Enumerating labeled trees

Definition: A labeled tree is a tree the vertices of which are assigned unique numbers from 1 to n.

We can count such trees for small values of n by hand so as to conjecture a general formula.

Enumerating labeled trees

Definition: A labeled tree is a tree the vertices of which are assigned unique numbers from 1 to n.

We can count such trees for small values of n by hand so as to conjecture a general formula.

Enumerating labeled trees

Definition: A labeled tree is a tree the vertices of which are assigned unique numbers from 1 to n.

We can count such trees for small values of n by hand so as to conjecture a general formula.

Enumerating labeled trees

Definition: A labeled tree is a tree the vertices of which are assigned unique numbers from 1 to n .

We can count such trees for small values of n by hand so as to conjecture a general formula.

3

Enumerating labeled trees

Definition: A labeled tree is a tree the vertices of which are assigned unique numbers from 1 to n.

We can count such trees for small values of n by hand so as to conjecture a general formula.

3

4

Enumerating labeled trees

Definition: A labeled tree is a tree the vertices of which are assigned unique numbers from 1 to n.

We can count such trees for small values of n by hand so as to conjecture a general formula.

3

4

So what is the general formula?

Let T_{n} denote the number of labeled trees on n vertices. We now know the following values for small n :
$\mathrm{T}_{2}=1$ as there is only one tree on 2 vertices

So what is the general formula?

Let T_{n} denote the number of labeled trees on n vertices. We now know the following values for small n :
$\mathrm{T}_{2}=1$ as there is only one tree on 2 vertices
$\mathrm{T}_{3}=3$ as we have seen before:

So what is the general formula?

Let T_{n} denote the number of labeled trees on n vertices. We now know the following values for small n :
$\mathrm{T}_{2}=1$ as there is only one tree on 2 vertices
$\mathrm{T}_{3}=3$ as we have seen before:
$\mathrm{T}_{4}=4+12=16$ as we have also seen before:

So what is the general formula?

Let T_{n} denote the number of labeled trees on n vertices. We now know the following values for small n :
$\mathrm{T}_{2}=1$ as there is also one tree on 2 vertices
$\mathrm{T}_{3}=3$ as we have seen before:
$\mathrm{T}_{4}=4+12=16$ as we have also seen before:

$$
\mathrm{T}_{5}=60+5+60=125
$$

So what is the general formula?

If we continue in this fashion, we will obtain the following sequence:

1, 3, 16, 125,1296,16807,262144...

So what is the general formula?

If we continue in this fashion, we will obtain the following sequence:

1, 3, 16, 125,1296,16807,262144...

$$
T_{n}=n^{n-2}
$$

Cayley's theorem

Theorem (Cayley) There are n^{n-2} labeled trees on n

 vertices.
1. Induction

$A \subset\{1,2, \ldots n\},|A|=k$
$F(A, n)$ - the set of forests on n vertices in which vertices from A appear in different connected components(trees).
$T_{n, k}$ - the number of forests of k trees, for which the vertices from A appear in different components.

Cayley's theorem - induction

$$
A=\{n-k+1, n-k+2, \ldots n\},|A|=k
$$

$\mathrm{F}(\mathrm{A}, \mathrm{n})$ - the set of forests on n vertices in which vertices from A appear in different connected components(trees).
$T_{n, k} \quad$ - the number of forests of k trees, for which the vertices from A appear in different components.

n
0

i vertices

i vertices

$$
\begin{aligned}
& F(A, n) \leftrightarrow\left\{F\left(A^{\prime}, n-1\right), A^{\prime}=(A \backslash\{n\}) \cup\{i \text { chosen vertices }\}\right\} \\
& T_{n, k}=\sum_{i=0}^{n-k}\binom{(n-1)-(k-1)}{i} T_{n-1, k+i-1} \\
& T_{n, k}=k n^{n-k-1}
\end{aligned}
$$

2. Establishing a 1-1 correspondence between trees and functions acting from 1..n into 1..n (Joyal)

$$
\left.f\right|_{M}=\left(\begin{array}{llll}
14 & 5 & 7 & 89 \\
79 & 1 & 5 & 84
\end{array}\right)
$$

