
Pattern Matching in Trees
Justus Schwartz

First German-Russian Winterschool – p. 1

Motivation

• Nonprocedural programming languages
• Code-Optimizations
• Automatic theorem proving
• Symbolic computation on algebraic terms
• Every application with tree-replacement

First German-Russian Winterschool – p. 2

Problem Definition

• Given a pattern tree P and a subject tree T .
• Children of all nodes are ordered.
• Nodes are labelled.
• P matches at node a if there is a

• one-to-one mapping from nodes of P to T

• root of P maps to a

• if x maps to y, children map to
corresponding children of y

• find all matches of P

First German-Russian Winterschool – p. 3

Example

Subject tree T Pattern Tree P

First German-Russian Winterschool – p. 4

Example

Subject tree T Pattern Tree P

First German-Russian Winterschool – p. 4

Example

Subject tree T Pattern Tree P

First German-Russian Winterschool – p. 4

Overview

• Naive Algorithm

• Algorithm by Dubiner,Galil,Magen (Õ(n
√

m))
• Sketch of faster Algorithms by Cole,

Hariharan and Indyk

First German-Russian Winterschool – p. 5

Definitions

• Number of nodes in subject tree: n

• Number of nodes in pattern tree: m

• Õ(f(n, m)) = O(f(n, m) · polylog(m))

• Order information of children is coded into
node label. So labels of Children are distinct.
We could say we consider unlabelled trees
with order information.

First German-Russian Winterschool – p. 6

Naive Algorithm

The naive Algorithm is straightforward.
• Traverse over all nodes of T

• At each node try to match the pattern tree P .

This seems to take O(nm) time. We will see, it’s
not that bad.

First German-Russian Winterschool – p. 7

Algorithm by Dubiner,Galil,Magen

• The algorithm takes Õ(n
√

m) time.
• The naive algorithm will be revisited.
• Matching strings in trees
• Periodicities in the pattern will be exploited.
• Node labels will be from alphabet {0, 1}. If not

we may encode them, which leads to a
logarithmic blowup, which will be hidden by
the Õ notation.

First German-Russian Winterschool – p. 8

Matching Paths

For a node v of P denote σv as the path from the
root of P to v.
v matches T at node w if σv as a tree matches T
at w.

Remark: Iff for every leaf v of P v matches T at
w then P matches T at w.

First German-Russian Winterschool – p. 9

Naive algorithm revisited

• The naive algorithm takes time O(nh), with h
height of P

A match of a node in P at depth i is only tested if
the path of the ancestors have matched. As
labels of children are distinct the path of
ancestors could not lead to another node.
⇒ every node is compared at most with one
node of every depth.

First German-Russian Winterschool – p. 10

Knuth-Morris-Pratt in trees

Define failure function. Given string
s = s1, . . . , sm.

f(i) = max{j|s1, . . . , sj is proper suffix of s1, . . . , si}

While traversing T by DFS keep at each node v a
pointer to largest node w such that path from w
to v is prefix of s.

First German-Russian Winterschool – p. 11

KMP in trees (2)

• Assume node v, parent nodes pointer to w,
path length i

• Set pointer of v to w.
• If the path is prefix continue (compare label)
• Else set pointer to f(i − 1)th ancestor and

compare again until prefix is found.

First German-Russian Winterschool – p. 12

KMP in trees (3)

Since the Pointers advance only with the DFS,
the total time is linear in size of T

The failure function is calculate recursively in a
similar way.

Analogous we can match a set of strings in linear
time. (Aho-Corasick)

First German-Russian Winterschool – p. 13

Periods in strings

A string α is a Period of string β if for some k > 0
β prefix of αk. Some facts on periods:

1. α is a period of β ⇔ β = αγ = γδ

2. β has period of length k ⇔ βi = βi+k with
1 ≤ i ≤ |β| − k

3. if αβ and βγ have a period of length k and
|β| ≥ k then αβγ have period k

Example: αβ = abcabcab cabc︸︷︷︸

β

, βγ = cabc abcabcab︸ ︷︷ ︸
γ

αβγ = abcabcabcabcabcabcab
First German-Russian Winterschool – p. 14

k-truncated suffix tree

Define for node v σv,k as the string of the last k

characters of σv (if existent).

The k-truncated suffix tree of P , ΣP,k, is defined
as the trie for all strings σR

v,k for all nodes v of P ,
where R means reversed.

For every node v in P there is a corresponding
node ṽ in ΣP,k. And the path from the root of ΣP,k

to ṽ is σv,k reversed.

ΣP,k can be computed in O(km)

First German-Russian Winterschool – p. 15

k-truncated suffix tree

u0

u1 u2

u3 u4

u5 u6
u7 u8

u9 u10 u11

u12

ũ0

ũ1

ũ3

ũ5

ũ10 = ũ12

ũ7

ũ11

ũ2

ũ4

ũ8

ũ6

ũ9

Tree P ΣP,4

0 1
0 1

First German-Russian Winterschool – p. 16

k-truncated suffix tree

A useful fact about k-truncated suffix trees that
we will use is:
ũ is an ancestor of ṽ in ΣP,k iff σu,k is a suffix of
σv,k. (σũ prefix of σṽ reverse both and the
statement follows)

So for leaves ṽ, w̃ the strings σw and σv cannot
be suffix of one another.

