
2nd Joint Advanced Student School 2004

Course 1

Complexity Analysis of String Algorithms

St. Petersburg, March 28th – April 7th 2004

2

Preface

The State University St. Petersburg, the Steklov Institute St. Petersburg,
and the Technische Universität München organized the second Joint Advanced
Student School (JASS 2004) in St. Petersburg from March 28th through April
7th. It was financed by the Bavarian Ministry of Economics, by Siemens and by
Infineon. Four courses with different topics were offered. This booklet contains
the papers prepared by the students of course 1 “Complexity Analysis of String
Algorithms”.

The course covered advanced techniques for the analysis of string algorithms
applied to fundamental algorithms in this area. There was a special focus on
average case analysis and exact analysis (as initiated by D. Knuth). The fol-
lowing topics were coverd by St. Petersburg and Munich participants.

1. Data Structures for Pattern Matching. Suffix trees and suffix arrays
are a basic data structure in pattern matching.

Article: [Ukk95, KS03]. Book chapter: 6 of [Gus97].

Additionally: [MM93]

Presented by: Olga Sergeeva

2. Sub-linear Approximate String Matching. A classical algorithm
based on the use of suffix trees, lowest common ancestor queries. The
complexity analysis uses basic techniques such as the Chernoff bound.

Article: [CL94]. Book chapter: 2 of [Szp00], 6 and 8 of [Gus97]. Addi-
tionally: [BFC00] (lca)

Presented by: Robert West

3. Approximate Text Indexing. Using simple mathematical arguments
the matching probabilities in the suffix tree are bound and by a clever
division of the search pattern sub-linear time is achieved.

Article: [NBY00]. Book chapter: 6 of [Gus97]

Presented by: Alexander Vahitov

4. Compressed Suffix Arrays. This space efficient index structure is an-
alyzed on a bit level to reveal linear size.

Article: [GV00, Sad00]. Book chapter: 6 of [Szp00].

Presented by: Fabian Pache

3

4

5. Asymptotic Properties of Suffix Trees. Analysis of height and feasi-
ble path length using probabilistic tools such as 2nd Moment Method.

Article: [Szp93]. Book chapter: 4 of [Szp00].

Presented by: Ivan Kazmenko

6. Sequential Pattern Matching. Analysis of Knuth-Morris-Pratt type
algorithms using the Subadditive Ergodic Theorem.

Article: [RS98a]. Book chapter: 5 of [Szp00].

Presented by: Tobias Reichl

7. Greedy Algorithms for the SCS Problem. Analysis of some greedy
algorithms using tools from information theory such as asymptotic equity
property (AEP).

Article: [FS98]. Book chapter: 6 of [Szp00].

Presented by: Anton Nesterov

8. Analysis of Pattern Occurances. Analysis of the number of occurances
of patterns in text using generating functions.

Article: [GO81, RS98b]. Book chapter: 7 of [Szp00].

Presented by: Roland Aydin

9. Rice’s Integrals. Rice’s Integrals (already known by Nörlund) are an-
other basic and successful technique to analyze asymptotic behavior of
trees.

Article: [FS95]. Book chapter: 8 of [Szp00].

Presented by: Thomas Preu

10. Digital Search Trees. Analysis of different digital trees with Rice’s
integrals.

Article: [FS86a]. Book chapter: 8 of [Szp00].

Presented by: Nicolai Baron von Hoyningen-Huene

11. The Mellin Transform. A very popular technique for the analysis of
digital trees and the like.

Article: [FGD95]. Book chapter: 9 of [Szp00].

Presented by: Ilja Posov

12. Automaton Searching on Tries. Analysis of a general search technique
using automatons in tries, based on the eigenvalues of the automatons
adjacency matrix and Mellin transform.

Article: [BYG96]. Book chapter: 9 of [Szp00].

Presented by: Mikhail Lakunin

Contents

1 Data Structures for Pattern Matching 9

1.1 Suffixes . 9

1.2 Suffix trees . 10
1.2.1 Definitions, examples, background 10

1.2.2 Algorithms . 11
1.2.3 Ukkonen’s algorithm . 11

1.3 Suffix arrays . 15
1.3.1 The very first algorithm 15

1.3.2 Skew algorithm . 16

2 Sublinear Approximate String Matching 19

2.1 Introduction . 19
2.1.1 What? . 19

2.1.2 Why? . 20

2.1.3 How? . 20
2.2 The Auxiliary Tools . 20

2.2.1 Suffix Trees . 20
2.2.2 Matching Statistics . 21

2.2.3 Lowest Common Ancestor 23
2.2.4 Edit Distance . 24

2.3 The Algorithm . 26

2.3.1 Linear Expected Time . 26
2.3.2 Sublinear Expected Time 29

2.4 Conclusion . 30

3 Approximate string indexing 31

3.1 Introduction . 31
3.2 Our Task . 31

3.3 Basic Ideas and Algoritms . 32
3.3.1 Lemma: dividing the pattern 32

3.3.2 Computing edit distance 32
3.3.3 NFA construction . 34

3.3.4 Depth-First Search technique 35

3.4 Main algorithm . 35
3.4.1 Suffix Arrays . 36

3.5 Complexity Analysis . 36
3.6 Conclusions . 38

5

6 CONTENTS

4 Compressed Suffix Arrays 39
4.1 Introduction . 39
4.2 Suffix Arrays . 39

4.2.1 Algorithms . 39
4.2.2 Complexity . 40

4.3 Compressed Suffix Arrays . 40
4.3.1 Compression of the Suffix Array 40
4.3.2 Compression of the Auxiliary Arrays 42
4.3.3 Complexity in general . 43
4.3.4 Complexity optimization 43

4.4 Extensions of Compressed Suffix Arrays 44
4.4.1 Operations . 44
4.4.2 Complexity . 44

4.5 Conclusion . 45

5 Asymptotic Properties of Suffix Trees. 47
5.1 Suffix Tree Construction . 47
5.2 Depth of Insertion in a Suffix Tree 48
5.3 Height and Shortest Feasible Path in a Suffix Tree 50
5.4 Proof Techniques . 51
5.5 Summary . 51

6 Sequential Pattern Matching 53
6.1 Pattern Matching . 53

6.1.1 Conventions . 53
6.1.2 Defining Sequential Algorithms 54
6.1.3 Naive / Brute Force Algorithm 54
6.1.4 Knuth-Morris-Pratt . 54
6.1.5 Defining Complexity . 55

6.2 Subadditive Ergodic Theorem . 55
6.2.1 Fekete’s Theorem . 55
6.2.2 Subadditive Ergodic Theorem 56

6.3 Martingales and Azuma’s Inequality 57
6.3.1 Basic Properties of Martingales 57
6.3.2 Hoeffding’s Inequality and Azuma’s Inequality 58

6.4 Application to KMP . 58
6.4.1 Establishing m-Convergence 58
6.4.2 Establishing Subadditivity 60
6.4.3 Applying the Subadditive Ergodic Theorem 61
6.4.4 Applying Azuma’s Inequality 61

6.5 Concluding Remarks . 62

7 Greedy Algorithms for the SCS Problem 63
7.1 Definitions . 63
7.2 Greedy algorithms . 64
7.3 Results . 65
7.4 Compression . 65
7.5 Graph processes . 66

7.5.1 RGREEDY . 66
7.5.2 GREEDY . 66

CONTENTS 7

8 Analysis of Pattern Occurances 67
8.1 Preliminaries . 67
8.2 Sources . 69
8.3 Generating functions of languages 69
8.4 Declaring languages . 71
8.5 Language relationships . 71
8.6 Languages & Generating Functions 73
8.7 Looking for Generating Functions 74
8.8 Main findings I . 75
8.9 On to other shores . 75

9 Rice’s integrals 79
9.1 Basics of Complex Analysis . 79

9.1.1 Complex Differentiability 79
9.1.2 Integration . 80
9.1.3 Holomorphic functions and the Cauchy Integral Theorem 82
9.1.4 Cauchy integral formula and residue calculus 83

9.2 Other mathematical formulas . 84
9.2.1 The Gamma function . 84
9.2.2 Zeta functions and Modified Bell Polynomials 85

9.3 Motivation and Basic Integrals 85
9.4 Integrals of Functions with Poles 87

9.4.1 Rational functions . 87
9.4.2 Meromorphic functions 90
9.4.3 Functions with Algebraic and Logarithmic Singularities . 93

9.5 Mellin Transforms and Rice’s Integrals 97
9.6 Summary . 98

10 Digital Search Trees 99
10.1 Introduction . 99
10.2 Trees . 99
10.3 Digital Search Trees . 100

10.3.1 Data Structure of Binary Search Trees 100
10.3.2 Data Structure of Digital Search Trees 101
10.3.3 Internal Path Length . 102
10.3.4 External Internal Nodes 107

10.4 Digital Search Tries . 111
10.4.1 Data Structure of Tries 111
10.4.2 Data Structure of Patricia Tries 112
10.4.3 External Path Length . 112
10.4.4 External Internal Nodes 113

10.5 Multiway Branching . 114
10.6 General Framework . 114

11 Mellin transforms and asymptotics 117
11.1 Mellin transform definition . 118
11.2 Mellin transform basic properties 119
11.3 Singularities . 121
11.4 Direct mapping . 122
11.5 Converse mapping . 125

8 CONTENTS

11.6 Harmonic sums . 127

12 Automaton Searching on Tries. 129
12.1 Structure of the paper . 129
12.2 Our task or what we want to do 129
12.3 Algorithm in a “few words” . 130
12.4 Basic index structures and notation 130

12.4.1 Indexing structures . 130
12.4.2 Basic definitions of the Theory of Formal Languages . . . 132

12.5 A restricted class of regular expression 132
12.6 General algorithm . 135

12.6.1 What we want to do there 135
12.7 Efficiency Estimation for the General Algorithm 135

12.7.1 The structure of the proof 135
12.8 Apllying the General Estimation Theorem 137
12.9 Heuristic for optimizing the query 137

12.9.1 What we mean by optimizing 137
12.9.2 Substring graph . 137
12.9.3 How to Use . 137

12.10Open problems and conclusion 138

Chapter 1

Data Structures for Pattern
Matching
Olga Sergeeva

For many applications, efficient string processing is crucial. Searching for a
substring or a subsequence in a string; searching for common substrings of a
set of strings; finding out the number of direct repetitions these are just a few
important examples of the problems often appearing in work with strings. In the
applications, there is need in solving these problems as efficient (in asymptotic)
as possible, and also to store the strings ’economically’. So, there arises a
question of efficient strings representations, both being compact and providing
good bases for algorithms.

This paper is concerned with two representations, in some sense revealing the
structure of the initial string and thus meeting many demands: suffix trees and
suffix arrays.

1.1 Suffixes

Definition 1.1. Let s be a string. s′ is called a suffix of s, if s = as′ for some
a. Note, that an empty string is a suffix of any string.

It turns out, that if the suffixes are well structured , the resulting construction
can be very informative and can be a good base for developing efficient algo-
rithms. Also, both structures we are to discuss can be built in time, linear in
the length of the initial string (in this paper, always n).

Why is it possible to build representations, based on suffix relations, efficienly?
The very simple (but also very general) idea is that the suffixes are closely re-
lated, being parts of each other. Maybe it s worth looking at how this idea
refracted in combination with other ideas, and what it lead to in different algo-
rithms, as they historically appeared. But we in this paper will discuss mostly
those which made the most of it.

One of the string representations of interest is suffix tree.

9

10 CHAPTER 1. DATA STRUCTURES FOR PATTERN MATCHING

1.2 Suffix trees

1.2.1 Definitions, examples, background

Definition 1.2. Suffix tree for a string s is a rooted tree with edges, marked
with substrings of s, having the following properties:

1. Any concatenation of the marks along each path from the root to a leaf
forms a suffix and every suffix appears once.

2. The marks on the edges, having a common root, begin with different
symbols of the alphabet.

From the definition, you can see that there must be as many leaves in the suffix
tree as there are non-empty suffixes in s, i.e. n.
What is good in such a representation? The following bright example can give
some comprehension of the advantages of suffix trees.

Example 1.1 (Substring search). Suppose that we have a string s and a
(shorter) string p, for which we are to answer if it occurs in s.
In fact, even this is not enough detailed description of the problem. The context
is important: will we work with s and p once? Or we have a constant pattern,
which we are to search in many strings? Or we have a fixed string s, and are
to answer many queries about different p? Answers to such questions of course
greatly influence the structures and the algorithms preferred.
Suppose that this is s which is fixed (some encyclopedia, for example). So it is
s to be preprocessed how can we answer if p is a substring of s, having its suffix
tree S?
If p is a substring, then it s a beginning of some suffix. In S, every suffix must
appear as a concatenation of marks from the root to a leaf, so if p begins with
a symbol, with which no branch from the root begins, we can definitely say
that p is not a substring. Otherwise, we should search only in the subtree,
corresponding to the branch beginning with this symbol (there is only one such
branch from the root!) Reasoning the same for the consequent vertices, we will
answer our question, making in each vertex a constant number of comparisons
(the alphabet is constant), and there will be no more then the length of p
(denote: |p|) steps. So overall time is O(|p|) operations plus O(|s|) to build the
suffix tree.
Note that for our case the distribution of work is very successful: although for
the first query we spend O(|p| + |s|) time, for all the consequent queries time
will be linear in the length of the pattern! So, although for the first query
the time is the same with, for example, Knuth-Moris-Pratt algorithm, but in
that algorithm p needs |s| time preprocessing, not s. So in fact we have an
algorithm which, after initial preprocessing, answers the queries in time, linear
in the length of p. Mention, that Donald Knuth did not believe in existence of
such an algorithm, until suffix trees were invented.

Suffix trees have many other applications, for instance, in search for the longest
common substring of a pair (and, further a set of) strings; for repetitions; for
longest common ancestor.
It is also like a ’bridge’ to much more difficult and important problem of inexact
matching when given strings may contain errors and in practice they will contain
them!

1.2. SUFFIX TREES 11

Figure 1.1: Suffix tree and implicit tree for ’gamma’.

Note. We gave a definition of suffix tree, but didn t check correctness of the
definition: does suffix tree exist for an arbitrary s? Indeed, if we want to have
a leaf for each suffix, then it is impossible to build a suffix tree for a string, in
which one suffix s1 is a prefix of another suffix s2 we will inevitably spell out
the shorter suffix, spelling out the longer one. This problem is easy to solve: if
we add a symbol not from alphabet (say, ′$′) to the end of s, then no suffix will
be a prefix of another suffix.

We will call a tree for a string without additional symbol an implicit tree for S.
In implicit tree, there is exactly one path spelling out any suffix, but the ends
of some suffixes are not marked anyhow.

1.2.2 Algorithms

The suffix tree can be built naively , adding suffixes to the tree one by one,
beginning from the longest suffix (which is the string itself). To add a new
suffix, we try to spell it out in the tree, and at the point it s no more possible,
create a new branch, marked with the not spelled remainder. This approach
demands O(|s|2) time.
The first linear-time algorithm, by Weiner, appeared in 1973, in his article Linear
Pattern Matching Algorithms . Although it was linear in time, it was space-
consuming. A less complex and less space-consuming algorithm was invented
in 1976 (McCreight. A Space-Economial Suffix Tree Construction Algorithm).
Eventually, in 1993, Ukkonen in his On-Line Construction of Suffix Trees intro-
duced his simpler algorithm, having several nice features.

1.2.3 Ukkonen’s algorithm

Description

We will start with a simple but not efficient algorithm, and then in several steps,
suggested by common sense (’how not to do excessive work?’), will transform it
to linear.
Ukkonen s algorithm is on-line: it is split up into |s| phases, after each of them
there is an implicit(!) tree for a prefix of s. We begin with the string, containing

12 CHAPTER 1. DATA STRUCTURES FOR PATTERN MATCHING

Figure 1.2: Extending ’yea’ to ’year’ in different trees.

only the first symbol of s, and each phase increase the length of the processed
string by one. Phase i+ 1 is itself split into i+ 1 extensions, one extension for
each from the i+ 1 suffixes of s[1..i+ 1]. In the extension j in the phase i+ 1
algorithm finds the end of the path, marked with s[j..i]. It then extends this
substring, adding s(i + 1) to its end, if it doesn’t exist in the tree. So, in the
phase i+ 1 it one by one inserts the strings s[1..i+ 1], s[2..i+ 1], .., s[i+ 1] into
the tree, if they do not exist.
T1 consists of one edge, marked with s(1).
After the last phase, we will carry out one more phase , adding symbol $. The
resulting implicit tree for s$ will be a real suffix tree, as we already pointed out.
The formal definition of the algorithm is as follows.

Algorithm.
Build T1.
for i from 1 to m− 1 do begin {phase i+ 1}

for j from 1 to i+ 1 begin {extension j}
find in the current tree the end of the path with mark S[j..i].
If needed, extend the path with s(i+ 1), providing existence
of the string s[j..i+ 1].

end;
end;

Let’s look closely on the possible cases of extention (see Fig. 2).

1. We are just to extend a mark on an edge

2. When we are to add an edge (and maybe to split an existing edge into
two)

3. When nothing is needed to be done.

We will refer to these cases as the first rule, the second rule and the third rule
for the algorithm.
What do we spend time for? For looking for the end of the current suffix in a
tree after this, we spend constant to prolong it. So, it is essential how we search
for the ends of the suffixes in Ti.
We can find the end of a suffix s in O(|s|), walking from the root each time. In
this case, we will build the Ti+1 from Ti in O(i2), so the final tree will appear

1.2. SUFFIX TREES 13

after O(n3) operations, comparing to O(n2) in the naive algorithm! We ll reduce
this to O(n) using some observations and techniques. Each of them is (just!) a
useful heuristics, which cannot qualitatively change estimation of time for the
worst case, but applied together they result in essential speeding-up.

Suffix links

Definition 1.3. Suffix link is a pointer from an inner vertex v with the path
mark xα to a vertex s(v) with mark α, if it exists in the tree, where x is a
symbol, and α is a string. Notice, that if α is empty, suffix link points to the
root.

It is easy to see that there is a vertex s(v) for every inner vertex of the tree.
Moreover, the following statement is true: if a vertex v with path mark xα is
added to the tree in the extension j of the phase i+1 (that is, the second rule is
applied), then the vertex s(v) either already exists in the tree of will be created
in the next extension, in this phase. In both cases, we will find it incidentally,
so adding a pointer will not require additional search.
Using suffix links can substantially reduce amount of search.
First, we will maintain a pointer to the end of the longest suffix s[1..i], so for the
first extension we need only to prolong a mark on the given edge - no search.
To proceed with the next one, we will not move from the root every time we
search for the end of the next suffix. Instead, we will get from the available
ending point up to the first inner vertex v (if it s not an inner vertex itself),
walk along its suffix link s(v) and search only in the subtree of s(v). If our
current suffix can be written in the form xαβ, where xα is the mark of the
path to v, then s(v) is marked with α, so trying to spell out the next suffix
(which is αβ), we would surely have come to s(v). Adding new suffix links after
transformation of the tree in each extension (if needed), we will easily maintain
the tree in this pleasant for processing form.

Note. This note will help us to estimate the algorithm complexity.
Denote by depth of a vertex the number of edges on the way from the root to
that vertex. Then the moment we are moving along the suffix link, the depth of
v, exceeds the depth of s(v) by no more then 1. The reason is that the prefixes
of the shorter string (α) will occur in the string more often, so there will be more
bifurcations along the way corresponding to α. And in the case no bifurcations
are added comparing to the way corresponding to xα, d(xα) − d(α) = 1. So,
getting along the suffix link, we will not get much nearer to the root. Later this
will help us to estimate how many times we could descend, and then the overall
processing time.