2. Establishing a 1-1 correspondence between trees and functions acting from 1..n into 1..n (Joyal)

2. Establishing a 1-1 correspondence between trees and functions acting from 1..n into 1..n (Joyal)

$M=\left.\{1,4,5,7,8,9\} \quad f\right|_{M}$ is a bijection
2. Establishing a 1-1 correspondence between trees and functions acting from 1..n into 1..n (Joyal)

$$
\left.f\right|_{M}=\left(\begin{array}{llll}
14 & 5 & 7 & 89 \\
79 & 1 & 5 & 84
\end{array}\right)
$$

10
2. Establishing a 1-1 correspondence between trees and functions acting from 1..n into 1..n (Joyal)

2. Establishing a 1-1 correspondence between trees and functions acting from 1..n into 1..n (Joyal)

2. Establishing a 1-1 correspondence between trees and functions acting from 1..n into 1..n (Joyal)

2. Establishing a 1-1 correspondence between trees and functions acting from 1..n into 1..n (Joyal)

2. Establishing a 1-1 correspondence between trees and functions acting from 1..n into 1..n (Joyal)

$$
\begin{aligned}
& (7,9,1,5,8,4)->(1,5,7,8,4,9) \\
& f=\left(\begin{array}{cccccc}
1 & 4 & 5 & 7 & 8 & 9 \\
7 & 9 & 1 & 5 & 8 & 4
\end{array}\right)
\end{aligned}
$$

2. Pruefer code

Labeled tree -> $\left(a_{1}, a_{2}, \ldots, a_{n-2}\right)$

2. Pruefer code

Labeled tree -> $\left(a_{1}, a_{2}, \ldots, a_{n-2}\right)$

Pruefer code :1

2. Pruefer code

$$
\text { Labeled tree -> }\left(a_{1}, a_{2}, \ldots, a_{n-2}\right)
$$

Pruefer code :14

2. Pruefer code

Labeled tree -> $\left(a_{1}, a_{2}, \ldots, a_{n-2}\right)$

Pruefer code :144

2. Pruefer code

Labeled tree -> $\left(a_{1}, a_{2}, \ldots, a_{n-2}\right)$

Pruefer code :1441

2. Pruefer code

Labeled tree -> $\left(a_{1}, a_{2}, \ldots, a_{n-2}\right)$

Pruefer code :14416

2. Pruefer code

Labeled tree -> $\left(a_{1}, a_{2}, \ldots, a_{n-2}\right)$

Pruefer code :144166

2. Pruefer code

Labeled tree -> $\left(a_{1}, a_{2}, \ldots, a_{n-2}\right)$

Pruefer code :1441668

2. Pruefer code

$$
\text { Labeled tree -> }\left(a_{1}, a_{2}, \ldots, a_{n-2}\right)
$$

Pruefer code :14416686

2. Pruefer code

Reversing the correspondence

Reversing the correspondence

- - deleted vertex
- - end vertex
- inner vertex

9
10

Reversing the correspondence

\author{

- - deleted vertex
 - - end vertex
 - inner vertex
}

Reversing the correspondence

\author{

- - deleted vertex
 - - end vertex
 - inner vertex
}

Reversing the correspondence

\author{

- - deleted vertex
 - - end vertex
 - inner vertex
}

Reversing the correspondence

\author{

- - deleted vertex
 - - end vertex
 - inner vertex
}

Reversing the correspondence

$$
\begin{array}{ll}
\text { - } & \text { - deleted vertex } \\
\text { - end vertex } \\
\text { - inner vertex }
\end{array}
$$

Reversing the correspondence

Reversing the correspondence

Other applications: the number of trees with a given degree sequence

$$
\left(x_{1}+\ldots+x_{m}\right)^{n}=\sum_{\substack{\left(d_{1}, \ldots, d_{m}\right) \\ \sum_{i} d_{i}=n}} \frac{n!}{d_{1}!\ldots \cdot d_{m}!} x_{1}^{d_{1}} \cdot \ldots \cdot x_{m}^{d_{m}}
$$

Let (d_{1}, \ldots, d_{n}) be the degree sequence

$$
\frac{(n-2)!}{\left(d_{1}-1\right)!\ldots \cdot\left(d_{m}-1\right)!}
$$

Other applications: the number of trees with a given degree sequence

$$
\left(x_{1}+\ldots+x_{m}\right)^{n}=\sum_{\substack{\left(d_{1}, \ldots, d_{m}\right) \\ \sum_{i} d_{i}=n}} \frac{n!}{d_{1}!\ldots \cdot d_{m}!} x_{1}^{d_{1}} \cdot \ldots \cdot x_{m}^{d_{m}}
$$