We will use suffix trees with k = 3l = 3 · d√me.

First German-Russian Winterschool – p. 17

Number of leaves of Σ

After computing the 3l-truncated suffix-tree of P

Σ = ΣP,3l in time O(lm) = O(m
√

m), we will
distinguish between two cases.

1. Σ has at least l leaves.

2. Σ has at most l leaves.

First German-Russian Winterschool – p. 18

At least l leaves

Chose set S of l nodes from P corresponding to
leaves of Σ.
In time O(n) mark the nodes of T for each node v
in S where σv matches.
A node of T can be the end of only one path
matching σv for all v in S because of the fact
stated for leaves of Σ.
Therefor at most n marks are made.

First German-Russian Winterschool – p. 19

At least l leaves

Only n
l

of the marked nodes may be marked l

times and be considered possible matchings of
P .
Every possible root is tested in O(m) time. This
yields altogether a time of O(nl + n

l
m) = O(n

√
m)

First German-Russian Winterschool – p. 20

At most l leaves

For this case periodicities in the pattern tree will
be discovered.
Then the problem is reduced to string matching
with don’t care.
The subtree of P consisting of the paths to
leaves whose depth is at most 3l. With the naive
Algorithm we can match this subtree in
O(nl) = O(n

√
m)

So we assume that all leaves of P have at least a
depth of 3l.

First German-Russian Winterschool – p. 21

At most l leaves

So for every leaf v |σv,3l| = 3l and ṽ is a leaf of Σ.

Lemma: For v1, . . . , vl+1 distinct nodes of P there
are i 6= j such that σvi,3l is suffix of σvj ,3l

Because there are at most 3l leaves there are i, j
such that ṽi is an ancestor of ṽj. �

First German-Russian Winterschool – p. 22

Periodicity of paths

Lemma: For every leaf v of P the string of all but
at most the last l nodes of σv has period of length
at most l.

For a node v0 with depth at least l let vi be its ith
ancestor. By the previous lemma there are
0 ≤ i < j ≤ l such that σvj ,3l is a suffix of σvi,3l.

For the node u which is the beginning of σvi,3l the
path τ from u to vj is a prefix and a suffix of σvi,3l.

By fact (α period⇔ αγ = γδ) follows that σvi,3l has a
period of length 0 < j − i ≤ l.

First German-Russian Winterschool – p. 23

Periodicity of paths

Considering a leaf v there is an ith ancestor vi of
v with 0 ≤ i ≤ l such that σvi,3l has period of
length at most l.
Further up the path we get by the same
considerations periodicities of length at most l.
Intersection is at least l long ⇒ they have the
same period ⇒ σvi

has same periodicity as σvi,3l.

First German-Russian Winterschool – p. 24

Periodicity of paths

Conclusion: For every leaf v σv has period of
length at most l, except for a tail of at most l
nodes.
To each leaf v the pair of minimal period p and
the tail will be attached. (Period ending exactly
before tail.)
There are at most l distinct pairs. (Because of at
most l leaves in ΣP,3l

First German-Russian Winterschool – p. 25

Tail-Period Pairs

We can compute the Tail-Period Pairs in Õ(ml).

For a leaf v we apply a linear string-matching
algorithm to σv and the first l characters of σv.
The first non-trivial occurrence gives the period
(possibly permutated)
The tail is now easily determined in O(l).
Sorting these O(m) pairs returns the at most l
pairs.
⇒ time Õ(ml)
�

First German-Russian Winterschool – p. 26

Maximal-Periodic-Paths

For matching we consider period-tail pair with the
period p.

A path in a tree is called a maximal-periodic-path
if it

1. has period p (may start any place in p but has
to end with p)

2. p is repeated at least twice

3. is maximal (cannot be extended fulfilling 1.)

First German-Russian Winterschool – p. 27

Maximal-Periodic-Paths

If two maximal-periodic-paths intersect at node v
for one path it is among the first |p| nodes.
Otherwise the intersection is at least of length
p ⇒ the paths are equal.

total length of maximal-periodic-paths O(n)

Finding the maximal-periodic-paths in O(n) time
works in a similar way as string matching.