Not check, but search

Still, there are unnecessary steps. The end of the next suffix to prolong surely
exists in the tree (in the subtree from s(v), as we cleared up), so we are not to
check its existence, but only to find its end. We do not have to compare every
symbol on en edge, once having chosen it. If it is shorter then the not spelled
out remainder of the suffix, we can skip over it to the next vertex; if it is longer
split it at the needed point. Doing this way, we spend for descending each edge
constant time. All we need for this style of work is to know the number of

14 CHAPTER 1. DATA STRUCTURES FOR PATTERN MATCHING

symbols on the edge (which is a detail of implementation) and to be able to
extract a symbol in s by its number in constant time. Along with the notice on
the vertex depths correlation, this yields in the following

Theorem 1.1. In the improved algorithm, each phase takes O(n) time.

Proof. Summing up, what steps we perform during one extension? Get up to
the nearest inner vertex no more than one edge; go along the suffix link; descend
some vertices; apply one of the rules of suffix extension; maybe add a new suffix
link. All these actions, except descending, take constant time.
We need to estimate how many times we descend during one phase. Let s pay
our attention to the current vertex depth changes. Raising, we decrease it by no
more than 1; the same with walking along the suffix link; and while descending,
we increase current depth that s why overall depth increment over the phase in
not more than 3 ∗ n.

Corollary 1.1. The current version of Ukkonen s algorithm terminates in

O(n2).

Question. We spent so much effort, and got nothing in comparison with the
naive algorithm?

The last touches

Improving an algorithm, one can encounter the following problem: if the output
is large, the algorithm cannot be very fast, for working time is no less then output
size. This is the case: if we don’t change the format of representation the tree,
we will not get further optimization, because in general case the overall length
of labels on the edges doesn’t have to be linear.

Example 1.2. Suffix tree for the string ’abcd...xyz’ consists of 26 branches,
with marks having 26, 25, ... 1 letters on them. So, the overall length of marks
is 26 ∗ 27/2. Although for arbitrary long strings there will not exist such an
example, because the size of the alphabet is considered constant, this example
gives notion on how much redundancy can the marks contain.

Example 1.3. Tree for (a)n(b)n(a)n−1bn−1...a2b2ab.

We will modify algorithm in a few touches, taking the following observations:

1sttouch If we replace the labels with indexes (the beginning and the end of the
substring in s), we’ll have two numbers, corresponding to each edge, and
as the number of edges is less then 2∗m−1, linear space is spent. This also
simplifies maintaining the length of the edge (the detail, which we need),
making it more consequent. After mentioning that, we can immediately
forget that we have not symbols, but numbers, because working with them
is the same.

2ndtouch If xαβ appeared in the tree, then definitely αβ appeared also. Then when
we are to apply the third rule, we can complete with the phase. So a
phase is a consequency of extensions, which use the first (prolonging a
mark) and the second (branching off) rules.

1.3. SUFFIX ARRAYS 15

3rdtouch A leaf cannot become an inner vertex, because the three ’rules’ algorithm
uses do not transform leaves anyhow.

During the phase, we add the same symbol to edge marks. In terms of
indices, we increment by one ending indices, setting them to i on the phase
i.

We will split or do nothing only with the suffixes, not processed in the
previous phase (those, to which we applied the do nothing rule).

If in the previous phase we ended in extension j, in the beginning of phase
we already know that all we have to do with the first j suffixes is to
increment by one their last end. That s why it s efficient to write on such
edges the mark of infinity, in the phase i implying infinity is i, and to
replace them only after the tree is built. This means, that we build the
tree ’in one path’, moving only ’forward’.

The last observation yealds the

Theorem 1.2. Ukkonen s algorithm terminates in O(n).

Difficulties

We saw that suffix trees can make string processing much simpler. At the same
time, this is a complicated structure, which is sometimes difficult to implement.
The reasons are

1. No “locality” – bad for paging

2. Dependency on the length of the alphabet (Σ): the ’constant’ for choosing
the right branch gets bigger with grouth of |Σ|.

3. Number of “children” ranges for different vertices – no general ways of
representation: the vertices near the root have many children (almost
|Σ|), and for them arrays provide good representation; the vertices near
leaves have almost no children, arrays would be too rarefied, and for these
vertices linked lists are preferred; and for ’middle’ vertices balanced trees
and hashing are better (linked lists would increase time for search, in case
|Σ| is large).

Due to these reasons, in a number of applications a simpler, although a bit less
convenient for algorithms, structure is preferred.

1.3 Suffix arrays

1.3.1 The very first algorithm

Definition 1.4. Suffix array for a string s is an array, containing the suffixes
of s in lexicographic order.

The idea to alphabetically order the suffixes belongs to Udi Manber and Gene
Myers (1993, “Suffix Arrays: a New Method For On-Line String Searches”).
They proposed an algorithm of direct constructing the array (i.e. construction,
not based on firstly built suffix tree) in O(n∗logn) time. This algorithm not only

16 CHAPTER 1. DATA STRUCTURES FOR PATTERN MATCHING

builds the array, but on the way gathers some additional information (useful for
algorithms). In their article, Manber and Myers also presented an algorithm of
search, using this information, for a pattern P in O(|P |+ logn) time.
The clear advantage of suffix arrays in comparison with suffix trees is that
they are much less complicated structure. So, they were preferred in several
fields even though there were no known linear time algorithms for direct suffix
array construction. Such algorithms (in amount of three, simultaniously and
independently!) appeared in 2003, and we will touch upon one of them.

Note. Search time on suffix arrays (O(|P | + logn)) seems to be great loss in
comparison with O(|P |) for suffix trees. But in practice, these values (O(|P |)
and O(logn)) are usually comparable, and search time does not decrease dra-
matically.

As we mentioned, suffix array can be built (in linear time) from a corresponding
suffix tree. This approach has obvious disadvantages. Here is an idea of an
algorithm, based on different approach.

Algorithm. As with the trees, we build the array inductively, greatly using it’s
structure. Initially, we have an array with unordered suffixes. Beginning with
sorting the suffixes by the first symbol (which is linear in the string’s length -
radix sort), every phase we twice the number the suffixes are sorted on.
After the phase H, the suffixes are organized into buckets, holding suffixes with
the same H first symbols.

If A(i) is the suffix in the first bucket, A(i-H) should be first in its 2H-bucket.
We can move it to the beginning of its 2H-bucket, and mark this fact. For every
bucket, we need to know the number of suffixes in this bucket that have already
beer moved and placed in 2H-order. The algorithm basically scans the suffixes
as they appear in the H-order and for each A(i) it moves A(i-H) (if it exists) to
the next available place in its bucket.
The number of phases is logarithmical, so the overall running time is O(n∗logn).
The implementation is quite interesting, see [MM93].

1.3.2 Skew algorithm

In 2003, independently and in parallel, three different direct linear time suffix
array construction algorithms were introduced (by Kim; by Ko and Aluru; and
the one we are to consider - ’Skew’ algorithm by Juha Karkkainen and Peter
Sanders.)
Before getting to the idea of the skew algorithm, we need to refer to some
background, and thus to give another glance at the history of suffix trees devel-
opment. Together with the line of algorithms of Weigner, McCreight, Ukkonen,
in which the suffix tree is built inductively, with use in some way of the tight re-
lations between suffixes which, provided with insight into these relations, make
it possible to organize induction very efficiently - together with this line, there
existed another line, introduced by Martin Farach. Farach’s suffix tree con-
struction was based on quite different idea: construct separate trees for suffixes

1.3. SUFFIX ARRAYS 17

starting at odd positions (recursively) and for the remaining suffixes (using the
results of the first step). Merge the two suffix trees into one. Merging, being
a difficult procedure, relies on structural properties of suffix trees that are not
available in suffix arrays. (Worth mentioning that Farach’s approach has an
important advantage of not being dependent on the alphabet size.) Kim (the
author of another linear algorithm) managed to perform similar merging with
suffix arrays, but the procedure is still very complicated.
The skew algorithm has a similar structure:

1. Construct the suffix array of the suffixes starting at positions imod3 6= 0.
This is done by reduction to the suffix array construction of a string of
two thirds the length, which is solved recursively.

2. Construct the suffix array of the remaining suffixes using the result of the
first step

3. Merge the two suffix arrays into one.

The use of two thirds instead of half of the suffixes in the first step makes the last
step indeed easy: a simple comparison-based merging is sufficient. For example,
to compare suffixes strating at i and j with imod3 = 0 and jmod3 = 1, we
first compare the initial characters, and if they are the same, we compare the
suffixes starting at i+ 1 and j + 1 whose relative order is already known from
the first step (the situation here is quite similar to the situation in the algorithm
in previous section, see picture).
The figure 3 gives an example of algorithm. In [KS03], together with useful
ideas and theoretical observations, there is a (short and easy understandable)
implementation in C++.

Theorem 1.3. The skew algorithm can be implemented to run in time O(n).

Proof. The second step is easy, due to the idea, same with the one for step 3.
Again: the suffixes Si with imod3 = 0 are sorted by sorting the pairs (s[i), Si+1),
where s is the initial string. So, it’s not difficult to see that the second and the
third steps require linear time, and the execution time obeys the reccurence
T (n) = O(n) + T (2n/3), T (n) = O(1) for n < 3. This reccurence has the
solution T (n) = O(n).

Note. In the previous section, we mentioned that generally suffix array should
be built together with collecting some additional information (an array of longest
common prefixes of suffixes that are adjacent in the suffix array), which makes
it much more valuable for algorithms. Referring to [KS03] for details, we will
just mention that this information can be gathered in the course of the skew

algorithm as well.

18 CHAPTER 1. DATA STRUCTURES FOR PATTERN MATCHING

Figure 1.3: Skew algorithm, applied to string ’mississippi’.

Chapter 2

Sublinear Approximate
String Matching
Robert West

The present paper deals with the subject of approximate string
matching and demonstrates how Chang and Lawler [CL94] conceived
a new sublinear time algorithm out of ideas that had previously been
known.
The problem is to find all locations in a text of length n over a
b-letter alphabet where a pattern of length m occurs with up to k
differences (substitutions, insertions, deletions).
The algorithm will run in O(n

m
k logbm) time when the text is ran-

dom and k is bounded by the threshold m/(logbm+O(1)). In par-
ticular, when k = o(m/ logbm) the expected running time is o(n).

2.1 Introduction

I never have found the perfect quote. At best I have been able to
find a string of quotations which merely circle the ineffible idea I
seek to express.

Caldwell O’Keefe

2.1.1 What?

In order to be able to explain why and how we will solve a problem, we are
bound to exactly define what the problem is.

Definition 2.1. Given a text string T of length n and a pattern string P of
length m over a b-letter alphabet, the k-differences approximate string matching

problem asks for all locations in T where P occurs with at most k differences
(substitutions, insertions, deletions).

The following examply will clarify the matter:

19

20 CHAPTER 2. SUBLINEAR APPROXIMATE STRING MATCHING

Example TORTEL LINI

YELTSIN

* **

“YELTSIN” matches in “TORTELLINI” with three differences: The ‘Y’ in
“YELTSIN” is replaced by a ‘T’, the ‘T’ in “YELTSIN” is deleted and the ‘S’
in “YELTSIN” is replaced by an ‘L’.

2.1.2 Why?

Approximate string matching as a generalisation of exact string matching has
been made necessary due to one major reason:
Genetics is the science that has, in the last years, conjured up a set of new
challenges in the field of string processing. (e.g. the search for a string like
“GCACTT...” in a huge gene database)
Sequencing techniques, however, are not perfect: The experimental error is up
to 5–10%.
Moreover, gene mutation (leading to polymorphism; cf. Darwin’s ideas) is a
condicio sine qua non, it is the mother of evolution. Thus matching a piece of
DNA against a database of many individuals must allow a small but significant
error.

2.1.3 How?

We will first gather the ingredients (suffix trees, matching statistics, lowest
common ancestor retrieval, edit distance) and then merge the ingredients to
form the algorithm: We will develop the linear expected time algorithm (LET)
in detail and will then obtain the sublinear expected time algorithm (SET) after
some modifications.
We will mainly stick to the paper of Chang and Lawler [CL94]; since it is very
concise I added material from further sources where it seemed necessary for
reasons of understanding.

2.2 The Auxiliary Tools

Hunger, work and sweat are the best spices.

Icelandic proverb

– Not in our case! Our spices are suffix trees, matching statistics, lowest common
ancestor retrieval and edit distance. (An apt and detailed introduction to all of
these concepts can be found in [Gus97].)

2.2.1 Suffix Trees

Suffix trees may be called the data structure for all sorts of string matching.
Thus it takes small wonder that they will extensively be used in our case, too.
We will denote the suffix tree of a string P [1..m]$ ($ is the terminal symbol that
appears nowhere but at the last position) as SP .
A string α is called a branching word (of P$) iff there are different letters x and

2.2. THE AUXILIARY TOOLS 21

y such that both αx and αy are substrings of P$.
Quite obviously, the following correlations hold:

root ←→ ε (empty string)

{internal nodes} ←→ {branching words}

{leaves} ←→ {suffixes}

Next we define floor(α) to be the longest prefix of α that is a branching word
and ceil(α) to be the shortest extension of α that is a branching word or a suffix
of P$. Note that α is a branching word iff floor(α) = ceil(α) = α.
To make matters simpler, we introduce the ‘inverted string’: Let β−1α be the
string α without its prefix β; of course this only makes sense, if β really is a
prefix of α.
The nodes of the tree will be labelled with the correlating branching words or
suffixes respectively, while an edge (β, α) will be labelled with the triple (x, l, r)
such that P$[l] = x and β−1α = P$[l..r].
The following are intuitionally clear: son(β, x) := α; len(β, x) := r − l + 1.
Furthermore, let first(β, x) := l (the position of the first letter in P$, not the
letter itself, which is already known to be x).
At last, let shift(α) be α without its first letter (if α 6= ε); so applying the shift
function means following a suffix link (cf. [Ukk95, Gus97]).

2.2.2 Matching Statistics

The next crucial data structure to be used is matching statistics. It will store
information about the occurrence of a pattern in a text; this is put more precisely
by the following

Definition 2.2. The matching statistics of text T [1..n] with respect to pattern
P [1..m] is an integer vector MT,P together with a vector M

′

T,P of pointers to
the nodes of SP , where MT,P [i] = l if l is the length of the longest substring
of P$ (anywhere in P$) matching exactly a prefix of T [i..n] and where M

′

T,P [i]
points to ceil(T [i..i+ l− 1]).
More shortly we will write M and M

′.

Our goal is to find an O(n + m) time algorithm for computing the matching
statistics of T and P in a single left-to-right scan of T using just SP . (We will
follow [CL94].)
Brief description of the algorithm: The longest match starting at position 1 in
T is found by walking down the tree, matching one letter a time. Subsequent
longest matches are found by following suffix links and carefully going down
the tree. (cf. Ukkonen’s construction of the suffix tree: “skip-and-count trick”,
[Ukk95, Gus97])

What follows now is some notes that shall serve to clarify the pseudo-code given
later:

• i, j, k are indices into T :

– The i-th iteration computes M[i] and M
′[i].

– Position k of T has just been scanned.

22 CHAPTER 2. SUBLINEAR APPROXIMATE STRING MATCHING

– j is some position between i and k.

• Invariants:

– At all times true:
(1) T [i..k − 1] is a substring of P ; T [i..j − 1] is a branching word of
P .

– After step 3.1 the following becomes true:
(2) T [i..j − 1] = floor(T [i..k − 1]) and corresponds to node α.

– After step 3.2 the following becomes true as well:
(3) T [i..k] is not a word.

• If j < k after step 3.1, then T [i..k − 1] is not a branching word (2), so
neither is T [i− 1..k − 1].
So, as substrings of P they must have the same single-letter extension.
We know from iteration i− 1 that T [i− 1..k − 1] is a substring of P (1)
but T [i− 1..k] is not (3), so T [k] cannot be this letter. Hence the match
cannot be extended.

• Together invariants (1) and (3) imply M[i] = k − i.

• i, j, k never decrease and are bounded by n: i + j + k ≤ 3n. For every
constant amount of work in step 3, at least one of i, j, k is increased. The
running time is therefore O(n) for step 3, and O(m) for steps 1 and 2
(use e.g. Ukkonen’s [Ukk95, Gus97] or McCreight’s [Gus97] algorithm to
construct the suffix tree), yielding together the desired O(n+m).

After the above explanations the following code, which computes the matching
statistics of T with respect to P , should be more easily understandable:

2.2. THE AUXILIARY TOOLS 23

1 construct SP in O(m) time
2 α := root; j := k := 1
3 for i := 1 to n do
3.1 while (j < k) ∧ (j + len(α, T [j]) ≤ k) do // “skip and count”

α := son(α, T [j]);
j := j + len(α, T [j])

elihw
3.2 if j = k then // extend the match

while son(α, T [j]) exists ∧ T [k] = P$[first(α, T [j]) + k − j] do
k := k + 1
if k = j + len(α, T [j]) then

α := son(α, T [j]);
j := k fi

elihw
fi

3.3 M[i] := k − i
if j = k then M

′[i] := α
else M

′[i] := son(α, T [j]) fi
3.4 if (α is root) ∧ (j = k) then

j := j + 1;
k := k + 1 fi

if (α is root) ∧ (j < k) then
j := j + 1 fi

if (α is not root) then
α := shift(α) fi

rof

2.2.3 Lowest Common Ancestor

Having introduced the notion of suffix trees, we will at some points while deriving the
main algorithm be interested in the node that is an ancestor to two given nodes of the
tree and that is ‘minimal’ with that quality, meaning it is the node furthest from the
root. More formally:

Definition 2.3. For nodes u, v of a rooted tree T, lca(u, v) is the node furthest from
the root that is an ancestor to both u and v.

Our goal is a constant time LCA retrieval after some preprocessing; it is achieved by
reducing the LCA problem to the range minimum query (RMQ) problem as proposed
in [BFC00]. RMQ operates on arrays and is defined as follows.

Definition 2.4. For an array A and indices i and j, rmqA(i, j) is the index of the
smallest element in the subarray A[i..j].

For ease in notation we will say that, if an algorithm has preprocessing time p(n) and
query time q(n), it has complexity 〈p(n), q(n)〉.
The following main lemma states how closely the complexities of RMQ and LCA are
connected.

Lemma 2.1. If there is a 〈p(n), q(n)〉-time solution for RMQ on a length n array,
then there is a 〈O(n) + p(2n− 1),O(1) + q(2n − 1)〉-time solution for LCA in a tree
with n nodes.

The O(n) term will come from the time needed to create the soon-to-be-presented
arrays. The O(1) term will come from the time needed to convert the RMQ answer
on one of these arrays to the LCA answer in the tree.

24 CHAPTER 2. SUBLINEAR APPROXIMATE STRING MATCHING

Proof. The LCA of nodes u and v is the shallowest (i.e. closest to the root) node
between the visits to u and v encountered during a depth first search (DFS) traversal
of T (n nodes; labels: 1, ..., n).

Therefore, the reduction proceeds as follows:

1. Let array D[1..2n − 1] store the nodes visited in a DFS of T. D[i] is the label
on the i-th node visited in the DFS.

2. Let the level of a node be its distance from the root. Compute the level array
L[1..2n − 1], where L[i] is the level of node D[i].

3. Let the representative of a node be the index of its first occurrence in the DFS.
Compute the representative array R[1..n], where R[w] = min{j | D[j] = w}.