Let (d_{1}, \ldots, d_{n}) be the degree sequence

$$
\frac{(n-2)!}{\left(d_{1}-1\right)!\ldots \cdot\left(d_{n}-1\right)!}
$$

$$
\binom{n-2}{k-1}(n-1)^{n-k-1} \quad \begin{aligned}
& \text {-the number of trees in which vertex } \mathrm{n} \text { has } \\
& \text { degree } \mathrm{k}
\end{aligned}
$$

Polya’s approach

$$
T(x)=\sum_{n=1}^{\infty} n t_{n} \frac{x^{n}}{n!}
$$

$T(x)$ is the generating function for the number of rooted trees with n vertices
Let c_{n} be the number of connected graphs on n vertices enjoying a certain property P .

$$
\begin{aligned}
& \frac{1}{2} \sum_{k=1}^{n-1}\binom{n}{k} \cdot c_{k} \cdot c_{n-k}=\frac{1}{2} \cdot n!\sum_{k=1}^{n-1} \frac{c_{k}}{k!} \cdot \frac{c_{n-k}}{(n-k)!} \\
& C(x)=\sum_{n=1}^{\infty} c_{n} \frac{x^{n}}{n!}
\end{aligned}
$$

Polya's approach

$$
T(x)=\sum_{n=1}^{\infty} n t_{n} \frac{x^{n}}{n!}
$$

$\mathrm{T}(\mathrm{x})$ is the generating function for the number of rooted trees with n vertices

Lagrange inversion formula

$$
\begin{aligned}
& \varphi(s)=x \psi(\varphi(s)) \\
& \left.\frac{d^{n}}{d s^{n}} \varphi(s)\right|_{s=0}=\left.\frac{1}{n} \frac{d^{n}}{d t^{n}} \psi^{n}(t)\right|_{t=0} \\
& n t_{n}=\left.\frac{1}{n} \frac{d^{n}}{d t^{n}} e^{n t}\right|_{t=0}=n^{n-1}
\end{aligned}
$$

The number of spanning trees of a directed graph

Def. A spanning tree of a graph G is its subgraph T that includes all the vertices of G and is a tree

Def. A directed tree rooted at vertex n is a tree, all arcs of which are directed towards the root

Knuth's theorem

$$
n=\sum_{j=1}^{h} s_{j}
$$

Consider an example: $s_{1}=3, s_{2}=2, s_{3}=2$

Knuth's theorem

$$
n=\sum_{j=1}^{h} s_{j}
$$

Consider an example: $s_{1}=3, s_{2}=2, s_{3}=2$

Knuth's theorem

$$
n=\sum_{j=1}^{h} s_{j}
$$

Consider an example:

$$
s_{1}=3, s_{2}=2, s_{3}=2
$$

\bigcirc

Knuth's theorem

$$
n=\sum_{j=1}^{h} s_{j}
$$

Consider an example:

$$
s_{1}=3, s_{2}=2, s_{3}=2
$$

\bigcirc

Knuth's theorem

$$
n=\sum_{j=1}^{h} s_{j}
$$

Consider an example:

$$
s_{1}=3, s_{2}=2, s_{3}=2
$$

Knuth's theorem

$$
n=\sum_{j=1}^{h} s_{j}
$$

Consider an example:

$$
s_{1}=3, s_{2}=2, s_{3}=2
$$

Knuth's theorem

Def. A function f is called a tree function of a directed tree T iff $f(i)=j$ when j is the first vertex on the way from i to the root.

Let $\mathrm{c}(\mathrm{H})$ denote the number of spanning trees of the graph H

Knuth's theorem

$$
\text { Theorem (Knuth) } c(H)=\sum_{f}^{\prod_{i=1}^{h-1}\left|\Gamma\left(S_{i}\right)\right|^{\left|S_{i}\right|-1}\left|f\left(S_{i}\right)\right|}
$$

Theorem The number of spanning trees of a graph H arisen from a directed cycle equals

$$
s_{2}^{s_{1}-1} \cdot s_{3}^{s_{2}} \cdot s_{4}^{s_{3}} \cdot \ldots \cdot s_{1}^{s_{h}-1}
$$

