean square errors:
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Convergence orders
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Table 1. The errors du, dp and the con- Table 2. The errors du, dp and the con-

vergence orders Iy, Vp O & sequence of vergence orders My, Vp O & sequence of

grids, Re = 100 grids, Re = 1000
M du ap Vu | Vp M du dp Vy | Vp
10(0.364 - 10—23|0.585 . 102 10{0.462 - 10—3]0.341 . 10—2

20(0.852 - 107%/0.232 - 1072|2.10(1.33|  |20{0.189 - 10—2]0.240 - 1072|1.29|0.51
30(0.247 - 107%0.131 - 10~2|3.05[1.41| [30]|0.112- 10—2]0.155 - 10~2(1.29(1.08

The definition of the pseudo-error:

s+1 __ s+1 :
Sb*T! = max ( max |bj Ty — bi,j,k,lD

ik 1<I1<30

log, 60" R -1.0¢ log,;ou e F=0
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(a)
Influence of quantity k in (6) on convergence rate of the CLR

method at Re = 1000: (a) the logarithm of the pseudo-error; (b)
the logarithm of the error in velocity.

The number of iterations needed for satisfying the inequality
ob" < 2-1077 was less than without the application of the Krylov’s algorithm by the

factors of 11, 13, and 17, respectively, at k =2,k =5, and £ = 9.

Flow in the Lid-Driven Cavity
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Fig. 2. Profiles of the velocity component vy on the central line x; = x3 = 0.5 for Re
= 100 (a) and Re = 1000 (b)
1. Albensoeder, S., Kuhlmann, H.C.: Accurate three-dimensional lid-driven cavity flow.

J. Comp. Phys. 206, 536-558 (2005)

Pseudo-streamlines in different sections of the cubic cavity at Re = 100
(see CASC 2012 Proc.)

Fig. 5. Pseudo-streamlines in different sections of the cubic cavity at Re = 100: (a) section
x2 = 0.5; (b) section z1 = 0.5; (c) section z3 = 0.5.
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5 Convergence acceleration in 2D

by a combined use of the multigrid and Krylov’s algorithm

Table 3
Influence of the application of grids sequence 5 — 10 — 20 — 40 cells along each coordinate and the

Krylov’s algorithm on the convergence rate of the CLR method at Re — 1000

Method Ny CPU time. | Acceleration du dp
sec. factor
Kpgr = 1,E=0 | 132090 5824 0.6961 - 10=3 | 0.6094 - 10~
Kmgr =4,k=0 | 50520 1640 3.55 0.6961-10~% | 0.6094 - 10~
Ky =1, E=10 | 5138 212 22.28 0.6961-10~° | 0.6092- 10~
Kpgr =4.k =10 | 1925 58.6 99.39 0.6961-10—7 | 0.6092- 10~
=0
=0
=10
=10
\ log,,n

Fig. 7. The influence of the use of a sequence of grids and the quantity %k in (16) on the convergence rate
of the CLR method at Re — 1000: (a) the logarithm of pseudo-error §b™; (6) the logarithm of error du



6 Conclusions

The computer algebra system Mathematica has been applied for constructing a
new version of the method of collocations and least residuals (CLR) for solv-
ing the 3D Navier—Stokes equations. A large amount of symbolic computations,
which arose in the work, was done etficiently with Mathematica. It is very im-
portant that the application of CAS has facilitated greatly this work, reduced at
all its stages the probability of errors usually introduced by the mathematician-
numerist at the development of a new algorithm.

The verification of the method accuracy by solving the well-known bench-
mark problem of the lid-driven cubic cavity ow and comparison with the most
accurate published solutions of this problem [1], which were obtained by other
researchers, have shown a high accuracy of the constructed method. This has
confirmed additionally the efficiency and benefit of using the CASs for construct-
ing new analytic-numerical methods.

A more detailed presentation of the above material may be found in the following recently published paper:
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V.P. Shapeey, E.V. Vorozhtsov, V.I. Isaev, S.V. Idimeshev. The method of
collocations and least residuals for three-dimensional Navier-Stokes equations.
Vychislitel’nye metody i programmirovanie. Vol. 14, P. 306-322 (2013)

Abstract

The method of collocations and least residuals, which was previously proposed for the
numerical solution of two-dimensional Navier-Stokes equations, is extended here for the
three-dimensional case. In the implemented version of the method, the solution is sought
in the form of the expansion in the basis solenoidal functions. An overdetermined system
of linear algebraic equations is obtained in each cell of the computational grid. This system
is solved by the method of rotations. To accelerate the iteration process convergence a
new algorithm is proposed, which is based on the Krylov's subspaces. The results of the
verification of the method confirm its second order of convergence for the velocity vector
components. The results of solving the benchmark problem of the lid-driven cubic
cavityflow for the Reynolds numbers Re = 100 and Re = 1000 are presented. It is shown
that the obtained results are very close to the most accurate results obtained by other
authors with the aid of different numerical high-accuracy methods.

http://num-meth.srcc.msu.ru/zhurnal/tom_2013/pdf/v14r134.pdf