All of this is feasible during a single DFS; thus the running time is O(n).
Now the LCA may be computed as follows (suppose u is visited before v): The nodes
between the first visits to u and v are stored in D[R[u]..R[v]]. The shallowest node in
this subtour is found at index rmqL(R[u],R[v]). The node at this position and thus
the output of lca(u, v) is D[rmqL(R[u],R[v])].
The time complexity is as claimed in the lemma: Just L (size 2n− 1) must be propro-
cessed for RMQ. So the total preprocessing time is O(n) + p(2n − 1). For the query
one RMQ in L and three constant time array lookups are needed. In total we get
O(1) + q(2n − 1) query time. 2

What about RMQ’s complexity? – After procomputing (at least a crucial part of) all
possible queries, lookup time is q(n) = O(1).
Preprocessing time p(n) is O(n3) by a brute force algorithm: For all possible index
pairs, search the minimum.
It is O(n2) if we fill the table by dynamic programming. This is, however, still naive.
A far better algorithm runs in O(n log n) time: Precompute only queries for blocks of
a power-of-two length; remaining answers may then be inferred in constant time at
the moment of query.
Finally, a really clever O(n) time solution was proposed by Bender and Colton: It
makes use of the fact that adjacent elements in L differ by exactly ±1; so only solutions
for the few generic ±1-patterns are precomputed. It can be shown that there are only
O(
√
n) such patterns and that preprocessing is then O(

√
n(log n)2) = O(n).

For details regarding the two latter cases, I refer to [BFC00]; dwelling upon them
would prolong this report in an undue way.

2.2.4 Edit Distance

We will now introduce another data structure called ‘edit distance’, which will be
needed in the main algorithm:

Definition 2.5. The edit distance (or Levenshtein distance) between two strings S1

and S2 is the minimum number of edit operations (insertions, deletions, substitutions)
needed to transform S1 into S2.

Such a transformation may be coded in an edit transcript, i.e. a string over the alphabet
{I,D, S,M}, meaning “insertion”, “deletion”, “substitution” or “match” respectively.
The following example will clarify this (S1 is to be transformed to S2). Note there
may be more than one transformation – even more than one optimal transformation.

Example SIMDMDMMI

v intner = S1

wri t ers = S2

2.2. THE AUXILIARY TOOLS 25

In the now to be presented ‘naive’ dynamic programming solution we need not use the
auxiliary tools already gathered (suffix trees, matching statistics, LCA), but later on
– in the Landau–Vishkin algorithm – we will do so to obtain some lower complexity.

Lemma 2.2. The edit distance is computable using dynamic programming.

Proof. What we want to do is to build the table E where E[i, j] denotes the edit
distance between S1[1..i] and S2[1..j]. Then E[n1, n2] will be the edit distance between
the complete strings S1[1..n1] and S2[1..n2].
The base conditions are: E[i, 0] = i (all deletions); E[0, j] = j (all insertions)
The recurrence scheme is:

E[i, j] = min{E[i, j − 1] + 1,E[i− 1, j] + 1,E[i− 1, j − 1] + Iij},

where Iij = 0, if S1[i] = S2[j], and Iij = 1 otherwise.

The last letter of an optimal transcript is one of {I,D, S,M}. The recurrence selects
the minimum of these possibilities. For example, if the last letter of an optimal tran-
script is I then S2[n2] is appended to the end of S1, and what remains to be done is to
transform S1 to S2[1..n2 − 1]. The edit distance between these two strings is already
known, and the first of the three possibilities is chosen. 2

Here is some part of the table for the example given above (The arrows point to
the cells from which a particular cell may be computed and thus represent one of
{I,D, S,M}). That there is often more than one arrow makes clear once more that
there may be more than one optimal way to transform one string into another. Each
trace that follows a sequence of arrows from cell (n1, n2) to cell (1, 1) represents an
optimal transcript.

E[i, j] S2 w r i t e r s
S1 0 1 2 3 4 5 6 7

0 0 ← 1 ← 2 ← 3 ← 4 ← 5 ← 6 ← 7
v 1 ↑ 1 ↖ 1 ↖← 2 ↖←3 ↖←4 ↖←5 ↖←6 ↖←7
i 2 ↑ 2 ↖←2 ↖ 2 ↖ 2 *
n 3 ↑ 3
t 4 ↑ 4
n 5 ↑ 5
e 6 ↑ 6
r 7 ↑ 7

The complexity is O(|S1| · |S2|).
Also note that rows, columns and diagonals are non-decreasing and differ by at most
one.

We need, however, some slightly different thing: We need the minimum number of
operations to transform P [1..m] so that it occurs in T [1..n], not that it actually is T ;
i.e. we want starting spaces to be “free”.
Thus we need a table D, where

D[i, j] := min
1≤l≤j

{edit distance between P [1..i] and T [l..j]}

We achieve this by simply changing the base conditions: D[i, 0] = i (as before: all
deletions); D[0, j] = 0 (ε ends anywhere).
There is a match if row m is reached and if the value there is ≤ k.

It is possible to reduce the complexity from O(mn) to O(kn); the method is called
the Landau–Vishkin algorithm (LV):

26 CHAPTER 2. SUBLINEAR APPROXIMATE STRING MATCHING

Call cell D[i, j] an entry of diagonal j − i (range: −m, ..., n).
LV makes use of one fact: When computing D, we may not omit whole rows or whole
columns, but we may in fact omit whole diagonals. That is why we will not compute
D but, column by column, the (k+ 1)× (n+ 1) “meta table” L where L[x, y] (with x
ranging from 0 to k and y from 0 to n) is the row number of the last (i.e. deepest) x
along diagonal y − x.
−k ≤ y − x ≤ n, so all relevant diagonals and thus solutions are represented because
D[k + 1, 0] = k + 1 > k and diagonals are non-decreasing.
There is a solution if row m is reached in D, i.e. if L[x, y] = m; then there is a match
ending at position m+ y − x with x differences.

First, define L[x,−1] = L[x,−2] := −∞; this is sensible because every cell of diagonal
−1− x is at least D[x+ 1, 0] = x+ 1 > x.
Now fill row 0: L[0, y] = jump(1, y+1), where jump(i, j) is the longest common prefix
of P [i..m] and T [j..n], i.e.

jump(i, j) := min{M[j], length of word lca(M′[j], leaf P$[i..m])}.

Consider some part of L:
y→

x α β γ
↓ L[x, y]

α = L[x− 1, y− 2], β = L[x− 1, y− 1] and γ = L[x− 1, y] denote respectively the row
numbers of the last x− 1 on diagonals y− x− 1, y− x and y− x+ 1. Along diagonal
y−x the cells at rows α, β+1 and γ+1 are at most x (due to the non-decreasingness
and difference by at most one). The cell in row β + 1 must be exactly x. So it follows
from the non-decreasingness of diagonals that the deepest of these three cells (in row
t := max{α, β + 1, γ + 1}) must have value x, too. To find the row where the last
x occurs on diagonal y − x, we go down this diagonal as long as the value does not
increase to x+ 1. Thus cell (x, y) may be computed as follows:

L[x, y] = t+ jump(t+ 1, t+ 1 + y − x)

2.3 The Algorithm

Virtus in usu sui tota posita est.

Marcus Tullius Cicero, De re publica

– “The value of virtue is entirely in its use.” So let us apply all the “virtual” assets
we have gathered up to now and make use of them in the core algorithm.

2.3.1 Linear Expected Time

The algorithm me develop first will run in O(n) time when the following two conditions
hold:

1. T [1..n] is a uniformly random string over a b-letter alphabet.

2. The number of differences allowed in a match is

k < k∗ =
m

logb m+ c1
− c2.

(the constants ci are to be specified later; m is the pattern length)

2.3. THE ALGORITHM 27

Pattern P need not be random.

The algorithm is named after those who invented it – Chang and Lawler (CL) – and
is given in pseudo-code below:

s1 := 1; j := 1
do

sj+1 := sj + M[sj] + 1; // compute the “start positions”
j := j + 1

until sj > n
jmax := j − 1
for j := 1 to jmax do

if (j + k + 2 ≤ jmax) ∧ (sj+k+2 − sj ≤ m− k) then
apply LV to T [sj ..sj+k+2 − 1] fi // “work at sj”

rof

It is not presently obvious that the algorithm is correct. So we will have a closer look
at it:

If T [p..p + d − 1] matches P and sj ≤ p ≤ sj+1, then this string can be written in
the form ζ1x1ζ2x2...ζk+1xk+1, where each xl is a letter or empty, and each ζl is a
substring of P . As may be shown by induction, for every 0 ≤ l ≤ k + 1, sj+l+1 ≥
p + length(ζ1x1...ζlxl). So in particular sj+k+2 ≥ p + d, which implies sj+k+2 − sj ≥
d ≥ m − k. So CL will perform work at start position sj and thereby detect there is
a match ending at position p+ d− 1.

If we can show the probability to perform work at s1 is small, this will be true for all
sj ’s because they are all stochastically independent and equally distributed (because
any knowledge of all the letters before sj is of no use when “guessing” sj+1).
Since sk∗+3− s1 ≥ sk+3− s1 and m−k ≥ m−k∗, the event sk+3− s1 ≥ m−k implies
the event sk∗+3 − s1 ≥ m− k∗.
So Pr[sk∗+3 − s1 ≥ m − k∗] ≥ Pr[sk+3 − s1 ≥ m − k] and it suffices to prove the
following lemma.

Lemma 2.3. For suitably chosen constants c1 and c2, and k∗ = m
logb m+c1

− c2,

Pr[sk∗+3 − s1 ≥ m− k∗] < 1/m3.

Proof. For the sake of easiness, let us assume (i) b = 2 (b > 2 gives slightly smaller
ci’s) and (ii) k∗ and logm are integers (logm := log2m).

Let Xj be the random variable sj+1 − sj .

Note that sk∗+3 − s1 = X1 + ... +Xk∗+2 (telescope sum).

There are m2d different strings of length logm+ d, but at most m such substrings of
P . Together with the fact that X1 = M[1] + 1, we have

Pr[X1 = logm+ d+ 1] < 2−d for all integer d ≥ 0 (2.1)

Note that all theXj are stochastically independent and equally distributed (you do not
gain any knowledge if you know how big the gap between the previous start positions
was). So E[Xj] = E[X1] for all j. We will now show that E[Xj] < logm+ 3:

28 CHAPTER 2. SUBLINEAR APPROXIMATE STRING MATCHING

E[Xj] = 1 + E[M[1]] = 1 + logm+ E[M[1] − logm]

= 1 + logm+
∞X

d=1

dPr[M[1] − logm = d]

= 1 + logm+
∞X

d=1

dPr[X1 = logm+ d+ 1]

< 1 + logm+
∞X

d=1

d

„
1

2

«d

= 1 + logm+
1

2
/

„

1− 1

2

«2

= logm+ 3

Now let Yi := Xi − m−k∗

k∗+2
and

apply Markov’s inequality: Pr[X ≥ h] ≤ E[X]/h, for all h > 0 (t > 0):

Pr[X1 + ... +Xk∗+2 ≥ m− k∗] = Pr[Y1 + ... + Yk∗+2 ≥ 0]

= Pr[et(Y1+...+Yk∗+2) ≥ et·0]

≤ E[et(Y1+...+Yk∗+2)]/1

= E[etY1 · ... · etYk∗+2]

= E[etY1] · ... ·E[etYk∗+2]

= E[etY1]k
∗+2

Note that we used the independence and equal distribution of the variables Yj , which
follows from the independence and equal distribution of the variables Xj .
Inequality (2.1): Pr[X1 = logm+ d+ 1] < 2−d, is equivalent to

Pr[Y1 = logm+ d+ 1 − m− k∗
k∗ + 2

] < 2−d for all integer d ≥ 0

So, the theorem of total expectation implies, for all t > 0 (α := logm+ 1− m−k∗

k∗+2
),

E[etY1] = E[etY1 |Y1 ≤ α] · Pr[Y1 ≤ α]
| {z }

≤1

+

+

∞X

d=1

E[etY1 |Y1 = α+ d] · Pr[Y1 = α+ d]

≤ etα +
∞X

d=1

et(α+d) · Pr[Y1 = α+ d]

<
∞X

d=0

et(α+d) · 2−d

So we have up to now:

Pr[sk∗+3 − s1 ≥ m− k∗] ≤ E[etY1]k
∗+2

< (

∞X

d=0

et(α+d) · 2−d)k∗+2,

and choosing t = loge 2

2
and doing some algebra will yield:

2.3. THE ALGORITHM 29

= (
√

2
α

∞X

d=0

√
2
−d

)k∗+2

≤ (
√

2
α+3.6

)k∗+2

≤
√

2
(k∗+2) log m−(m−k∗)+4.6(k∗+2)

<
√

2
(5.6−c1)(k∗+2)−(c2−2)(c1+log m)

which is less than 1/m3 if c1 = 5.6 and c2 = 8.
So the probability to perform work at position s1 and thus at each position is less
than 1/m3. Thus LV is applied with a probability of less than 1/m3. The text it is
applied to is supposed to have length (k+ 2)E[X1] < (k+ 2)(logm+ 3) = O(k logm),
and LV has complexity O(kl), if l is the length of the input string. Also recall that
k = O(m

log m
). So the average expected work for any start position sj is

m−3O(k2 logm) = m−3O(
m2

(logm)2
logm)

= O(
1

m logm
)

= O(λn.λm.1)

Hence the total expected work is O(n). 2

2.3.2 Sublinear Expected Time

Now an algorithm is derived from LET that is sublinear in n (when k < k∗/2 − 3; k∗

as before).

The trick is to partition T into regions of length m−k
2

. Then any substring of T that
matches P must contain the whole of at least one region:

Now, starting from the left end of each region R, compute k + 1 “maximum jumps”
(using M, as in LV), say ending at position p. If p is within R, there can be no match
containing the whole of R. If p is beyond R, apply LV to a stretch of text beginning
m+3k

2
letters to the left of R and ending at p.

A variation of the proof for LET yields that

Pr[p is beyond R] < 1/m3.

So, similarly to the analysis of LET, the total expected work is:

m−3 2n

m− k
| {z }

] regions

[(k + 1)(logm+O(1)) +O(m)]
| {z }

exp. work at region examined

= ... = O(n/m3)

= o(n)

2

30 CHAPTER 2. SUBLINEAR APPROXIMATE STRING MATCHING

To understand what an asset the algorithm is, consider the following facts:
A combination of LET (for k ≥ k∗/2 − 3) and SET (for k < k∗/2 − 3) runs in
O(n

m
k logm) expected time. In a 16-letter alphabet, k∗ may be up to 25% of m, in a

64-letter alphabet even 35%.

2.4 Conclusion

Gut gekaut ist halb verdaut.

German proverb

The problem we have dwelt upon over the last few pages demonstrates in a beautiful
manner how important a thorough preprocessing is in the business of algorithm design:
Having gathered all the ingredients (data structures and auxiliary algorithms), merging
them into the core algorithm was (although not obvious) quite short a task. – But that
has been common knowledge for centuries: “A good chewing is half the digestion,” as
goes the translation of the above saying.

Chapter 3

Approximate string
indexing: comments to
slideshow
Alexander Vahitov

Using simple mathematical arguments the matching probabilities in
the suffix tree are bound and by a clever division of the search pattern
sub-linear time is achieved.

The report is based on the article of G. Navarro and R. Baeza-Yates ’A
Hybrid Indexing Method For Approximate String Matching’

3.1 Introduction

First Section 3.2 is about the task of the algorithm with some simple examples. Next
Section 3.3 will tell you some basic ideas and algortihms used in the main resulting
algorithm of the report, which is presented in Section 3.4. Then comes Section 3.5
where you will find some ideas to prove the average-case complexity of the algorithm
(full complexity analysis can be found in the issue of G. Navarro and R. Baeza-Yates).
The last part of my report is Section 3.6 with conclusions and future directions of
scientific work in this field.

3.2 Our Task

We have a long text T and a short pattern (P). Our task is to find substrings from T
which match our pattern approximately. Approximate matching means that we can
accept some errors during the searching process (you can imagine that these are trans-
portation errors). These errors are differences between the pattern and the founded
text piece (ocuurence). We define 3 kinds of differences between strings: insertion,
replacement and deletion.

If we have a pattern abc and a text adbc, then there are some obvious examples of
differences between this strings :
adc = a+ d+ b+ c - insertion

abd = a+ b+ c→ d - replacement
ab = a+ b+ c→ ∅ - deletion

31

32 CHAPTER 3. APPROXIMATE STRING INDEXING

We call the minimum number of such changes needed to transform one string to
another as edit distance (abbreviated ed) between the strings. For example, all the
mentioned above strings have the edit distance equal to 1 (because we needed for
transformation only 1 change).
If S can be transformed to S′ with x changes, then S′ can be transformed to S also
with x changes (we remove deletions with insertions, and vice versa).
The resulting algorithm, which will be presented later, has to solve the approximate
searching problem. There are some different approaches to this problem, and at first
I will tell you some of them. The first variant is to build a suffix trie for the text and
search in O(n) time for the occurences. We can descend by the branches of the trie
till the level where we can understand that this branch does not contain an occurence.
If we use suffix array structure, we will free much memory (tis problem arises because
suffix trees have very big memory requirements). This method of search is called
Depth-First Search. We can generate a set of viable prefixes (possible prefixes for the
pattern occurence) and search for them in our trie.
The second way is to build an on-line filtering algorithm. It can use some sort of index
(for example, many algorithms are based on storing text q-grams - pieces of the text
with length equal to some number q).But it is obvious that the number of errors in
such algorithms is strongly bounded, nd it can be incompatible with many practical
situations.
There is another outstanding algorithm by Myers based on the mixture of the two
approaches. It uses q-grams. It divides a pattern in such pieces that their length is
less than q− k (where k is error-level, error number divided by pattern length). Then
it generates for each text piece all the strings that can appear from the pattern when
some errors are done. All this strings are searched then in the q-gram set, and the
last step is merging founded piece occurences and searching for the occurence of the
whole pattern.
Our algorithm at first will divide our pattern into some pieces. Then it will use
approximate search to find the occurences of this pieces in the text, and then verify
whether the occurence of some pattern piece can be continued to the occurence of the
whole pattern.

3.3 Basic Ideas and Algoritms

3.3.1 Lemma: dividing the pattern

Dividing the pattern is useful for our algorithm. If we have two strings A and B,their
edit distance ed ≤ k and we divide A intoj substrings, then at least one of the sub-
strings appears in B with at most bk/jc errors. This is obvious because we have to
change A k times to transform it to j. Each change is applied to one of the substrings.
The average number of changes per substring is k

j
. So it is easy to see that there is at

least one of Ai that has less than or equal to k
j

changes.

Example:
ed(′he likes′,′ they like′) = 3 = k;
A1 =′ he ′, A2 =′ likes′ ⇒ j = 2;

ed(′he ′,′ they ′) = 2; ed(′likes′,′ like′) = 1 = b k
j
c.

3.3.2 Computing edit distance

Computing edit distance is also useful for approximate string matching. There is a
classical dynamic programming algorithm solving this problem. We have 2 strings: x
and y with characters xi and yj . Let’s consider Cij as edit distance between x1..xi

3.3. BASIC IDEAS AND ALGORITMS 33

and y1..yj . Let’s fill the matrix of Cij with such algorithm: Ci,0 = i because you
need i insertions to the empty string to change it to x1..xi. And also C0,j = j by
the same cause. Cij = Ci−1,j−1 if xi = yj . Another case is when xi 6= yj . You
need one deletion of the character yj from the string y1...yj to make it matching
x1...xi with Ci,j−1 errors. Also you may delete xi to make Cij equal to Ci−1,j+1.
And you can replace xi with yj to make Cij equal to Ci−1,j−1. So if xi 6= yj then
ed(x1..xi, y1..yj) = 1 +min{Ci−1,j ;Ci,j−1;Ci−1,j−1}.
An example shows how does the algorithm work with ′survey′ and ′surgery′ strings.
The cases when xi = yj are marked with green, and other cases - with red. There are
arrows from the minimal matrix element (left, upper or diagonal) which summed with
1 gives us Cij to make it matching x1..xi with Ci,j−1 errors.

x = x1x2 . . . xm; y = y1y2 . . . yn;xp, yq ∈ Σ
Cij = ed(x1 . . . xi, y1 . . . yj);

(C) is a matrix filled with Cij

C0,j = j;Ci,0 = i;

Ci,j =

Ci−1,j−1 xi = yj

1 + min{Ci−1,j , Ci−1,j−1, Ci, j − 1} else;

Now let’s consider y as the text and x as the pattern. Let’s construct the algorithm
to search the substrings from the text, approximately matching the pattern. The
only different between this algorithm and previous one is that we initialize C0,j with
0 instead of j because the pattern matching process can start from every text position.