Knuth's theorem

Theorem The number of spanning trees of a graph H arisen from a directed cycle equals

$$
s_{2}^{s_{1}-1} \cdot s_{3}^{s_{2}} \cdot s_{4}^{s_{3}} \cdot \ldots \cdot s_{1}^{s_{h}-1}
$$

$s_{2}^{s_{1}-1} \cdot s_{1}^{s_{2}-1}$ is the number of r by s bipartite graphs

Knuth's theorem

$$
\sum_{k=0}^{n}\binom{n}{k} k^{n-k-1}(n-k-1)^{k-1}=2 n^{n-2}
$$

Matrix-Tree Theorem

Def. Let G be a directed graph without loops. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ denote the vertices of G, and $\left\{e_{1}, \ldots, e_{m}\right\}$ denote the edges of G.

The incidence matrix of G is the $n x m$ matrix A, such that
$a_{i, j}=1, \quad$ if v_{i} is the head of e_{j}
$a_{i, j}=-1$, if v_{i} is the tail of e_{j}
$a_{i, j}=0 \quad$ otherwise

$$
\begin{array}{ccccc}
+1 & 0 & 0 & -1 & 0 \\
-1 & -1 & 0 & 0 & -1 \\
0 & +1 & -1 & 0 & 0 \\
0 & 0 & +1 & +1 & +1
\end{array}
$$

Matrix-Tree Theorem

Lemma. The incidence matrix of a connected graph on n vertices has the rank of n-1

The reduced incidence matrix A of a connected graph G is the matrix obtained from the incidence matrix by deleting a certain row.

$$
\begin{array}{ccccc}
+1 & 0 & 0 & -1 & 0 \\
-1 & -1 & 0 & 0 & -1 \\
0 & +1 & -1 & 0 & 0 \\
0 & 0 & +1 & +1 & +1
\end{array}
$$

Matrix-Tree Theorem

Lemma. The incidence matrix of a connected graph on n vertices has the rank of n-1

The reduced incidence matrix A of a connected graph G is the matrix obtained from the incidence matrix by deleting a certain row.

$$
\begin{array}{ccccc}
+1 & 0 & 0 & -1 & 0 \\
-1 & -1 & 0 & 0 & -1 \\
0 & +1 & -1 & 0 & 0
\end{array}
$$

Matrix-Tree Theorem

Lemma. The incidence matrix of a connected graph on n vertices has the rank of n-1

The reduced incidence matrix A of a connected graph G is the matrix obtained from the incidence matrix by deleting a certain row.

$$
\begin{array}{ccc}
+1 & 0 & -1 \\
-1 & -1 & 0 \\
0 & +1 & 0
\end{array}
$$

Matrix-Tree Theorem

Lemma. The incidence matrix of a connected graph on n vertices has the rank of n-1

The reduced incidence matrix A of a connected graph G is the matrix obtained from the incidence matrix by deleting a certain row.

$$
\begin{array}{ccc}
+1 & -1 & 0 \\
-1 & 0 & -1 \\
0 & 0 & 0
\end{array}
$$

Matrix-Tree Theorem

Let A_{0} be the reduced incidence matrix of the graph G .

Theorem (Binet-Cauchy)

If R and S are matrices of size p by q and q by p , where $p \leq q$, then

$$
\operatorname{det}(R S)=\Sigma \operatorname{det}(B) \cdot \operatorname{det}(C)
$$

Theorem (Matrix-Tree Theorem)
If A is a reduced incidence matrix of the graph G , then the number of spanning trees equals $\operatorname{det}\left(A \cdot A^{T}\right)$

$$
\operatorname{det} A A^{T}=\Sigma(\operatorname{det} B)^{2}
$$

Matrix-Tree Theorem

$$
\begin{aligned}
& e_{1}, \ldots e_{b}-\text { variables identified with edges of } G \\
& M(e)=\left[m_{i j}\right] \\
& m_{i j}=-e_{k}, \text { if } e_{k} \text { joins } i \text { and } j \text { and } i \neq j \\
& m_{i j}=\operatorname{sum} \text { if edges incident to } i \text { otherwise }
\end{aligned}
$$