First German-Russian Winterschool – p. 28

Reduction to Strings

Now with the given period-tail pair. We can find
all corresponding maximal-periodic-paths and
occurrences of the tail in T in time O(n)

Define for every maximal-periodic-paths in T :

bi =

{

1 if after i periods the tail occurs

0 otherwise

First German-Russian Winterschool – p. 29

Reduction to Strings

Similar for the pattern tree P we define for
maximal-periodic-paths starting at the root:

ai =

{

1 if after i periods the tail occurs and ends at a leaf

0 otherwise

This can be done in time O(m) and there are at
most |p| paths.
The length of the a/b-sequences is at most the
length of the length of the path/|p|

First German-Russian Winterschool – p. 30

String matching with don’t cares

To match the set of leaves with a given period-tail
reduces to matching the a-sequences with any of
the b-sequences with don’t care. (0 in a as don’t
care)

We have at most |p| paths for every period-tail
pair with convolution we can match them in
Õ(pathlength

|p|).

First German-Russian Winterschool – p. 31

String matching with don’t cares

We have time Õ(n) for a period-tail pair. Now
translate matches back to nodes considering
position in period.

Finally it follows that if Σ has at most l leaves, we
can match P and T in time Õ(n

√
m)

First German-Russian Winterschool – p. 32

Example

Tree P Tree T

u1

u2 u3

u4

1

0 1
0 1

w0

w1

w2 w3

w4 w5
w6 w7

pair (“01”, “1”):
a-seq left: 000011.
a-seq right: 00001.
b-seq: from w0 “1000111”
and from w1 “000010”

First German-Russian Winterschool – p. 33

Example

The a-sequence 000011 matches 1000111 at
position 0 and 1 and does not match 000010. So
for leaves u1 and u4 we have two matches at w1

and w4.
The a-sequence 00001 matches 1000111 at 0,1
and 2 and matches 000010 at 0. So for leaf u3 we
have matches at w0,2,6 and w1.
Same procedure for the other period-tail pair.
In a final step (traversing T) the only match at w1

is found.
The only place where all leaves match.

First German-Russian Winterschool – p. 34

Sketch of faster algorithms

Cole and Hariharan reduce the tree pattern
matching to subset matching. They can do this in
linear time.

Subset matching: the pattern p = p1, . . . , pm and
the text t = t1, . . . , tn, where pi, ti are subsets of
some alphabet Σ match at position k iff
pi ⊂ tk+i−1∀1 ≤ i ≤ m

For subset matching they give an
O(n log3 m + m) deterministic algorithm and also

an O(n log3 m
log log m

+ m) probabilistic algorithm.

First German-Russian Winterschool – p. 35

Subset Matching

b
c

a
b
c

e
f

e
f

ba
b
c

a
c

ba
c a

c Match

ba
c a

c No match

ba
c a

c
No match

First German-Russian Winterschool – p. 36

Reduction to spine pattern matching

First Cole and Hariharan reduce the tree pattern
matching to spine pattern matching.

Each the pattern and the text have one
designated path starting at the root, the spine.
Both paths will have the same period.
The matches where the pattern spine lies in the
text spine are sought.

First German-Russian Winterschool – p. 37

Reduction to Spine-Pattern Matching

This reduction is done via choosing a certain
spine in the pattern tree.

According to the period of this spine
maximal-periodic-paths are found in the subject
tree.

Certain paths are then taken as an instance of
the spine pattern matching problem.

First German-Russian Winterschool – p. 38

Reduction from spine to subset matching

The nodes in the subtrees which are not on the
spine are enumerated, such that nodes in
subtrees with same paths to subtree root get the
same label.

All labels in a subtree are put into a set.
Obviously subset matching is now equivalent to
spine pattern matching

From these reductions follows a time bound of
O(n log3 m)

First German-Russian Winterschool – p. 39

Tree with spine

A tree with spine. Each spine
node has only one non-spine
children.

The numbered nodes in the off-
spine subtrees for each spine
node form the subsets for
matching

Resulting size of subset match-
ing problem is O(n + m)

First German-Russian Winterschool – p. 40

Concluding remarks

• For interesting applications tree pattern
matching respective tree replacements are
essential.

• Fast algorithms exist
• Non-trivial lower bound would be interesting.

(at least as hard as string matching)

First German-Russian Winterschool – p. 41

	Motivation
	Problem Definition
	Example
	Example
	Example

	Overview
	Definitions
	Naive Algorithm
	Algorithm by Dubiner,Galil,Magen
	Matching Paths
	Naive algorithm revisited
	Knuth-Morris-Pratt in trees
	KMP in trees (2)
	KMP in trees (3)
	Periods in strings
	k-truncated suffix tree
	k-truncated suffix tree
	k-truncated suffix tree
	Number of leaves of $Sigma $
	At least l leaves
	At least l leaves
	At most l leaves
	At most l leaves
	Periodicity of paths
	Periodicity of paths
	Periodicity of paths
	Tail-Period Pairs
	Maximal-Periodic-Paths
	Maximal-Periodic-Paths
	Reduction to Strings
	Reduction to Strings
	String matching with don't cares
	String matching with don't cares
	Example
	Example
	Sketch of faster algorithms
	Subset Matching
	Reduction to spine pattern matching
	Reduction to Spine-Pattern Matching
	Reduction from spine to subset matching
	Tree with spine
	Concluding remarks