These are fullfilled matrices by the algorithm that simply computed the edit distance
and the algorithm that searched the pattern in the text.

34 CHAPTER 3. APPROXIMATE STRING INDEXING

3.3.3 NFA construction

Here is presented Nondeterministic Finite Automaton. We will use it to search for
approximate matches of pattern P in the text T . The initial state of the automaton
corresponds to 0 errors in matching process and to the first character of the pattern.
The automaton will go by pattern and text characters simultaneously. When it reaches
the last pattern character, it means that we have found an occurence. It is presented
lower in the picture as a table. In columns pattern characters are written, and each
row is used to represent errors in matching. We search for pattern occurence accepting
some errors, and transition between rows means accepting one error.
There are 4 kinds of transitions between states (we make changes with pattern and
the text is remaining the same):

• if current text and pattern characters are the same;

• if current pattern character is replaced with the text one;

• if current text character is inserted to the pattern;

• if current pattern character is deleted.

Look at the illustration of the automaton which searches the text for approximate
matching the pattern ’survey’ with at most 2 errors. The rows correspond to the
errors which are already made, and the columns correspond to the characters of the
pattern already reached by the automaton.
The transitions are:

• horizontal, if current text and pattern characters are the same;

• solid diagonal, if current pattern character is replaced with the text one;

• vertical, if current text character is inserted to the pattern;

• dashed diagonal, if current pattern character is deleted.

The automaton finish states are the right ones.

3.4. MAIN ALGORITHM 35

NFA structure

How NFA searches ’surga’ in ’surgery’

3.3.4 Depth-First Search technique

And the last is the algorithm of the depth-first search. Here we define the Uk(P)
which is a set of the strings, matching to P with at most k errors. It is possible to
search this string in the text, but the complexity of this search is quite large. We can
use a suffix tree and search in it the strings from U t

k(P). These are the neighborhood
elements which are not prefixes of other neighborhood elements.

3.4 Main algorithm

Our algorithm, searching in the suffix tree, has to start from the root, consider some
string x incrementally,determine when ed(x,P) ≤ k and determine when adding of
any character makes the ed greater than k.

In the picture you can see how the algorithm works with the input of the suffixes
from the suffix tree. It fills the matrix like in the example above and analyzes it’s ele-
ments.The algorithm increments x and updates the last column in O(m) time. When
the element in the last row (last column element) is ≤ k, the match is detected. Oth-
erwise, if all the values in the column are ≥ k, the match cannot be detected.

This is the illustration of the algorithm working in the suffix tree with 2 suffixes,
matching the pattern ′surgery′. It is shown the column of a matrix for the suffix
′surga′.

The cost of the suffix tree search is exponential in m and k, so it’s better to perform j
searches of patterns of length [m

j
] and k

j
errors (remember the lemma about dividing!).

That’s why we divide patterns. So, we divide our pattern into j pieces and search them
using the above algorithm. Then, for each match found ending at text position i we
check the text area [i −m − k..i + m + k]. But the larger j, the more text positions

36 CHAPTER 3. APPROXIMATE STRING INDEXING

need to be verified, and the optimal j will be found soon.

Now we have to adapt our NFA for searching in the suffix tree. At first, we’ll search for
matching from the beginning ot the suffix, so we don’t need initial self-loop. Second,
we don’t need initial insertions to the pattern - because if te suffix matches with such
insertions, we will find the suffix matching without these insertions. So, we remove the
down-left triangle of the automaton, under diagonal. And at last, we can start match
with k + 1 first characters of the pattern (because we removed initial insertions, only
initial deletions remain, initial replacement is the same as initial deletion).

This is the illustration to the changes of our NFA from the previous example.

3.4.1 Suffix Arrays

Here I can say something about using suffix arrays instead of suffix trees. Suffix arrays
have less space requirements, but the time complexity of the search in the case of
suffix array should be multiplied by log n. Suffix array replaces nodes with intervals
and traversing to the node is going to the interval. If there is a node and it’s children,
then the node interval contains children intervals. More information on suffix arrays
was in Olga Sergeeva’s report.

3.5 Complexity Analysis

Let’s analyse the algorithm to determine it’s complexity and the best variant of par-
titioning the pattern. Now we’ll find the average number of nodes at level l. If we are
working with random text, then the number of suffixes in level l is σl, and for small
l the number of suffixes longer than l is nearly n. In the probability model of n balls
thrown into σl urns we find that the average number of filled urnes is θ(min{σl, n}).
If l ≤ m′, at least l− k text characters must match the pattern, and if l > m′, at least
m′−k pattern characters must match the text. There is no difference, which exactly is
the length of the pattern prefix. So, we sum all the probabilities for different pattern
prefix lengths:

lX

m′=l−k

1

σl−k
Cl−k

l Cl−k
m′ +

l+kX

m′=l+1

1

σm′−k
Cl

m′−kCm′−k
m′

3.5. COMPLEXITY ANALYSIS 37

In the first sum the largest term is first one: 1
σl−k

Ck
l , and we can bound the whole

sum with (l − k) 1
σl−k

Ck
l . By Stirling’s approximation we have

Ck
l =

el
√

2πl

kk(l − k)l−k
√

2πk
p

2π(l − k)

!2 „

1 +O(
1

l
)

«

And the whole first sum is (l − k)γ(β)lO(1
l
), where

γ(β) =
1

σ1−xx2x(1− x)2(1−x)

Here you see that (l− k)γ(β)lO(1
l
) = O(γ(β)l). The first sum exponentially decreases

when γ(β) < 1, it means that:

σ >

„
1

β2β(1 − β)2(1−β)

« 1
1−β

=
1

β
2β

1−β (1 − β)2
>

e2

(1 − β)2
⇔ β < 1 − e√

σ
,

because e−1 < β
β

1−β if β ∈ [0, 1]. The second summation can be also bounded with
O(γ(β)l), and the probability of processing a given node at depth l is O(γ(β)l). In
practice, e should be replaced by c = 1.09 (founded experimentally) because we have
found only upper bound for the probability, but not the exact upper bound.

Using the formulas bounding the probability of matching, let’s consider that in levels

l ≤ L(k) =
k

1− c√
σ

= O(k)

all the nodes are visited, and in levels l > L(k) nodes are visited with probability

O(γ(k
l
)
l
). Remember that the average number of visited nodes at the level l (for small

l) is θ(min{n, σl}).
Now we will speak about searching of a single pattern in the text using our automaton
with depth-first search technique. We can define three cases of analysis of this search
process:

• L(k) ≥ logσn, n ≤ σL(k) - ’small n’, online search is preferable and no index
is needed (since the total work is n); It shows that the indexing technique does
not work for very small texts.

• m+ k < logσn, n > σm+k - ’large n’, the total search cost is

σL(k) +
σk(1 + β)2(m+k)

β2k
,

independent of n;

• L(k) < logσn ≤ m + k, ’intermediate n’, the search is sublinear of n in time if
error level β < 1− e√

σ
.

Now let’s add to our analysis the pattern partitioning mechanism. Remember that j
here is a number of pieces in which pattern is divided. After dividing, the mechanism
analised above is used. With pattern partitioning,

• First case conditions are:

k

1 − c√
σ

≥ jlogσn, n ≤ σL(k
j
),

complexity is O(n).

38 CHAPTER 3. APPROXIMATE STRING INDEXING

• Here m + k < jlogσn, n > σ
m+k
j , if β = k

l
< 1 − e√

σ
the complexity is

O(n
1−logσ

1
γ(1+β)). This is sublinear of n, we use j = m+k

logσn
. This j is sim-

ply the smallest of possible j’s in this case (with j less than m+k
logσn

we get into

the first case).

• Third case has it’s own j for the minimum of complexity, but it can get over
the bounds of this case, so in most cases we can simply use such j as in second
case, and we will get sublinear of n time complexity.

3.6 Conclusions

• The splitting technique balances between traversing too many nodes of the suffix
tree and verifying too many text positions

• The resulting index has sublinear retrieval time O(nλ), 0 < λ < 1 if the error
level is moderate.

• In future there can appear more exact algorithms to determine the correct num-
ber of pieces in which the pattern is divided and there are (and may appear in
future) some better algorithms for verifying after matching a piece of pattern.

Chapter 4

Compressed Suffix Arrays
Fabian Pache

In this work I present Compressed Suffix Arrays from A to Z, start-
ing with ordinary Suffix Arrays, covering Compressed Suffix Arrays as
described in [GV00] by Grossi and Vitter in-depth and finishing with an
outline of further improvements on Compressed Suffix Arrays developed
by K. Sadakane described in [Sad00]

4.1 Introduction

Merely having a certain text usually is not very satisfying. Before long one wants
to find the occurences of a smaller text within the larger text. This is called an
enumerative query. If we are interested only in the number of occurences it is an
counting query, while existential queries only return if there is at least one occurence
of the subtext. The terms larger text and smaller text can be interpreted very liberally.
While one of the obvious applications would be using something like this paper as
the larger text and for instance ‘Suffix Array’ as the smaller text there are other
applications. The human genome can be seen as a text, admittedly one with a rather
small alphabet, with any subsequence being a word or rather a pattern.

4.2 Suffix Arrays

The entire idea of a suffix array is to find a certain pattern P within a text T as fast
as possible, using as little additional space as possible. A suffix array SA for a text
T has as many entries as T has characters. Each entry i of the suffix array points
to the position of the i-smallest suffix of T . ‘Smallest suffix’ in this case refers to
the lexicographic ordering of all suffices of T . The order in turn is defined by the
alphabet Σ which contains all characters of T . Note that the suffix array is created
independant of the pattern P or the length of the pattern. Therefore a suffix array can
be used for multiple sequential queries using different patterns efficiently. Searching
only once for a single instance of a certain pattern can be done more efficiently using
other algorithms. Suffix arrays excel for multiple queries on a static text.

4.2.1 Algorithms

A suffix array in its basic form provides no more than the information where the
smallest suffix, second smallest suffix, third smallest suffix and so on starts. It does

39

40 CHAPTER 4. COMPRESSED SUFFIX ARRAYS

not, in itself, provide a function that given a certain pattern, returns the position of
the pattern in the text.
However such an alogrithm is quickly outlined once one remembers that the sought
pattern is a subset the text. Each subset can in turn be seen as a prefix of a suffix.
This is where the suffix array comes in. Each and every suffix is referenced exactly
once by the corresponding suffix array. The suffix array contains all suffixes in their
lexicographic order therefore all entries of the suffix array pointing to occurences of
the pattern are in an unbroken sequence. Note that the entries in the suffix array are
sorted, the suffixes in turn usually are not.
Since the occurences of P are in sequence, finding all occurences of P boils down to
finding the first and the last occurence. Everything in between matches the pattern
as well.

4.2.2 Complexity

Since the only intrinsic function of a suffix array is lookup(i), returning the i-smallest
suffix in T by table lookup, time complexity for one operation is O(1). Space con-
sumption at this point is considered O(n) for both the text and the suffix array

4.3 Compressed Suffix Arrays

Considering that every text will be stored binary in a digital environment it seems
prudent to reduce the alphabet to binary as well. This also gives the highest possible
degree of freedom for pattern seeking operations. But it introduces a problem in the
size analysis of the text and its accompanying suffix array. A text of n characters
can be seen as a bit sequence of O(m) bits where m = n log2 n. But for each bit, a
entry in the suffix array is required and each entry must be able to adress one the
O(m) suffixes. Therefore the suffix array ‘grows’ to O(m · logm) bits as logm bits are
required to uniquely address one of m entries.
Grossi and Vitter pointed out a clever way of reducing the space requirement back to
O(m) without incuring a great speed penalty.

4.3.1 Compression of the Suffix Array

The basic idea of Grossi and Vitter is a recursive divide and conquer algorithm. For
each step of the recursion, half the entries of the suffix array are retained for the next
step while the other half are stored implicitly.
For now I will only describe the compression of the suffix array itself. The observant
reader might note that additional data is required to recover the implictly stored data.
Compression of this information is not trivial and will be covered later in section 4.3.2.

Remember that each suffix of T , and therefore each index of 1, . . . , m is refered to only
once in SA, the suffix array can be interpreted as a permutation. It follows that the
initial steps are applicable to all permutations. However section 4.3.2 will show that
it is not a generic method that can be applied to all permutations.
As mentioned before, we will compress the suffix array recursively. In each step of
the recursion we remove half the entries. The original suffix array is stored at level
k = 0 and the recursion is applied often enough so that the suffix array shrinks back
to m bits. Since the size of the initial suffix array SA0 was m entries of logm bits and
the number of bits for each entry is assumed constant Grossi and Vitter reduce the

4.3. COMPRESSED SUFFIX ARRAYS 41

number of explicitly stored entries. The number of levels K required therefore is

m

2K
· logm = m

logm = 2K

⇒
K = log logm

Each step of the recursion removes the odd values and keeps the even values of SAk.
For reasons discussed in section 4.3.2 the kept entries are divided by two in each step.
As a side effect of this division the new array SAk+1 again contains odd and even
values, so the recursion can be applied again.

How to recover the elements removed from SAk? For now, do not consider the required
space, only keep in mind that we want to retain constain time access for each level.
Therefore Grossi and Vitter introduce 3 new arrays on each level:

1. A bit vector Bk where

Bk[i] =

(

1 if SAk[i] is even

0 if SAk[i] is odd

2. A integer mapping ψk that is only required to be defined for all i where Bk[i] = 0
i.e the entry will not be kept in the recursion. The mapping j = ψk[i] is used
to find the entry SAk[j] that is one less than SAk[i]. In other words

SAk[i] = SAk[ψk(i)] + 1 iff Bk[i] = 0

3. A integer vector rankk where rankk[i] contains the number of 1s in B[0..i]. Like
ψ this array is not required to be defined for all entries, but only for those where
Bk[i] = 1 i.e the entry will be kept in the recursion. This array denotes the
position of the halfed entry in the next level.

Using these arrays, it is possible to recover SAk, using SAk+1, Bk, rankk and ψk as
follows:

SAk(i) =

(

2 · SAk+1[rankk[i]] iff Bk[i] = 1

2 · SAk+1[rankk[ψk[i]]] + 1 iff Bk[i] = 0

The evaluation of rankk in the second statement is possible since Bk[ψ[i]] = 1 iff
Bk[i] = 0

Grossi and Vitter combine the above formulas by filling the unneccessary entries
(rankk[i] for Bk[i] = 0 and ψk for Bk[i] = 1) with neutral operations and are therefore
able to put both cases in a single statement. While this is mathematically very so-
phisticated it is not a representation that makes the compression and reconstruction
scheme easier to understand. Considering modern CPU architectures that have a op-
erations pipeline that can reach its full potential primarily on code that is executed
without conditions a unified statement might have advantages in the implementation.
Please refer to the original work of Grossi and Vitter [GV00] for details.

This scheme is obviously applied only until the last level of the compression is reached.
At this point the values of SA are stored explicitly. Figure 4.1 shows a suffix array for
a binary text of length 32. Therefore there are levels k = 0 . . . dlog log 32e = 0 . . . 3.
Entries of rank and psi that are not required in the decompression are left blank.

42 CHAPTER 4. COMPRESSED SUFFIX ARRAYS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

T a b b a b b a b b a b b a b a a a b a b a b b a b b b a b b a #

SA0 15 16 31 13 17 19 28 10 7 4 1 21 24 32 14 30 12 18 27 9 6 3 20 23 29 11 26 8 5 2 22 25
B0 0 1 0 0 0 0 1 1 0 1 0 0 1 1 1 1 1 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0
rank0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ψ0 2 14 15 18 23 28 30 31 7 8 10 13 16 17 21 27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SA1 8 14 5 2 12 16 7 15 6 9 3 10 13 4 1 11
B1 1 1 0 1 1 1 0 0 1 0 0 1 0 1 0 0
rank1 1 2 3 4 5 6 7 8
ψ1 9 1 6 12 14 2 4 5

1 2 3 4 5 6 7 8

SA2 4 7 1 6 8 3 5 2
B2 1 0 0 1 1 0 0 1
rank2 1 2 3 4
ψ2 5 8 1 4

1 2 3 4

SA3 2 3 4 1

Figure 4.1: Example of a compressed suffix array

4.3.2 Compression of the Auxiliary Arrays

Meanwhile we compressed the suffix array down to an acceptable size of m bits. On
the other hand we optained 3 new array of which only Bk can be stored in m bits.

rankk is larger by far, requiring m logm bits on each level. But there is no need to
store rankk explicitly as Guy Jacobson developed a method described in the thesis
paper for [Jac89] that can be based on Bk and requires only o(m) bits. The basic idea
is to store a two level dictionary that allows for constant access time in the cost model
used here.

Compression of ψk is more involved than compressing rankk. This is also the point
where the compression becomes inapplicable to ordinary permutations. For each level
k ∈ {0 . . . K − 1}we create 2k+1 list. Each of the lists is labeled with a unique binary
string of length k+ 1. For each entry ψk(i) with Bk(i) = 0 we determine the array to
store the entry in by looking up a substring t of T . t is defined as a prefix of a suffix in
T . The suffix is the one pointed to by the corresponding entry in SAk. The length of
the prefix is determined by the current level of recursion. t(i) = T ((2k ·SA[i]) . . . (2k ·
SA[i] + 2k − 1)). We append j = psik(i) to the list labeled t(i).

Continuing the example of figure 4.1 the lists are shown in figure 4.2. Note that each
of the lists is sorted and the maximum entry in Level k is m

2k
due to the division by

two of each entry in SA on each level of the recursion. Thus each of the 2k+1 lists can
be stored using a bit-vector of length m

2k
. The space requirement (without assisting

structures to optimize access) is therefore

2k+1 · m
2k

= O(m)

In order to access the compressed entry j = ψk(i) we have to determine the number
of 0s preceeding entry i in Bk as this is the index to the concatenated lists for level k.
This can be done by calculating h = i− rankk(i) using the technique based on [Jac89]
for rank outlined above. Finding the hth entry in the lexicographically ordered lists
is not described in detail in [GV00], but Grossi and Vitter claim constant access time
while using no more than O(m) bits for access optimzing structures

4.3. COMPRESSED SUFFIX ARRAYS 43

Level 0:

a list: 2 14 15 18 23 28 30 31

b list: 7 8 10 13 16 17 21 27

Level 1:

aa list:

ab list: 9

ba list: 1 6 12 14

bb list: 2 4 5

Level 2:

aaaa list: aaab list:

aaba list: aabb list:

abaa list: abab list:

abba list: abbb list: 5 8

baaa list: baab list:

baba list: 1 babb list: 4

bbaa list: bbab list:

bbba list: bbbb list:

Figure 4.2: Lists for ψ of figure 4.1

4.3.3 Complexity in general

On each level 0 ≤ k ≤ log logm we store Bk, rankk and the tables for psik in O(m)
bits. Therefore the entire structure can be stored in m log logm bits. Since time is
constant for each level SA(i) can be accessed in O(log logm).

4.3.4 Complexity optimization

With a small penalty in time requirement it is possible to further reduce the size of the
structure to O(m) bits. This is done by using only a subset of the levels. As long as the
size of the subset is constant the asymptotic size remains at O(m). Level k = log logm
is always stored explicitly. Of the other array it suffices to store 1 ≤ L < log logm levels
with minor modifications if these L levels are l(j) =

˚
j
L

log logm
ˇ

for 0 ≤ j ≤ L − 1.
To be able to reconstruct SAl(j+1) from SAl(j) it is neccessary modify Bl(j)(i) to be 1
only if SAl(j)(i) can be found in SAl(j+1)(rankl(j)(i)) instead of SAl(j)+1(rankl(j)(i)).
Note that rank needs not be modified if based solely on B.