Theorem $\quad M_{n}(e)=\Sigma \Pi(T)$

$$
M_{4}(e)=\left|\begin{array}{ccc}
e_{1}+e_{4} & -e_{1} & 0 \\
-e_{1} & e_{1}+e_{2}+e_{5} & -e_{2} \\
0 & -e_{2} & e_{2}+e_{3}
\end{array}\right|=
$$

$$
=e_{1} e_{2} e_{3}+e_{1} e_{2} e_{4}+e_{1} e_{2} e_{5}+e_{1} e_{3} e_{4}+e_{1} e_{3} e_{5}+e_{2} e_{3} e_{4}+e_{2} e_{4} e_{5}+e_{3} e_{4} e_{5}
$$

Matrix-Tree Theorem

$$
\begin{aligned}
& e_{1}, \ldots e_{b}-\text { variables identified with edges of } G \\
& M(e)=\left[m_{i j}\right] \\
& m_{i j}=-e_{k}, \text { if } \quad e_{k} \quad \text { joins } i \text { and } j \text { and } i \neq j \\
& m_{i j}=s u m \text { if edges incident to } i \text { otherwise }
\end{aligned}
$$

Theorem $\quad M_{n}(e)=\Sigma \Pi(T)$

$$
\begin{aligned}
& M_{n}(e)=\operatorname{det}\left(A \cdot Y \cdot A^{T}\right) \\
& M_{4}(e)=\left|\begin{array}{ccc}
e_{1}+e_{4} & -e_{1} & 0 \\
-e_{1} & e_{1}+e_{2}+e_{5} & -e_{2} \\
0 & -e_{2} & e_{2}+e_{3}
\end{array}\right|=
\end{aligned}
$$

$$
=e_{1} e_{2} e_{3}+e_{1} e_{2} e_{4}+e_{1} e_{2} e_{5}+e_{1} e_{3} e_{4}+e_{1} e_{3} e_{5}+e_{2} e_{3} e_{4}+e_{2} e_{4} e_{5}+e_{3} e_{4} e_{5}
$$

Matrix-Tree Theorem

Another derivation of Cayley's formula:
$\left|\begin{array}{ccccc}n-1 & -1 & \ldots & -1 & -1 \\ -1 & n-1 & \ldots & -1 & -1 \\ -1 & -1 & \ddots & -1 & -1 \\ -1 & -1 & -1 & n-1 & -1 \\ -1 & -1 & -1 & -1 & n-1\end{array}\right|$

Matrix-Tree Theorem

Another derivation of Cayley's formula:

$$
\left|\begin{array}{ccccc}
1 & 1 & \ldots & 1 & 1 \\
-1 & n-1 & \ldots & -1 & -1 \\
-1 & -1 & \ddots & -1 & -1 \\
-1 & -1 & -1 & n-1 & -1 \\
-1 & -1 & -1 & -1 & n-1
\end{array}\right|
$$

Matrix-Tree Theorem

Another derivation of Cayley's formula:

$$
\left|\begin{array}{lllll}
1 & 1 & \ldots & 1 & 1 \\
0 & n & \ldots & 0 & 0 \\
0 & 0 & \ddots & 0 & 0 \\
0 & 0 & 0 & n & 0 \\
0 & 0 & 0 & 0 & n
\end{array}\right|=n^{n-2}
$$

Matrix-Tree Theorem

Theorem (Matrix-Tree Theorem for directed graphs)

Let be variables representing the arcs of the graph. Let $C=\left[c_{i j}\right]$ denote the n by n matrix in which $-c_{i j}$ equals the sum of arcs directed from node i to node j if $i \neq j$, and $c_{i i}$ equals the sum of all arcs directed from node i to all other nodes.

Then

$$
C_{n}=\Sigma \Pi(T)
$$

where the summation is over all spanning subtrees of G rooted at node n.

$$
C_{n}=\left(\begin{array}{cccc}
e_{1} & -e_{1} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & -e_{2} & e_{2} & 0 \\
-e_{4} & -e_{5} & -e_{3} & e_{3}+e_{4}+e_{5}
\end{array}\right)
$$

Matrix-Tree Theorem

$$
C_{2}=\left|\begin{array}{ccc}
e_{1} & 0 & 0 \\
0 & e_{2} & 0 \\
-e_{4} & -e_{3} & e_{3}+e_{4}+e_{5}
\end{array}\right|=e_{1} e_{2} e_{3}+e_{1} e_{2} e_{4}+e_{1} e_{2} e_{5}
$$