ψl(j) still has to be defined for all entries where Bl(j) = 0, only now there are more
then half of the entries defined.

This modifactions enable us to use ψ to seek an entry of B = 1. The length of the
seeking process in turn determines the time requirements. The process is bounded by
longest possible sequence that has to be investigated. For a compressed suffix array
with L levels this sequence can be no longer than the sequence required to move from
level l(0) to l(1). Since all upper bound of sequences on the same level are of equal

44 CHAPTER 4. COMPRESSED SUFFIX ARRAYS

length, the longest seeking process is

L−1X

j=0

‖l(j)‖
‖l(j + 1)‖ =

L−1X

j=0

m

2l(j)

m

2l(j+1)

=
L−1X

j=0

2l(j+1)

2l(j)

=

L−1X

j=0

2
j+1
L

log log m

2
j
L

log log m

=

L−1X

j=0

(2log log m)
j+1
L

(2log log m)
j
L

=
“

2log log m
” 1
L

L−1X

j=0

1

= (logm)
1
L · L

= O(logε m) with ε =
1

L

4.4 Extensions of Compressed Suffix Arrays

Leaving the most general case of suffix arrays on binary texts, Sadakane proposes some
extensions of suffix arrays on human readable texts. For a more in-depth description
of Sadakanes datastructures and algorithms please refer to [Sad00]. Here I can only
give a short summary of his work and what it might imply.

4.4.1 Operations

While the original suffix array offers no more functionality than a mere lexicagraphic
ordering new operations are included.

Inverse Suffix Array A suffix array answers the question ‘At which position i does
the j-smallest suffix begin?’. Or more concise i = SA[j] To answer the inverse
question ‘What is the order j of the suffix starting at position i?’(j = SA−1[i])
we have no methods available up to now. Sadakane proposes a structure that
contains SA−1 that has the same time and space requirements as SA.

Searching There are algorithms that allow for searching operations in suffix arrays.
Sadakane augments the structure so that searching is an intrinsic feature of the
suffix array.

Decompression Using only the suffix array and the introduced extensions but with-
out the original text, recover a substring defined by first and last index in the
original text.

The last two functions are based on something Sadakane calls ‘the inverse of the array
of cumulative frequencies’. The abstract does not elaborate enough on the subject to
make a further description possible in this paper.

4.4.2 Complexity

Obviously Sadakane requires more memory to store the suffix array itself, but on the
other hand removes the need to store the text. His claim is that the entire search
index can be reduced to below the size of the original text for certain texts.

4.5. CONCLUSION 45

4.5 Conclusion

We started out with a large text and an even larger suffix array. In a first step Grossi
and Vitter drastically reduced the size of the suffix array without unreasonable penal-
ties in usability. Sadakane took this process even further and removed the neccessity
for storing the text, at the same time adding to the functionality of the datastructure.
Meanwhile we are storing neither the text nor the suffix arrays at all. All we retained
is a set of hints and literally pointers to both the text and the suffix array. This is a
fascinating evolution of a once seeming unchangable structure.

46 CHAPTER 4. COMPRESSED SUFFIX ARRAYS

Chapter 5

Asymptotic Properties of
Suffix Trees.
Ivan Kazmenko

Unlike the previous chapters, this one is not going to introduce a new
sophisticated suffix tree construction algorithm, dig into its properties
and prove that it works fast and fine. Instead, we’ll consider one of the
most dumb algorithms of suffix tree construction and find out that under
certain conditions on the text, it almost surely works rather well, meaning
that we can find almost sure upper and lower bound for the complexity
of new suffix insertion while the size of the text tends to infinity.

This chapter is based on the article Asymptotic Properties of Data
Compression And Suffix Trees by Wojciech Szpankowski [Szp93] and the
book Average case analysis of algorithms on sequences [Szp00] of the same
author.

5.1 Suffix Tree Construction

Let’s start with some common symbol definitions which we will use in the entire
chapter.

Let Σ is a finite alphabet of size |Σ| = V , {Xk}∞k=1 be a stationary ergodic sequence
of symbols generated from Σ, and Xn

m = (Xm, ..., Xn) for m < n be a partial sequence
of the whole sequence {Xk}∞k=1.

We shall now consider a very simple algorithm of suffix tree construction. A node of
our tree can be either internal, i. e. branching node, or external node storing one
of the suffixes Si = {Xk}∞k=i. Each edge is labeled by some symbol from Σ. When
adding a suffix, we start from the root of our tree and try to ’align’ the suffix to the
tree, that is, move by the edge corresponding to the current symbol of our suffix and
change the current symbol to the next one in the suffix. That procedure continues
until we find no such edge at the vertex we are currently in. We then add that edge
and create a new vertex at its end storing the suffix we were adding.

More formally, consider a digital tree built in the following way:

Step 0. At the beginning, the tree consists of its root only.

Step 1. Consider a tree Tn built for the partial sequence Xn
1 = (X1, ..., Xn).

Step 2. Set current vertex to root.

Step 3. Starting with j = n+ 1, we either

47

48 CHAPTER 5. ASYMPTOTIC PROPERTIES OF SUFFIX TREES.

(A) move by the edge marked by Xj from the current vertex if it exists thus changing
the current vertex and increase j by 1, or

(B) construct a new edge marked with symbol Xj from the current vertex to a new
vertex marked with our suffix X∞

n+1 and proceed to Step 1 with n increased by 1
otherwise.

Note that j − n is the number of case (A) occurences during a single Step 3.

The picture shows an example of a single loop of our algorithm.

Let X10
1 = (0, 1, 0, 1, 1, 0, 1, 1, 1, 0).

S1 = 0101101110

S2 = 101101110

S3 = 01101110

S4 = 1101110

S5 = 101110

Four inserted suffixes.

�
��

�
��

�
�� Z

ZZ

�
��

JJ

�
��

�
��JJ

�
��
S4

�
��
S1

JJ

�
��
S3

S2

Fifth suffix insertion.

�
��

�
��

�
�� Z

ZZ

�
��

JJ

�
��

�
��JJ

�
��
S4

�
��
S1

JJ

�
��
S3

JJ

�
��

JJ

�
��

�
��
S2

JJ

�
��
S5

We do not formalize our ’splitting policy’, that is, the way how we split an external
node that becomes internal during some other suffix insertion. The natural way to do
the ’splitting’ is shown on the picture. We can consider all previous suffix marks to
be infinite branches of our tree to make the algorithm formally correct.

We are interested in the complexity of a single loop of our algorithm. Formally, our
main questions regarding the algorithm described will be the following:

What is the typical height of Tn?

What is the typical difference j − n when Step 3 is finished?

What is the typical minimal possible difference j − n at the end of Step 3 for the tree
Tn?

In the next section, we will present some assumptions on the sequence {Xk}∞k=1 that,
being not too restrictive, will get us some bounds on the value in question.

5.2 Depth of Insertion in a Suffix Tree

As we study our sequence {Xk}∞k=1 in a probabilistic framework, its most important
characteristic is nth order probability distribution P (Xn

1) = Pr{Xk = xk, 1 6 k 6

n, xk ∈ Σ}. The entropy of our sequence is the limit h = lim
n→∞

E{− log P (Xn
1)}

n
. It is

known that h 6 log V . All logarithms are natural ones in this chapter.

Another characteristic of much interest is the parameter Ln which is the smallest
integer L > 0 such that Xm+L−1

m 6= Xn+L
n+1 for all 1 6 m 6 n. Informally, it has the

following meaning: when we insert the suffix Sn+1, we will require exactly Ln steps
(A) to do it.

Returning to our example, let X10
1 = (0, 1, 0, 1, 1, 0, 1, 1, 1, 0). Here L1 = 1, L2 = 3,

L3 = 2, and L4 = 5 since X8
5 = X5

2 = (1, 0, 1, 1) and therefore L4 > 4.

5.2. DEPTH OF INSERTION IN A SUFFIX TREE 49

So, what will be our assumptions on the sequence {Xk}? Below we introduce the
mixing condition - a weakened form of independence.

Remember that {Xk} is called an independent sequence if for every set of indexes
I = {i1, . . . , ir} the probablity of {Xk}k∈I being in

N{Ak}rk=1 is equal to the prod-
uct of the corresponding probabilities: Pr{Xi1 ∈ A1, . . . , Xir ∈ Ar} = Pr{Xi1 ∈
A1} . . . P r{Xir ∈ Ar}. Somewhat weaker is pairwise independent condition which
takes only the sets I of size 2 into consideration, stating that Pr{Xi1 ∈ A1, Xi2 ∈
A2} = Pr{Xi1 ∈ A1}Pr{Xi2 ∈ A2}. The independence itself can be also written in
pairwise form with events being not subsets of a single copy of Σ, but elements of a
more complex σ-field.

Let Fn
m be a σ-field (also known as σ-algebra) generated by {Xk}nk=m for m 6 n.

Independence means that for every pair of events A ∈ Fm
0 and B ∈ F∞

m+1 it is true that
Pr{AB} = Pr{A}Pr{B}. The mixing condition creates a gap of size d between our σ-
fields so that A ∈ Fm

0 and B ∈ F∞
m+d and transforms our equality into two inequalities

bounding the left term with the right one multiplied by some constants from both
sides. The strong α-mixing condition substitutes that constants by functions tending
to 1 from both sides while the gap size d tends to infinity. The formal definitions
follow.

We say that {Xk} satisfies the mixing condition if and only if there exist constants 0 <
c1 6 c2 and an integer d such that for all A ∈ Fm

0 , B ∈ F∞
m+d and 0 6 m 6 m+ d 6 n

the following condition is true: c1Pr{A}Pr{B} 6 Pr{AB} 6 c2Pr{A}Pr{B}.
Now let α be a function of d such that α(d) −−−→

d→∞
0. {Xk} satisfies the strong α-mixing

condition if and only if for all A ∈ Fm
0 , B ∈ F∞

m+d and 0 6 m 6 m+d 6 n the following
condition is true: (1− α(d))Pr{A}Pr{B} 6 Pr{AB} 6 (1 + α(d))Pr{A}Pr{B}.
We define two new parameters of {Xk}. They are parameters h1 and h2:

h1 = lim
n→∞

max{log P−1(Xn
1), P (Xn

1)>0}
n

= lim
n→∞

log(1/ min{P (Xn
1), P (Xn

1)>0})
n

,

h2 = lim
n→∞

log(E{P (Xn
1)})−1

2n
= lim

n→∞

log(
P

Xn1
P2(Xn

1))−1

2n
.

The relationship with entropy h is as follows: 0 6 h2 6 h 6 h1. The values h1 and h2

are also known as Rényi entropy of order −∞ and 2, respectively.

The formulas are complex, so we could use a simple example, Bernoulli model, to see
what these values are like.

Assume that symbols Xi are generated indepenently, and ith symbol is generated

according to the probability pi. Thus, h =
VP

i=1

pi log(p−1
i), h1 = log(1/pmin) and

h2 = 2 log(1/P) where pmin = min
16i6V

{pi} is the probability of least probable symbol

occurence and P =
VP

i=1

p2
i can be interpreted as a probability of a match between any

two symbols.

Now, we are ready to present our main result, Theorem 5.1. It proposes the conditions
under which we can find almost sure lower and higher bounds for Ln, the value we
are interested in. An important finding is that we not only know how it behaves (its
behavior is logarithmic with respect to n), but also find the range of the constant by
that logarithm.

Theorem 5.1. Consider stationary ergodic sequence {Xk}∞k=−∞.

1. Assume strong α-mixing condition.

2. Let h1 <∞ and h2 > 0.

(B) ∃ρ : 0 < ρ < 1, ∃β such that α(d) = O(dβρd) for d→∞.

Then

(1) lim inf
n→∞

Ln
log n

= 1
h1

(a.s.),

(2) lim sup
n→∞

Ln
log n

= 1
h2

(a.s.).

50 CHAPTER 5. ASYMPTOTIC PROPERTIES OF SUFFIX TREES.

How restrictive is the condition (B)? Many practically occuring cases fit it, for exam-
ple, in Bernoulli model, α(d) = 0 because of independence of Xk, and if the sequence
{Xk} is Markovian, α(d) decays exponentially fast. In general, statement (1) of The-
orem 5.1 does not hold without the (B) condition.

5.3 Height and Shortest Feasible Path in a Suf-
fix Tree

In this section, we will introduce yet another bundle of auxiliary definitions to formu-
late our Theorem thm:kaz-2, and then prove Theorem 5.1 using Theorem 5.2. The
proof of Theorem 5.2 itself will not be given due to its complexity, however, a short
overview of its proof techniques will be done in Section 5.4.
Let us define some more depth characteristics. Let Tn be a suffix tree constructed
from the first n suffixes of {Xk}. mth depth Ln(m) is the depth of the ith suffix in Tn;
note that Ln = Ln+1(n + 1). Average depth Dn is the depth of a randomly selected

suffix, that is, Dn = 1
n

nP

m=1

Ln(m).

Height and shortest feasible path are defined as follows. Height Hn is the length of
the longest path in Tn; Hn = max

16m6n
{Ln(m)}. Available node is a node which does

not belong to Tn but its predecessor does, that is, a node that could be inserted in
Tn+1 at the next insertion with no other nodes added. Shortest feasible path sn is the
length of the shortest path from the root to an available node.
For each two suffixes, we can find their longest common prefix by walking down the
tree along them till they part. Self-alignment Ci,j is the length of the longest common
prefix of Si and Sj .
One can easily prove the following relations of self-alignment to other suffix tree pa-
rameters:
Ln(m) = max

16k6n,k 6=m
{Ck,m}+ 1;

Hn = max
16i<j6n

{Ci,j} + 1;

Ln = max
16m6n

{Cm,n+1} + 1.

Returning to our example, let X10
1 = (0, 1, 0, 1, 1, 0, 1, 1, 1, 0). Consider suffix tree T4

built from first 4 suffixes. L4(1) = 3, L4(2) = 2, L4(3) = 3, L4(4) = 2. H4 = 3, s4 = 2.
But L4 = L5(5) = 5.
Note that the S5 node of T5 is not an available node in T4 since it requires auxiliary
internal nodes to be inserted. In T5, H5 = 5, and s5 = 2 = s4.
Digging into the properties of Ci,j gives the proof of Theorem 5.2 formulated below.
It is a variant of Theorem 5.1 with Ln substituted by sn and Hn. As we already
observed, the statement (2) of the theorem does not need (B) condition to hold.

Theorem 5.2. Consider stationary ergodic sequence {Xk}∞k=1.
1. Assume strong α-mixing condition.
2. Let h1 <∞ and h2 > 0.
Then
(1) lim

n→∞
sn

log n
= 1

h1
(a.s.) when (B) holds,

(2) lim
n→∞

Hn
log n

= 1
h2

(a.s.) when α(d) satisfies the following:
∞P

d=0

α2(d) <∞.

Proof of Theorem 5.1 by Theorem 5.2: For each of the two statements, we will bound
the left side of equality by the right side from both sides.
(1): lim sup

n→∞
Ln

log n
6 lim

n→∞
Hn
log n

(a.s.) simply holds by definition as Ln 6 Hn; let’s prove

that lim sup
n→∞

Ln
log n

> lim
n→∞

Hn
log n

(a.s.). Note that Hn is a non-decreasing sequence;

5.4. PROOF TECHNIQUES 51

Ln = Hn when Hn+1 > Hn, and that occurs infinitely often since Hn → ∞ and
{Xk} is an ergodic sequence, so Pr{Ln = Hn i.o.} = 1 and there exists a subsequence
nk → ∞ such that Lnk = Hnk . It is clear now that the upper limit of Ln in not less
than the limit of Hn with an arbitrary common denominator, which is equal to log n
in our case.
(2) can be proved in a similar way: sn is a non-decreasing sequence also.

5.4 Proof Techniques

In this section, we will throw a short glance on the tools used to prove Theorem 5.2
itself. The whole proof is complex and technically hard.
One of the methods used in the proof is a technique called String-Ruler Approach.
According to it, the correlation between different substrings is measured using another
string ω called a string-ruler. To illustrate it, we shall find the longest common prefix
of two independent strings {Xk(1)}∞k=1 and {Xk(2)}∞k=1. Let its length be C1,2. The
following equivalence is obvious:
C1,2 > k⇐⇒ ∃ω of length k: Xk

1 (1) = ω = Xk
1 (2).

We then construct a set Wk = {ω ∈ Σk : |ω| = k} and estimate the probabilities
P (ωk) = P (Xm+k

m+1 = ωk) for a fixed position m in our sequence {Xk}.
Another important method is a probabilistic one, called Second Moment Method. The
version by Chung and Erdös of this method states that for a sequence of events Ai we
have

Pr{
nS

i=1

Ai} >

(
n
P

i=1
Pr{Ai})2

n
P

i=1
Pr{Ai}+

P

i6=j
Pr{Ai∩Aj}

.

We then apply it to the sets Ai,j = {Ci,j > k}.
The reasoning of the latter method is elementary. Let us remember Markov’s inequality
Pr{X > t} 6

E{X}
t

and Chebyshev’s inequality
Pr{|X −E{X}| > t} 6

V ar{X}
t2

.
After some trivial calculations we get First Moment Method:
for integer-valued nonnegative random variable X
Pr{X > 0} 6 E{X}
and Second Moment Method (Chebyshev’s version):

Pr{X = 0} 6
V ar{X}
(E{X})2 ,

respectively. The version by Chung and Erdös is derived from the latter one.

5.5 Summary

In our main result, Theorem 5.1, we have shown that, given a stationary ergodic
sequence generated over a finite alphabet, under strong α-mixing condition on the
sequence, the depth of the nth suffix insertion into a partial suffix tree of that sequence
using simple and natural algorithm specified above can be described by the expression
c log n where c almost surely lies between 1/h1 and 1/h2 and the parameters h1 and
h2 can be found explicitly.

52 CHAPTER 5. ASYMPTOTIC PROPERTIES OF SUFFIX TREES.

Chapter 6

Sequential Pattern
Matching – Analysis of
Knuth-Morris-Pratt Type
Algorithms Using the
Subadditive Ergodic
Theorem
Tobias Reichl

Based on an article by Mireille Règnier and Wojciech Szpankowski this
report outlines the complexity analysis of Knuth-Morris-Pratt type algo-
rithms using the Subadditive Ergodic Theorem, Martingales and Azuma’s
Inequality.

Using the Subadditive Ergodic Theorem we will prove the existence of
a linearity constant for worst and average case. Although the Subadditive
Ergodic Theorem doesn’t indicate a way to compute the linearity constant,
we may use Azuma’s Inequality to show that the number of comparisons
done is well concentrated around its mean value.

6.1 Pattern Matching

6.1.1 Conventions

Before starting we have to introduce some conventions in nomenclature: a pattern p
of length m, denoted pm

1 , is matched against a text t of length n, denoted tn1 .

We have to define some kind of counting function:

M(l, k) =

1 t[l] is compared to p[k]
0 otherwise

.

A position in the text is called an alignment position (AP) if starting from it com-
parisons between text and pattern are done, or more formally

53

54 CHAPTER 6. SEQUENTIAL PATTERN MATCHING

M(AP + (k − 1), k) = 1 for some k.

6.1.2 Defining Sequential Algorithms

We will classify algorithms by a property we call sequentiality.

1. Semi-sequential: The sequence of alignment positions used by the algorithm
is non-decreasing.

2. Strongly semi-sequential: (1) and the comparisons M(li, ki) define non-
decreasing text-positions li.

3. Sequential: (1) and M(l, k) = 1 ⇒ tl−1
l−(k−1) = pk−1

1 , so: text-pattern compar-

isons M(l, k) are only done as long as there is a prefix of the pattern to the left
of the text position to be compared next.

4. Strongly sequential: (1), (2) and (3).

6.1.3 Naive / Brute Force Algorithm

In short we may outline the naive or brute force algorithm as follows:

• Every text position is an alignment position.

• The aligned pattern is matched against the text from left to right until either a
mismatch occurs or the pattern is found.

• The pattern is then shifted by one and the next matching is started.

The brute force algorithm is a sequential algorithm: the APs are non-decreasing and
the condition M(l, k) = 1 ⇒ tl−1

l−(k−1) = pk−1
1 holds: no more comparisons are done

after a mismatch is found, so every alignment is used only as long as prefixes of the
pattern are found in the text.

The sequence of text positions li defined by the sequence of comparisons M(li, ki),
however, may include ‘jumping backwards’, i.e. if a mismatch occurs, the AP is
shifted by one and comparisons again start at the beginning of the pattern.

6.1.4 Knuth-Morris-Pratt

Idea: (Morris-Pratt) Disregard APs if we already know that there cannot be a prefix
of the pattern, namely the ones that safisfy tl+k−1

l+i 6= pk−i
1 for all i. Or equivalently

pk
1+i 6= pk−1

1 as the already processed text has to be identical to the corresponding
prefix of the pattern.

This knowledge can be obtained by a preprocessing of the pattern. The specific shift-
ing functions can formally be described as following:

Morris-Pratt-Variant (MP):

S = min{k − 1; min{s > 0 : p
k−(s+1)
1+s }}

Knuth-Morris-Pratt-Variant (KMP):

S = min{k; min{s : p
k−(s+1)
1+s and pk

k 6= pk−s
k−s}}

MP and KMP differ in the amount of information used from the pattern. Both are
strongly sequential algorithms, because from the definition of the shift function it is
automatic that the sequentiality condition (2) holds, there is no ‘jumping backwards’.

6.2. SUBADDITIVE ERGODIC THEOREM 55

6.1.5 Defining Complexity

The complexity in matching a pattern p against a text portion tsr can be defined as
the number of comparisons needed:

cr,s(t, p) =
X

l∈[r,s],k∈[1,m]

M(l, k) (6.1)

Overall complexity c1,n is denoted as cn. If either the text or the pattern is a realization
of a random sequence we shall write Cn.
To look at KMP we have to introduce two probabilistic tools: the Subadditive Ergodic
Theorem and Azuma’s Inequality.

6.2 Subadditive Ergodic Theorem

6.2.1 Fekete’s Theorem

Assume a deterministic sequence {xn}∞n=0 satisfies the so called subadditivity property,
that is

xm+n ≤ xn + xm (6.2)

for all integers m,n ≥ 0. We may fix m ≥ 0 and write

n = km+ l ⇔ k

n
=

1

m
− l

mn
. (6.3)

Then by successive application of the subadditivity property arrive at

xn = xkm+l ≤ xm + xm + · · ·+ xm + xl = kxm + xl . (6.4)

Now dividing by n and considering n→∞ resp. k/n→ 1/m, cf. (6.3) we get

lim sup
n→∞

xn

n
≤ inf

m≥1

xm

m
≤ α . (6.5)

To complete the derivation we may use the definition of lim inf and get the following:

lim inf
n→∞

xn

n
= sup

n≥0

inf
k≥n

xn

n

ff

= α (6.6)

Thus we just derived the theorem of Fekete.

Theorem 6.1 (Fekete 1923). If a sequence of real numbers satisfies the subadditive
property

xm+n ≤ xn + xm (6.7)

for all integers m,n ≥ 0, then

lim
n→∞

xn

n
= inf

m≥1

xm

m
. (6.8)

If the subadditvity property (6.7) is replaced by the superadditvity property

xm+n ≥ xn + xm (6.9)

for all integers m,n ≥ 0, then

lim
n→∞

xn

n
= sup

m≥1

xm

m
. (6.10)

56 CHAPTER 6. SEQUENTIAL PATTERN MATCHING

Example 6.1 (Longest Common Subsequence). The longest common subse-
quence (LCS) problem is a special case of the edit distance problem. Two ergodic
stationary sequences X = X1, X2, . . . , Xn and Y = Y1, Y2, . . . , Yn are given, then let

Ln = max{K : Xik = Yjk for 1 ≤ k ≤ K, where 1 ≤ i1 < i2 < · · · < iK ≤ n,
and 1 ≤ j1 < j2 < · · · < jK ≤ n}

be the length of the longest common subsequence. Observe that

L1,n ≥ L1,m + Lm,n . (6.11)

The LCS in the region (1, n) may cross the boundary of Xm
1 , Y m

1 and Xn
m, Y n

m. Hence
it may be bigger than the sum of the LCSs in each subregion (1,m) and (m,n) and
so an = E [L1,n] is superadditive:

lim
n→∞

an

n
= α = sup

m≥1

E [Lm]

m
. (6.12)

But here you can already see the cavity: Fekete’s Theorem1 only states the existence
of the linearity constant, but neither tells us its value nor even how to compute it.
For the LCS problem here Steele in 1982 conjectured α ≈ 0.8284.

Theorem 6.2 (DeBruijn and Erdös 1952). The subadditivtiy property can be
relaxed to include a sequence cn = o(n)

xn+m ≤ xn + xm + cn+m (6.13)

where

∞X

k=1

ck
k2

<∞ . (6.14)

Then, too

lim
n→∞

xn

n
= inf

m≥1

xm

m
. (6.15)

6.2.2 Subadditive Ergodic Theorem

As Fekete’s Theorem only applies to deterministic sequences, effort has been taken to
generalize it to sequences of random variables.

Theorem 6.3 (Kingman and Liggett). Let Xm,n (m < n) be a sequence of random
variables satisfying the following properties:

1. X0,n ≤ X0,m +Xm,n (subadditivity property)

2. For every k, {Xnk,(n+1)k, n ≥ 1} is a stationary sequence.

3. The distribution of {Xm,m+k, k ≥ 1} does not depend on m.

4. E [X0,1] <∞ and for each n, E [X0,n] ≥ c0n where c0 > −∞.

Then

lim
n→∞

E [X0,n]

n
= inf

m≥1

E [X0,m]

m
:= α , (6.16)

lim
n→∞

X0,n

n
= X (a.s) . (6.17)

1And the Subadditive Ergodic Theorem, as as we will see later.

6.3. MARTINGALES AND AZUMA’S INEQUALITY 57

Theorem 6.4 (Deriennic). Similar to subadditivity with deterministic sequences,
subaddititvity with random sequences can be relaxed to include a sequence An

X0,n ≤ X0,m +Xm,n +An (6.18)

such that limn→∞ E [An/n] = 0. Then, too

lim
n→∞

X0,n

n
= X (a.s) . (6.19)

6.3 Martingales and Azuma’s Inequality

6.3.1 Basic Properties of Martingales

Martingale is a standard tool in probabilistic analysis. A sequence

Yn = f(X1, X2, . . . , Xn), n > 0 (6.20)

is a martingale with respect to the filtration

Fn = (X1, X2, . . . , Xn) (6.21)

if for all n ≥ 0 the following hold:

1. E [|Yn|] <∞ and

2. E [Yn+1 | X0, X1, . . . , Xn] = E [Yn+1 | Fn] = Yn

So E [Yn+1 | Fn] defines a random variable depending on the knowledge contained in
(X1, X2, . . . , Xn). Now let’s define the martingale difference as

Dn = Yn − Yn−1 (6.22)

so that

Yn = Y0 +
nX

i=1

Di ⇔
nX

i=1

Di = Yn − Y0 . (6.23)

Then we may rewrite the martingale difference as

Di = Yi − Yi−1 = E [Yn | Fi] −E [Yn | Fi−1] (6.24)

This is possible as the realization of the martingale sequence Yn depends on the knowl-
edge contained in Fi, so the difference between neighbouring elements depends on the
difference in knowledge about Xi. Now observe:

E [Yn | Fn] = Yn and E [Yn | F0] = E [Yn] .

Note: Fn completely defines Yn, while F0 contains no information about Yn.

Interestingly we are now able to rewrite the martingale diffence sum, cf. (6.23), as

nX

i=1

Di = Yn −E [Y0] . (6.25)

And this is what we are interested in: the deviation of Yn from its mean value. To
further assess it we will now introduce Hoeffding’s Inequality.

58 CHAPTER 6. SEQUENTIAL PATTERN MATCHING

6.3.2 Hoeffding’s Inequality and Azuma’s Inequality

Theorem 6.5 (Hoeffding’s Inequality). Let {Yn}∞n=0 be a martingale and let there
exist a constant cn such that

|Yn − Yn−1| = |Dn| ≤ cn (6.26)

Then

Pr {|Yn − Y0| ≥ x} = Pr

(˛
˛
˛
˛
˛

nX

i=1

Di

˛
˛
˛
˛
˛
≥ x

)

≤ 2 exp

„

− x2

2
Pn

i=1 c
2
i

«

. (6.27)

By now, we know how to use the martingale difference sum
Pn

i=1Di for assessing the
deviation from the mean. We also know how to assess this martingale difference sum,
provided Di is bounded.
What we still need is to establish bounds on Di.
The trick: let X̂i be an independent copy of Xi. Then

E [fn(X1, . . . , Xi, . . . , Xn) | Fi−1] =

E
h

fn(X1, . . . , X̂i, . . . , Xn) | Fi−1

i

=

E
h

fn(X1, . . . , X̂i, . . . , Xn) | Fi

i

because both Xi and X̂i share the same distribution, but Fi in respect to Fi−1 doesn’t
contain additional information about X̂i. Hence we may rewrite the martingale dif-
ference again as

Di = E [Yn | Fi] −E [Yn | Fi−1]

= E [fn(X1, . . . , Xi, . . . , Xn) | Fi]−E [fn(X1, . . . , Xi, . . . , Xn) | Fi−1]

= E [fn(X1, . . . , Xi, . . . , Xn) | Fi]−E
h

fn(X1, . . . , X̂i, . . . , Xn) | Fi

i

Taking into account both terms only differ in including Xi resp. X̂i we are able to
postulate the existence of a constant di with |Di| ≤ di and using Hoeffding’s Inequaltity
we finally arrive at Azuma’s Inequality.

Theorem 6.6 (Azuma’s Inequality). Let {Yn}∞n=0 be a martingale and let there
exist a constant cn such that

˛
˛
˛fn(X1, . . . , Xi, . . . , Xn)− fn(X1, . . . , X̂i, . . . , Xn)

˛
˛
˛ ≤ ci (6.28)

where X̂i is an independent copy of Xi. Then

Pr
n˛
˛
˛fn(X1, . . . , Xi, . . . , Xn)−E

h

fn(X1, . . . , X̂i, . . . , Xn)
i˛
˛
˛ ≥ x

o

= Pr {|Yn −E [Yn]| ≥ x} ≤ 2 exp

„

− x2

2
P

i=1 nc
2
i

«

6.4 Application to KMP

6.4.1 Establishing m-Convergence

An alignment position in the text is called unavoidable alignment position if for any
r ≤ i and any l ≥ i + m it’s an alignment position when the algorithm is run on tlr.
KMP-like algorithms share the same set of unavoidable alignment positions

6.4. APPLICATION TO KMP 59

U =

n[

l=1

{Ul} (6.29)

where

Ul = min{ min
1≤k≤l

{tlk � p}, l + 1} . (6.30)

This equation on the one hand specifies starting positions of pattern prefixes as un-
avoidable alignment positions (no positions inside those prefixes, as those would be
jumped over) and on the other hand specifies steps of size one if there is no pattern
prefix.
Interstingly this property seems to be uniquely limited to Morris-Pratt type algorithms
– e.g. the Boyer-Moore algorithm does not have this property.

An algorithm is said to be l -convergent if there exists an increasing sequence of un-
avoidable alignment positions {Ul}ni=1 satisfying

Ui+1 − Ui ≤ l . (6.31)

Thus, l-convergence indicates the maximum size ‘jumps’ for an algorithm. For exam-
ple, the brute force algorithm is 1-convergent and – what we are interested in more –
KMP-like algorithms are m-convergent.

Proof. Let l be a text position and let r be any text position with r ≤ Ul. Then let
{Ai} be the set of APs when the algorithm is run on Tm

r . Note: r ∈ {Ai} as the
algorithm inevitably aligns at the starting position.
Then we may define the last alignment position AJ before Ul as

AJ = max {Ai : Ai < Ul} . (6.32)

So we have AJ+1 ≥ Ul. Using an adversary argument we will show that AJ+1 > Ul

cannot be true, thus AJ+1 = Ul. We define

y = max {k : M (k, (k −AJ) + 1) = 1} , (6.33)

so y is the rightmost position in the text we can do a comparison at when starting at
AJ . Observe: y ≤ l. Otherwise, when comparisons would be done further, T l

AJ
� H

would have to hold – and this in turn contradicts the definition of Ul.
Since KMP-like algorithms are strongly sequential, the text-pattern comparisons de-
fine non-decreasing sequences of text positions. For pattern-text comparisons at text
position y + 1 the pattern cannot be aligned at AJ , it has to be aligned at the next
alignment position AJ+1 with AJ+1 ≤ y + 1 ≤ l + 1.
The definition of Ul leaves two possibilities: Ul ≤ l if there is a prefix of the pattern,
or Ul = l + 1 if there is no prefix. The above equation AJ+1 ≤ l + 1 together with
the second possibility Ul = l + 1 contradicts the assumption Ul < AJ+1, so we may
assume the first possibility Ul ≤ l – this then implies that H l

Ul
� H.

An occurence of the whole pattern is consistent with the available information. We –
as we want to create a contradiction – may assume this is the case. As the sequence
{Ai} is non-decreasing and AJ+1 > Ul this occurence will be ‘jumped over’ and not
be detected by the algorithm. Thus AJ+1 = Ul as needed.

Taking this a bit further we may combine AJ+1 ≤ y + 1 and y ≤ AJ + m − 1 to
AJ+1 ≤ y + 1 ≤ AJ +m + 1 − 1 = AJ + m. So we have shown AJ+1 − AJ ≤ m for
any pair (AJ , AJ+1) of APs in the text, thus KMP-like algorithms are m-convergent.

60 CHAPTER 6. SEQUENTIAL PATTERN MATCHING

6.4.2 Establishing Subadditivity

If cn, the number of comparisons, is subadditive we may use the Subadditive Ergodic
Theorem to prove linear complexity of algorithms. To achieve this we have to show
that cn is (almost) subadditive

c1,n ≤ c1,r + cr,n + a . (6.34)

After rearranging the equation it suffices to prove the existence of an a such that

|c1,n − (c1,r + cr,n)| ≤ a . (6.35)

Let Ur be the smallest unavoidable aligment position greater than r. Then we are able
to split c1,n − (c1,r + cr,n) into c1,n − (c1,r + cUr,n) and cr,n − cUr ,n.

For the first part we have to count either:

• S1: comparisons done after position r with alignment positions before r. Those
only contribute to c1,n but neither to c1,r (the algorithm won’t compare after r)
nor cUr ,n (the algorithm doesn’t align before Ur, thus not before r, too).

• S2: comparisons done with alignment positions between r and Ur. Those also
only contribute to c1,n but neither to c1,r nor cUr ,n (the algorithm in those cases
only aligns before r resp. after Ur).

Summing up we arrive at

S1 =
X

AP<r

X

i≥r

M(i, i −AP + 1) ≤ m2 . (6.36)

This sum is bounded as there are at maximum m alignment positions before r with
comparisons done after r. And for each aligment position there are at maximum m
comparisons done.

S2 =
X

r≤AP<Ur

X

i≥r

M(AP + (i− 1), i) ≤ lm (6.37)

This sum is bounded: because of the l-convergence of sequential algorithms there are
at maximum l text positions between r and Ur, each with at maximum m comparisons
done. Note: with m-convergent KMP-like algorithms this would resolve to m2, too.

For the second part we have to count comparisons done with alignment positons before
Ur (thus between r and Ur). Those contribute to cr,n only as cUr,n starts comparing
at position Ur.

S3 =
X

r≤AP<Ur

X

i≥r

M(AP + (i− 1), i) ≤ lm (6.38)

This is the same sum as S2, hence bounded for the same reasons. Finally we are able
to put the parts together:

|c1,n − (c1,r + cr,n)| ≤ |S1 + S2 − S3| ≤ m2 + lm = a . (6.39)

So by now we have show subadditivity

c1,n ≤ c1,r + cr,n + a (6.40)

and are able to apply the Subadditive Ergodic Theorem.

6.4. APPLICATION TO KMP 61

6.4.3 Applying the Subadditive Ergodic Theorem

Before continuing we have to develop some modelling assumptions about the structure
of text and pattern.

• Deterministic Model: Both text and pattern are non-random.2 In this case
we have to maximize complexity over all possible texts.

• Semi-Random Model: The text is a realization of stationary and ergodic
sequence, the pattern is given, thus non-random. In this case we use average
complexity over all texts.

• Stationary Model: Both text and pattern are a realization of a stationary
and ergodic sequence, so we use average complexity over all texts and patterns.

Applying the Subadditve Ergodic Theorem yields similar results for worst and average
case:

Deterministic Model: lim
n→∞

maxt(cn(t, p))

n
= α1(p)

Semi-Random Model: lim
n→∞

Et [Cn(p)]

n
= α2(p)

Stationary Model: lim
n→∞

Et,p [Cn]

n
= α3

6.4.4 Applying Azuma’s Inequality

Even if we cannot determine the linearity constants α1 to α3, we still can show that
Cn is concentrated around its mean.

We may assume that the text t is generated by a memoryless source, and Cn is a
function of this random text t = t1, t2, . . . , tn. By flipping a single character we may
change Cn by at most 2m2 comparisons, so Cn satisfies the condition for applying
Azuma’s Inequality:

˛
˛Cn (t1, t2, . . . , ti, . . . , tn)− Cn

`
t1, t2, . . . , t̂i, . . . , tn

´˛
˛ ≤ 2m2 (6.41)

Theorem 6.7. Let t be a random text of length m generated by a memoryless source
and let the pattern p of length m be given. Then the number Cn of comparisons made
by the Knuth-Morris-Pratt algorithm is concentrated around its mean

E [Cn] = α2n (1 + o(n)) . (6.42)

Equally

Pr {|Cn − α2n| ≥ εn} ≤ 2 exp

„

− (εn)2

2 · n · (2m2)2
(1 + o(n))

«

= 2 exp

„

− ε2n

4m4
(1 + o(n))

«

(6.43)

for any ε > 0.

2Applying Murphy’s Law we may asume text and/or pattern to be exactly what you do
not want them to be. . .

62 CHAPTER 6. SEQUENTIAL PATTERN MATCHING

6.5 Concluding Remarks

The Subadditive Ergodic Theorem proves the existence of the linearity constant under
quite general probabilistic assumptions. The main prerequisite is the existence of so
called unavoidable alignment positions, a property that seems to be uniquely limited
to Knuth-Morris-Pratt like algorithms.
Although we have not been able to compute this constant, we have been able to show
that the number Cn of comparisons done is concentrated around its mean value α2n.

Chapter 7

Greedy Algorithms for the
Shortest Common
Superstring Problem
Anton Nesterov

This paper is based on a article by A. Frieze and W.Szpankowski.
It presents some greedy algorithms that solve Shortest Common Super-
string Problem and their analysis in probabylistic framework. Also graph
algorithms for equivalent problems are presented.

Various versions of the Shortest common superstring (in short SCS) problem play
important role in data compression and DNA sequensing.
Problem Formulation. Given a collection of strings, say x1, x2, . . . , xn over an alphabet
Σ, find the shortest string z such that each of xi appears as substring (a consecutive
block) of z. In the DNA seqquencing another formulation of the problem may be of
even greater interest. We call it an approximate SCS and one asks for a superstring
that contains approximately (e.g in the Hamming distance sense) the original strings
as x1, x2, . . . , xn as substrings.
Our results are about some greedy approximations of the SCS but in a probabilistic
framefork. We prove that several greedy algorithms for the SCS problem are asymp-
totically optimal in the sence that thay produce a total overlap of SCS that differs
from the optimal (maximum) overlap by a quantity that is an order of magnutude
smaller than the leading term of the overlap.
We assume, that the strings are generated independently. We first consider the so-
called Bernoulli model in which symbols of the alphabet Σ are generating indepen-
dently within a string. Later we extends our results to other models: Markovian model
and Mixing Model, which is generalization of previous ones.

7.1 Definitions

Before presenting some results, we introduce some notation and a framefork for de-
scribing our algorithms.
Suppose x = x1x2 . . . x3 and y = y1y2 . . . y3 are strings over the same finite alphabet
Σ = (ω1, ω2, ..., ωM) where M is the size of the alphabet. We define their overlap

o(x, y) = max{j : yi = xr−j+i, 1 ≤ i ≤ j}.

63

64 CHAPTER 7. GREEDY ALGORITHMS FOR THE SCS PROBLEM

If x 6= y and k = o(x, y), then

x⊕ y = x1x2...yk+1yk+2...ys.

Let S be a set of all superstrings built over strings x1, .., xn. Then

Oopt
n =

nX

i=1

|x|i −min
z∈S
|z|.

We assume that the input strings are independently generated. We analyse the
Bernoully model, that is, each x = xj = x1x2...xi−1 is the same length l and and
xi is generated independently of x1, x2 . . . xi−1. Futhermore, P (xi = ωj) = pj > 0 for
1 ≤ j ≤M . Let

H =
mX

i=1

pi log pi

be the associated entropy for the Bernoully model (i.e., memoryless source).

7.2 Greedy algorithms

We study the following algorithm: its input is the strings x1, x2, .., xn over Σ. It
outputs a string z which is a superstring of the input.

7.3. RESULTS 65

Generic greedy algorithm.
1. I ← {x1, x2, ...xn};Ogr

n ← 0;
2. repeat
3. choose x, y ∈ I; z = x⊕ y
4. I ← (I \ {x, y})
5. Ogrn ← Ogr

n + o(x, y)
6. until |I| = 1
We consider two variants:
GREEDY. In Step 3 choose x 6= y in order to maximize o(x, y).
RGREEDY. In Step 3 x is the string z produced in the previous iteration, while y is
chosen in order to maximize o(x, y) = o(z, y). Our initial choice for x is x1. Thus in
RGREEDY we have one ”long” string z grows by addition of strings at the right-hand
end.

7.3 Results

Consider the SCS problem under the Bernoulli model. Let P =
PM

j=1 p
2
i . Then, with

high probability,

lim
n→∞

Oopt
n

n log n
=

1

H

lim
n→∞

Ogr
n

n log n
=

1

H

provided

|x| > − 4

logP
log n

for all 1 ≤ i ≤ n
In many applications, notably for data compression and the DNA recombination prob-
lem, the Bernoully model assumption is too unrealistic. Therefore, we extend this
theorem to the case when there is some dependency among symbols withing a string.
However we still assume that strings x1,x2, . . . , xn are statically independent. But we
restrict somewhat the dependency among symbols of each string, that is, we desribe
a main ideas of the mixing model.
Mixing Model. During the generation of string, each symbol depends on all previous
ones, but the farther the symbol the lesser the dependence on it.

7.4 Compression

The SCS can be used to compress strings. Indeed, instead of storing all strings of total
length nl we can store the SCS and n pointers indicating the beginning of an original
string plus length of all strings. However, this does not provide optimal compression
(which is known to be the entropy H). Show this, compute the compressionn ratio Cn

which is defined as the ratio of the number of bits needed to transmit the compression
code to the length of the original set of strings. It is easy to see that

Cn =
nl − (1/H)n log n+ n log2(nl − (1/H)n log n)

nl
where the first term of the numerator represents the length of the Shortest superstring
and the second term corresponds to the number of bits needed to encode the pointers.
Observe that when the length of a string l grows faster than log n, then Cn → 1,
that means no compression. When l = O(log n) some compression might take place.
The fact that SCS does not compress well is hardly surprising: in the construction of

66 CHAPTER 7. GREEDY ALGORITHMS FOR THE SCS PROBLEM

SCS we do not use all available redundancy of all strings but only that contained in
suffixes/preffixes of original strings.

7.5 Graph processes

In this section some graph algorithms, that correspond to GREEDY and RGREEDY
are presented. But before them,
First, we show that a pair i, j such that o(xi, xj) ≥ l/2 unlikely exists. Let ε denote
the event that there is no such pair. If l = K log n, then

P (¬ε) ≤ n(n− 1)

2

lX

k=l/2

P k = O(n2+(K log P)/2)) = o(1)

provided K ≥ −4/ log P .

7.5.1 RGREEDY

Consider a tree process that is equal to RGREEDY. Tree T be an infinite rooted M-
ary tree. M (size of an alphabet) edges leading down from each vertex will be labeled
with ω1, ω2, ...ωM . Thus, each vertex of depth d is identified with string of length d.
Also, label each vertex v with an integer v(v), number of strings that have the prefix
associated with this vertex.
We model the process of RGEEDY in the following way: particle Z starts at the root.
Then at a vertex v it moves to v’s ωj descendent with probability pj . The particle
stops at depth l/2. Let ω = sksk−1...s1be the lowest vertex on the path traversed that
has a nonzero v. This process models the computation of the largest suffix sksk−1...s1
of z which can be merged with a prefix of ai.
Then we model the deletion of at = a1a2...al/2 which has the prefix a1a2...ak. Let
ωi = a1a2...ai. Put v(ωi) = max{0, v(ωi)− 1} for 1 ≤ i ≤ l/2.
We iterate the above process n − 1 times.

7.5.2 GREEDY

Let D be the digraph ([n], A) with edge weights ωi,j = o(bi, aj) for i, j ∈ [n].
Sort the edges A into e1, e2, ..., eN , where N = n2, so that ω(ei) ≥ ω(ei+1);
SG ← ∅;
For i = 1 to N do: if SG∪{ei} contains in D neither a vertex of outdegree or indegree
at least 2 in SG, nor a directed cycle, then SG ← SG ∪ {ei}.
After termination SG contains n − 1 edges of a Hamilton path of D and corresponds
to superstring x1,x2, . . . , xn. The selection of an edge weight (bi, aj) corresponds to
overlaping xi to the left of xj .

Chapter 8

Analysis of Pattern
Occurances
Roland Aydin

This paper will summarize the proof for the formula to compute the
expected number of occurrences of a given pattern H in a text of size n.
The intuitive solution of E[On(H)] = P (H)(n −m + 1) will be verified
utilising generating functions. Frequency analysis will rely on the decom-
position of the text T onto languages, the so-called initial, minimal, and
tail languages. Going from there to their generating functions both for
a Markovian and a Bernoulli environment, the formula will be shown to
work due to properties of the respective generating functions.

8.1 Preliminaries

Markov sequence

A sequence X1, X2, ... of random variates is called a Markov sequence of order 1 iff,
for any n,

F (Xn|Xn−1, Xn−2, ...X1) = F (Xn|Xn−1)

i.e., if the conditional distribution F of Xn, assuming Xn−1, Xn−2, ...X1 equals the
conditional distribution F of Xn assuming only Xn−1.

Markov chain

If a Markov sequence of random variates Xn take the discrete values a1, ..., aN then

P (xn = ain|xn−1 = ain−1, ..., x1 = ai1) = P (xn = ain|xn−1 = ain−1)

and the sequence xn is called a Markov chain of order 1.

Correlation of patterns

A correlation of two patterns X (size m) and Y is a string, denoted by XY , over the
set Ω = {0, 1}.

|XY | = |X|

67

68 CHAPTER 8. ANALYSIS OF PATTERN OCCURANCES

Each position i can be computed as

i = 1⇔ place Y at Xi ∧ all overlapping pairs are identicalelse i = 0

Example of pattern correlation

Let Ω = {M,P}, X = MPMPPM and Y = MPPMP . Then XY can be deduced
in the following manner:

whilst Y X can be shown to equal 00010

Representation of the correlation

Other representations of either string:

1. as a number in some base t. Thus, e.g. XY2 = 9

2. as a polynomial. Thus, e.g. XYt = t3 + 1

Autocorrelation

Furthermore, autocorrelation of X can be defined as XX. It represents the periods of
X, i.e. those shifts of X that cause that pattern to overlap itself. Using Y = MPPMP
from our previous example, Y Y evaluates to 10010 Using A = MMM , AA evaluates
to 111

Autocorrelation set

Given a string H, the autocorrelation set AHH or just A is defined as

AHH = {Hm
k+1 : Hk

1 = Hm
m−k+1}

Example of an autocorrelation set

Let H = SOS The autocorrelation reveals to be

HH = 101

whereas the autocorrelation set in that case is

A = {ε, 01}

8.2. SOURCES 69

Let’s play a game

The Penny game - invented by Penney.

Each player chooses a pattern.

They then flip a coin until the pattern comes up consecutively. The player who chooses
only one symbol (k times), has a chance to win of at least 0.5 This is because of the
”optimal” autocorrelation.

8.2 Sources

Bernoulli

A Bernoulli Source, or memoryless source, generates text randomly.

Every subsequent symbol (of a finite alphabet) is created independently of its prede-
cessors, and the probability of each symbol is not necesserily the same.

If it is, the Source is called a symmetric, or unbiased Bernoulli Source.

If text over an alphabet S is generated by a Bernoulli Source, then each symbol s ∈ S
always occurs with probability P (s).

Markovian Source

A Markovian Source generates symbols based not on the a priori probability of each
symbol.

Instead, it only heeds a (finite) set of predecessors to ascertain the probability of each
next symbol.

In order to do so, it requires a memory of previously emitted symbols.

Text generated by a Markovian Source is a realization of a Markov sequence of order
K.

K denotes the number of previous symbols that the probability of the next symbol
depends on.

In our application, this sequence will be stationary and K = 1, i.e. a first-order
Markov sequence.

When computing the next symbol, we only need to observe the last symbol.

In our case (K = 1), the transition matrix is defined by

P = {pi,j}i,j∈S

where

pi,j = Probability (tk+1 = j|tk = i)

The matrix entry (i, j) denotes the conditional probability of the next symbol being j
if the current symbol is i.

8.3 Generating functions of languages

What is a language, after all

A language L is a collection of words.

This collection must satisfy certain properties to belong to a specific language.

Thus, we can associate with a language L its generating function L(z).

70 CHAPTER 8. ANALYSIS OF PATTERN OCCURANCES

Generating functions

Given a sequence {an}n≥0, we know its generating function is defined as

A(z) =
X

n≥0

anz
n

For sinister purposes, we represent it differently as

A(z) =
X

α∈S

zw(α)

where S is a set of objects (words ...) and w(α) is a weight function.
Henceforth we will interpret it as the size of α, i.e. w(α) = |α|
The equivalence becomes evident when we set an to be the number of objects α
satisfying w(α) = n. Now we have a more combinatorial view

Generating function of a language

Now, for any language L, we define its generating function L(z) as

L(z) =
X

w∈L

P (w)z|w|

where P (w) is the probability of word w’s occurence and |w| is the length of w.
So the coefficient of z|w| is the sum of the probabilites all words of that length.
In addition, we assume that P (ε) = 1. So every language includes the empty word (as
we know).

Conditional generating function

In addition, the H-conditional generating function of L is given as

LH(z) =
X

w∈L

P (w|w−m = h1 . . . w−1 = hm)z|w|

=
X

w∈L

P (w|w−1
−m = H)z|w|

where w−i is the symbol preceding the first character of w at distance i.
We use this definition for Markovian sources, where the probability depends on the
previous symbols.

Example: autocorrelation generating function

In our previous example, the autocorrelation set was

A = {ε, 01}

The generating function of the set is

A(z) = 1 +
z2

4

given a Bernoulli source, and

ASOS(z) = 1 + pSOpOSz
2

given a Markovian source of order one.

8.4. DECLARING LANGUAGES 71

Formulating our objective

We will now formulate the special generating functions whose closed form we will later
strive to compute:

1. T (r)(z) =
P

n≥0 Pr(On(H) = r)zn

2. T (z, u) =
P∞

r=1 T
(r)(z)ur =

P∞
r=1

P∞
n=0 Pr(On(H) = r)znur

8.4 Declaring languages

Introduction

Let H be a given pattern.

• The initial language R is the set of words containing only one occurrence of H,
located at the right end.

• The tail language U is defined as the set of words u such that Hu has exactly
one occurrence of H, which occurs at the left end.

• The minimal language M is the set of words w such that Hw has exactly two
occurrences of H, located at its left and right ends.

Component languages

We differentiate several special languages, given a pattern H. ”·” stands for concate-
nation of words.

1. R = {r : r ∈ T1 ∧H occurs at the right end ofr}
2. U = {u : H · u ∈ T1}
3. M = {w : H · w ∈ T2 ∧H occurs at the right end of H · w}

8.5 Language relationships

Qualities of Tr

At first, we will try to describe the languages T and Tr in terms of R, M and U :

∀r ≥ 1 :

Tr = R ·Mr−1 · U

Composition proof (Tr)

Proof:

First occurance of H in a Tr word determines the prefix p

which is in R.

From that prefix on, we look onward until the next occurance of H.

The found word w is ∈ M .

After r − 1 iterations, we add a H-devoid suffix, which is in U , because its prefix has
H at the end.

2

72 CHAPTER 8. ANALYSIS OF PATTERN OCCURANCES

Qualities of T

The ”extended” version of Tr, its words including an arbitrary number of H occur-
rences, can be composed similarily:

T = R ·M∗ · U
where M∗ :=

S∞
r=0M

r

Composition proof (T)

Proof:
A word belongs to T , if for some 1 ≤ r <∞ it belongs to Tr.
As
S∞

r=1M
r−1 =

S∞
r=0M

r = M∗, the assertion is proven.

2

Four language relationships

Analyzing the relationships between M, U and R further, we introduce

1. W , the set of all words

2. S, the alphabet set

3. the operators ”+” and ”-”, which denote disjoint union and language subtraction

Four language relationships I
[

k≥1

Mk = W ·H + (A− {e})

Proof:
←:
Let k be the number how often H occurs in W ·H.
k ≥ 1.
The last occurrence of H in every included word is on the right.
That means, that W ·H ⊆ Sk≥1 M

k.
→:
Let w ∈ Sk≥1 M

k.
Iff |w| ≥ |H|, then surely the inclusion is correct.
Iff |w| < |H| (how can that be?), then w /∈ W ·H.
But then, necessarily, w ∈ A − {ε}, because the second H in Hw overlaps with the
first H by definition (it is element of Mk), so w must be in the autocorrelation set A.

2

Four language relationships II

U · S = M + U − {e}
Proof:
All words of S consist of a single character s.
Given a word u ∈ U and concatenating them, we differentiate two cases.
If Hus contains a second occurrence of H, it is clearly at the right end. Then us ∈M .
If Hus does contain only a single H, then us must be non-empty word of U .

2

8.6. LANGUAGES & GENERATING FUNCTIONS 73

Four language relationships III

H ·M = S · R− (R −H)

Proof: →: Let sw be a word in H ·M , s ∈ S (we can write every such word in this
way WLOG).

sw contains exactly two times H, evidently at its left, and also at its right end. Thus,
sw is also ∈ S ·R
←: If a word swH from S ·R is not in R, then because it contains a second H starting
at the left end of sw, because wH ∈ R. Of course, in that case it is ∈ H ·M .

2

Four language relationships IV

T0 ·H = R ·A

Proof:

Let wH be ∈ T0 ·H. Then there can be either be one or more occurences of H in wH,
one of which is at the right end.

If there is no second one, then wH is ∈ R by definition of R

If, however, there is a second one, then it overlaps somehow with the first one.

So we view the word until the end of the first H, which is in R. Due to the overlapping,
the remaining part is ∈ A.

2

One more

Combining relationships II and III yields

H · U · S −H · U = (S − ε)R

No proof is necessary, as we have validated both ingredients.

Using II, the left side is H(U · S − U) = H ·M
The right side is

S ·R −R = S ·R − (R ∩ S ·R) = S ·R − (R −H)

Together, that is just relationship III.

8.6 Languages & Generating Functions

in the bernoulli environment

We will now transcend from languages to their generating functions. Given any lan-
guage L1, we know its generating function to be

A1(z) =
X

w∈L1

P (w)z|w|

74 CHAPTER 8. ANALYSIS OF PATTERN OCCURANCES

So what is the the result of multiplying two languages (i.e. concatenating them) in
respect to their gen. func.? What is L3 = L1 · L2?

A3(z) =
X

w∈L3

P (w)z|w|

=
X

w∈L1∧w∈L2

P (w1)P (w2)z
|w1|+|w2|

=
X

w∈L1

P (w1)z
|w1|

X

w∈L2

P (w2)z
|w2|

= A1(z)A2(z)

! The assumption P (wv) = P (w)P (v) only holds true with a memoryless source.

Special Cases

A few particular cases:

• S (alphabet set) ⇒ S(z) =
P

s∈S P (s)z|s| = z

• L = S · L1 ⇒ L(z) = zL1(z)

• {ε} ⇒ E(z) =
P

w∈{ε} P (w)z|w| = 1 · 1 = 1

• H ⇒ H(z) =
P

w=H P (H)z|H| = P (H)zm

• W (the set of all words) ⇒W (z) =
P
P (w)z|k| =

P

k≥0 z
k = 1

1−z

8.7 Looking for Generating Functions

Translating I

We will now attempt to translate our known language relationships into generating
functions: In case I only, the formula we derive is correct just for a memoryless source.

[

k≥1

Mk = W ·H + (A− {e})

∞X

k=1

MH(z)k = W (z) · P (H)zm +AH(z)− 1

∞X

k=0

MH(z)k − 1 =
1

1− z · P (H)zm +AH(z)− 1

1

1−MH(z)
=

1

1− z · P (H)zm +AH(z)

Translating II

U · S = M + U − {e}
U · S − U = M − {e}

UH(z)z − UH(z) = MH(z)− 1

UH(z)(z − 1) = MH(z)− 1

UH(z) =
MH(z)− 1

(z − 1)

8.8. MAIN FINDINGS I 75

Translating III

H ·M = S · R− (R −H)H ·M −H = S · R−R
P (H)zmMH(z)− P (H)zm = S(z) ·R(z)−R(z)

P (H)zm(MH(z)− 1) = R(z)(z − 1)

R(z) = P (H)zmMH(z)− 1

z − 1

R(z) = P (H)zmUH(z)

8.8 Main findings I

T (r)(z)

We remember, that for r ≥ 1

Tr = R ·Mr−1 · U
We have now gleaned every component, and can translate it (for r ≥ 1) into

T (r)(z) = R(z)Mr−1(z)UH(z)

T (z, u)

We do also remember, that

T = R ·M∗ · U
As T is the language with any number of Hs, its generating function is indeed ...

T (z, u) = R(z)
u

1− uMH(z)
UH(z)

8.9 On to other shores

What is left to do?

We still have no formula of gathering On(H), i.e. the frequency of H-occurrences
(|H| = m) in random text of length n over an alphabet S with |S| = V .

Let us make an educated guess, though. What we do not know, is how important
overlapping is. Assuming to disregard that topic, the answer could be

E[On(H)] = P (H)(n−m+ 1)

It is.

But why?

Using derivatives

Looking at our bivariate generating function of T ,

T (z, u) =
∞X

r=1

∞X

n=0

Pr(On(H) = r)znur

76 CHAPTER 8. ANALYSIS OF PATTERN OCCURANCES

we notice that we would like the two sums to be reversed. Deriving it after u ...

Tu(z, u) =
∞X

r=1

∞X

n=0

Pr(On(H) = r)znr (=#Occ) ur−1

... and setting u to 1 leads to ...

Tu(z, 1) =

∞X

n=0

(

∞X

r=1

Pr(On(H)r)zn

Proof Preparations

To shorten things, we introduce

DH(z) = (1 − z)AH(z) + zmP (H)

and rewrite MH(z) as

MH(z) = 1 +
z − 1

DH(z)

as well as

UH(z) =
1

DH(z)

and

R(z) = zmP (H)
1

DH(z)

Deriving the closed form formula (1)

Tu(z, u) = R(z)UH(z)
u

(1− uMH)

d

du

= R(z)UH(z)
(1− uM) + uM

(1− uMH)2

= R(z)UH(z)
1

(1− uMH)2

Deriving the closed form formula (2)

u is now set to 1 due to the previous calculus:

Tu(z, 1) = R(z)UH(z)
1

(1−MH)2

= R(z)UH(z)(1− 1 +
z − 1

DH(z)
)−2

= R(z)UH(z)
DH(z)2

(z − 1)2

= R(z)
1

DH(z)

DH(z)2

(z − 1)2

= zmP (H)
1

DH(z)

DH(z)

(z − 1)2

=
zmP (H)

(z − 1)2

8.9. ON TO OTHER SHORES 77

Main findings II

As the text has length n, we are extracting the nth coefficient of Tu(z, 1), and voilà

E[On] = [zn]Tu(z, 1)

= P (H)[zn]zm(1− z)−2

= P (H)[zn−m](1− z)−2

= (n−m+ 1)P (H)

About certainty

the variance of E(On(H) is, for a r > 1:

V ar[On(H)] = nc1 + c2 +O(r−n)

where

c1 = P (H)(2AH(1) − 1 − (2m− 1)P (H) + 2P (H)E1))

c2 = P (H)((m− 1)(3m− 1)P (H)− (m− 1)

(2AH(1)− 1) − 2A′
H(1))− 2(2m− 1)

(P (H)2E1 + 2E2P (H)2

E1, E2 are

E1 =
1

πh1

[(P −Π)Z]hm,h1E2 =
1

πh1

[(P 2 −Π)Z2]hm,h1

Without going into detail (cf. literature references), we see that the Variance depens
mainly on the length of the text plus a constant.

78 CHAPTER 8. ANALYSIS OF PATTERN OCCURANCES

Chapter 9

Rice’s integrals – a method
for solving generalized
differences
Thomas Preu

Often in the analysis of algorithm and data structures we have the need
to estimate the asymptotic growth of differences and sequences defined by
recurrence equations. But often we don’t know the explicit representa-
tion of the solutions. Therefor we need methods, which we can establish
asymptotics without knowing the exact representation. Rice’s integral is
such a method. In this paper we will introduce basics in complex analysis
and develope the mathematic foundations needed in theoretical computer
science. The paper is based on the lecture ”Analysis 4” held by Prof. W.
Heise in 2003 at the TU München and an article by Flajolet et al. [FS95].

9.1 Basics of Complex Analysis

9.1.1 Complex Differentiability

In the whole of this paper, we will have to deal massivly with complex analysis. As
complex analysis is often seen as a discipline of pure mathematics, most people working
in computer science, even in theoretical computer science, have not heard much about
it. So I will give a rough introduction to it and present the needed theorems. It is
assumed that the reader has basic knowledge of real analysis, e.g., knows what a real
function is, what continuity and differentiablity means, and , what complex numbers
are.

First of all we consider a complex mapping on an open set E

f : E ⊂ C→ C, z = x+ yi 7→ f(z) = u(x, y) + iv(x, y) (9.1)

This mapping is said to be continous, if the correspondig 2-dimensional mapping

g : E′ ⊂ R
2 → R

2, (x, y) 7→ (u(x, y), v(x, y)) (9.2)

is continous in the sense of multidimensional real analysis.

79

80 CHAPTER 9. RICE’S INTEGRALS

If g is differentiable at (x0, y0), we have the derivative

A :=

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

!

x=x0,y=y0

(9.3)

and A is a linear mapping with the property

∀(x, y) ∈ E′ : g(x, y) = g(x0, y0) +A ·
„
x− x0

y − y0

«

+B(x− x0, y − y0) (9.4)

where B is a mapping with B(0, 0) = (0, 0)T and lim
(x,y)→(0,0)

B(x,y)
|(x,y)| = (0, 0)T which, of

course, implies continuity at (0, 0)
As a linear mapping E ⊂ C→ C is in fact a complex multiplication, the natural way
to introduce complex derivatives, is trying to find a complex number f ′(z0), which
acts the same way as A in (9.4):

∀z ∈ E : f(z) = f(z0) + f ′(z0) · ((x− x0) + i(y − y0)) + b((x− x0) + i(y − y0)) (9.5)

where b is a complex mapping with b(0) = 0 and lim
z→0

b(z)
|z| = 0. If such a number f ′(z0)

exists, f is said to be complex differentiable at z0.
Now we compare the matrix-vector-multiplication with the product of two complex
numbers: „

a1,1 a1,2

a2,1 a2,2

«

·
„
x1

x2

«

=

„
a1,1x1 + a1,2x2

a2,1x1 + a2,2x2

«

(9.6)

(a1 + ia2)(x1 + ix2) = (a1x1 − a2x2) + i(a2x1 + a1x2) (9.7)

we get the correspondence a1,1 = a1 = a2,2 and a1,2 = −a2 = a2,1

From this, it is plausible that a real function R
2 → R

2 understood as a complex
function is complex differentiable, iff ux = vy and uy = −vx. These equations are
known as the Cauchy-Riemann Differential Equation (CRDE).
As a result, we have that every complex differentiable function is differentiable in a real
sense, but a real differentiable function is only complex differentiable, if the CRDEs
are satisfied. So complex differentiability is somewhat stronger.

Definition 9.1. A complex mapping f , as introduced in (9.1), is said to be differen-
tiable at a point z0 ∈ E with derivative f ′(z0), iff (9.5) holdes for some appropriate
b.

Definition 9.2. The complex mapping f is said to be holomorphic at a point z0 on
E, iff f is complex differentiable at any point of a neighbourhood F ⊂ E of z0, which
is more than just complex differentiable at z0.

Definition 9.3. The complex mapping f is said to be holomorphic on an open set
F ⊂ E, iff f is holomorphic at any point z0 ∈ F .

In fact, when evaluating complex derivatives, not many changes occur; e.g. (zn)′ =
nzn−1, (ez)′ = ez or (sin(z))′ = cos(z)

9.1.2 Integration

In real analysis we integrate over intervalls, where the integral is a limit of sums. These
sums take into account the values of the function and the length of the parts of the
discretisation of the intervall. The discretisation Z gets ”finer” in the sense, that the
longest part tends to 0:

Z b

a

f(x)dx = lim
n→∞,|Zn|→0

nX

k=0,xn,k∈[zn,k,zn,k+1]

f(xn,k)(zn,k+1 − zn,k) (9.8)

9.1. BASICS OF COMPLEX ANALYSIS 81

where zn,0 = a < zn,1 < . . . < zn,n < zn,n+1 = b for every n
In some way, we walk along the intervall from a to b, picking some points, where
we examine the function closer, and get a number from this process. Of course, it
shouldn’t be important, whether we are faster or slower while “walking”. This is
expressed by the substitution formula:

bZ

a

g(γ(s))γ′(s)ds =

dZ

c

g(t)dt (9.9)

where γ : [a, b]→ [c, d] is piecewise differentable and monotonous and g : [c, d]→ R is
piecewise continous. In γ we have the information how fast we are on the intervall at
each point of the parametrisation.
In a similar way we can integrate “along” a piecewise differentiable curve γ : R →
C; t 7→ γ(t); we can think of C as R

2. In this situation γ is called an integration
path. An integral of a complex function is the sum of the integrals of the real and the
imaginary part, so for a complex function f we get1:

Definition 9.4. The integral of a complex function f along a curve γ is:
Z

γ

f(z)dz =

Z b

a

f(γ(t)) · γ′(t)dt =

Z b

a

R
`
f(γ(t)) · γ′(t)

´
dt+ i

Z b

a

I
`
f(γ(t)) · γ′(t)

´
dt

(9.10)

For example we have the curve γ : [0, 2π]→ C; t 7→ eit which is a circle of radius 1 and
center 0 and f(z) = 1

z
.

Z

γ

dz

z
=

Z 2π

0

1

eit
· ieitdt =

Z 2π

0

idt = 2πi (9.11)

Some properties of real integrals can be copied almost literarily:
The length of a path of integration is

Λ(γ) =

Z b

a

˛
˛γ′(t)

˛
˛ dt =

Z b

a

p

(Rγ′(t))2 + (Iγ′(t))2dt (9.12)

For a piecewise continous f : [a, b]→ C:
˛
˛
˛
˛

Z b

a

f(t)dt

˛
˛
˛
˛ ≤

Z b

a

|f(t)| dt (9.13)

For f , continous on the image of a path of integration γ and M the maximum absolute
value of f on that image, we have:

˛
˛
˛
˛

Z

γ

f(t)dt

˛
˛
˛
˛ ≤M · Λ(γ) (9.14)

So far we have always considered curves and not their images as domain of integration.
But the following result shows, that somehow only the domain is important. For
this purpose we call a surjective, piecewise continous differentiable, real function φ
a parameter transform, iff for all points of its domain, where φ is differentiable, the
derivative is greater than 0.

Theorem 9.1. If φ : [c, d] → [a, b] is a parameter transform and γ1 : [a, b] → C an
integration path, then γ2 = γ1 ◦ φ : [c, d] → C is also a path of integration and for a
function f continous on the image of γ1 we have:

Z

γ1

f(z)dz =

Z

γ2

f(z)dz (9.15)

1Note, that we integrate along a curve in the first place and not the image of the curve.

82 CHAPTER 9. RICE’S INTEGRALS

Although the proof is simple, we won’t state it here. The essence of this theorem is,
that the speed, at which we follow the line defined by a curve, is not important for
the value of the integral – as long as we follow the line ”smooth” enough, i.e. we don’t
”jump” around and we don’t stay to long at one point.

Definition 9.5. For a continous function f on an open set E ⊂ C we call F : E → C

the antiderivative of f , if F is holomorphic on E and F ′ = f . f is said to have local
antiderivatives, if for each z0 ∈ E there exists a neighbourhood G ⊂ E of z0, so that
there exists a holomorphic F with F ′ = f on G.

9.1.3 Holomorphic functions and the Cauchy Integral The-
orem

Holomorphic functions do have many nice properties. The proofs are often sophisti-
cated and technical, so we will again omit them.

Definition 9.6. A complex function f is said to be analytic at a point z0 if there exists
a neighbourhood G of z0, for example an open circle, such that f has a powerseries
expansion, which converges for some radius R. f is said to be analytic on an open set,
if it is analytic on every point of this set.

Theorem 9.2. For a continous function f on a domain2 E the following statements
are equivalent:

1. f is holomorphic

2. f has local antiderivatives

3. f is differentiable in the real sense and obeys the CRDEs

4. f is analytic

Since powerseries can be differentiated without any loss in their convergent domain,
this shows, that holomorphic function are arbitrarily often differentiable – at least in
a local sense; but since we can cover domains with circles we can connect the domains
of definition of these derivatives and get one derivative for the whole domain of a
holomorphic function. This is an outstandig property of holomorphic functions: in
real analysis a function can be differentiable but doesn’t have to be for a second time;
in complex analysis a function, which is differentiable on an open set, is arbitrarily
often differentiable.
Since powerseries are more or less Taylor series, holomorphic functions are completly
defined by only one point – if you know all higher order derivatives at just one point.
Another interesting property similar to that is, when you know the function at count-
able many points, which cluster at one point, then the holomorphic functions is also
defined uniquely. All this has the consequence, that whenever we have a holomorphic
function on a certain domain, then possible holomorphic extensions are again unique
– so restrictions of functions to a domain which is too small for our purpose is no
problem because we just extend the function to wherever we want, at least if no poles
hinder us.

Theorem 9.3. Let E be a convex domain and Z ⊂ E a set of points without cluster
points. If f : E → C is continous and holomorphic on E \ Z then for every closed
(meaning γ(a) = γ(b)) path of integration γ : [a, b]→ C the following holds:

Z

γ

f(z)dz = 0 (9.16)

2a domain is a connected, open set; those, who have never heard of connectivity, can
imagine this as a set, in which from every point to every other point there exists a path –
despite this is called path connectivity and is stronger than sole connectivity, it is enough to
get an idea of it.

9.1. BASICS OF COMPLEX ANALYSIS 83

This is the Cauchy integral theorem3 and is something like the fundametal theorem of
integral and differential calculus: if you have two paths from x to y you can put these
two together to form a closed path, by altering the direction of one of those paths;
so their integral is zero. Since the alternation means a change in sign4, this means
that the integrals along the two paths for each of them have the same value, and the
integral itself does only depend on the starting and end point of integration.
At least if the function is holomorphic “enough” and the domain is convex – the
later can be extend to so called simple connected domains, witch is roughly speaking
connected and “without holes”.

9.1.4 Cauchy integral formula and residue calculus

Next we will state the Cauchy integral formulas5 and formulate the residue theorem,
which will be the central tools used in solving Rice’s integrals.

Theorem 9.4. Let U be an open disc in a domain E with U ⊂ E6 and we denote a
positivly oriented boundary of U with ∂U 7. Let f : E → C be holomorphic, then the
following statement hold:

∀z ∈ U : f(z) =
1

2πi

Z

∂U

f(ζ)

ζ − z dζ (9.17)

∀z ∈ U : f (n)(z) =
n!

2πi

Z

∂U

f(ζ)

(ζ − z)n+1
dζ (9.18)

∀z ∈ E \ U : 0 =
1

2πi

Z

∂U

f(ζ)

ζ − z dζ (9.19)

There are some generalisations of the CIT and CIF for general paths (not only circles
and points can be encircled more than once). Their mathematical exact presentation
would need some unnecesary complicated definitions. The main result is however,
that the circle in the CIF can be deformated ”continously” arbitrarily as long as the
path doesn‘t cross the singularity z. We can even encircle z more than once, but the
integral will than be an integer multiple of integral, whose path does encircle z only
once, according to the number how often and in what direction z is encircled.
Untill now we had only considered polynomial singularities with the CIF. But the
concept of integrating around singularities can be extended.
As stated above every function that is holomorphic can be expressed as a powerseries.
There exists a generalisation of this concept, which is called Laurent series. Laurent
series have the form

∞X

n=−∞
an(z − z0)n (9.20)

It can be shown that under certain conditions f can be expressed within some disc
partialy containing E and whose boundary is in E entirely as a Laurent series. Here
f must be defined on a domain E for every point z0, for which a path in E exists that
encircles z0.
In the following we consider holomorphic functions f which have isolated singularities;
this means roughly speaking, that the domain of definition doesn’t have any holes
beside some points and these points do not cluster.

3further denoted with CIT
4this can easily be checked by considering the substition formula
5further denoted with CIF
6U indicates the closure of U in the standard topology on C
7a positivly oriented boundary of a disc is a path (this means a special curve and not a

set) starting from one point at the boundary then encircles the disc counterclockwise untill it
returns for the first time to the starting point – this means it is a closed path

84 CHAPTER 9. RICE’S INTEGRALS

Definition 9.7. The coefficient at n = −1 of a Laurent series of a holomorphic
function f with isolated singularities of type (9.20) is called the residue at z0: Res

z0

(f) =

a−1

It can be shown8 that there exists an ε, such that a circle Uε(z0) with radius ε small
enough and center z0 has the property Uε(z0) \ {z0} ⊂ E and that

Res
z0

(f) =
1

2πi

Z

∂Uε(z0)

f(z)dz (9.21)

Taking into account the CIT this yields the residue theorem9:

Theorem 9.5. Let E be an open set and U an open disc with E ⊂ U . Let, for some
n ∈ N0, f be holomorphic on E \ {z1, . . . , zn}. Then

1

2πi

Z

∂U

f(z)dz =
nX

k=0

Res
zk

(f) (9.22)

This is an extension of the CIT. It can even be extended to the case, where U is not
a circle in U and even if U is not bounded, as long as the singularities are isolated in
the encircled domain. This finishes our short introduction to complex analysis.

9.2 Other mathematical formulas

9.2.1 The Gamma function

The Gamma function is a generalisation of the factorial to complex numbers – one of
its definitions is

Γ(s) :=

Z ∞

0

e−tts−1dt (9.23)

It satisfies the relations:

∀n ∈ N0 : Γ(n) = (n− 1)! ∀x ∈ C \ −N0 : Γ(x+ 1) = xΓ(x) (9.24)

A direct consequence is:
nY

i=0

(s− i) =
Γ(s+ 1)

Γ(s− n)
(9.25)

The Gamma function is holomorphic on its domain C \ −N0; at the negativ integers
it diverges.
An estimate for the growth of the Gamma function is the so called Stirling formula:

Γ(x) =
√

2πxx− 1
2 e−x

„

1 +O(
1

n
)

«

(9.26)

The following formula, which is a direct consequence of the Stirling formula is the
standard estimate:

Γ(n+ 1)

Γ(n+ 1− α)
= nα

„

1 +O(
|a|2
n

)

«

(9.27)

It can be shown that

lim
n→∞

nX

i=1

1

i
− ln(n)

!

=: γ ≈ 0.577 (9.28)

8in fact, this is a direct consequence of the structure of the Laurent series and the fact that
∀n ∈ Z \ {−1} :

R

γ zn = 0 if γ is a closed path
9again the proof is quiet obvious and the idea simple, if you are used to complex analysis,

but if exactly formulated very technical

9.3. MOTIVATION AND BASIC INTEGRALS 85

This γ is known as Eulers constant.
Using this, another result is:

Γ′(x)

Γ(x)
= −γ − 1

x
−

∞X

k=1

„
1

x+ k
− 1

k

«

(9.29)

The proofs of all the statements above are wonderful perls of mathematical analy-
sis. But as with all perls, you have to dive deep to find them, so the proofs are far
from trivial and we omit them all. The Gamma function does have many other nice
properties – but we won’t need them.

9.2.2 Zeta functions and Modified Bell Polynomials

The so called incomplete Hurwitz ζ function is:

ζn(r, β) =
n−1X

i=0

1

(i+ β)r
(9.30)

ζn(r, 1) defines the generalized harmonic numbers ζn(r) and their limit (n → ∞) is
the famous Riemann ζ function.
From (9.29) it follows, that

ζn+1(1, β) = ln(n)− Γ′(β)

Γ(β)
+O(

1

n
) (9.31)

The modified Bell polynomials Lm = Lm(x1, x2, . . . , xm) are defined as

exp

 ∞X

k=1

xk
tk

k

!

= 1 +

∞X

m=1

Lmt
m (9.32)

It is rather technical than difficult to proof that in general

Lm(x1, x2, . . .) =
X

1m1+2m2+...=m

1

m1!m2! . . .

“x1

1

”m1
“x2

2

”m2

. . . (9.33)

and to get an idea of them, we have

exp

 ∞X

k=1

xk
tk

k

!

= 1 + x1t+

„
x2

2
+
x2

1

2

«

t2+

„
x3

3
+
x1x2

2
+
x3

1

6

«

t3 +

„
x4

4
+
x1x3

3
+
x2

2

8
+
x2x

2
1

4
+
x4

1

24

«

t4 + . . . (9.34)

9.3 Motivation and Basic Integrals

First we will introduce generalized differences for a sequence {fk}k∈N0
:

∆fn = fn+1 − fn ∆nf0 =
nX

k=0

„
n
k

«

(−1)n−kfk = (−1)nDn [f] (9.35)

The differences Dn arise often in the average case analysis of some data structures as
search trees or tries. As a naive bound we get:

|Dn [f]| ≤ 2n max
0≤k≤n

|fn| (9.36)

86 CHAPTER 9. RICE’S INTEGRALS

But for many sequences fn that come across in data structure analysis this bound
is way to rough and polynomial bounds can be found – this phenomenon is called
exponential cancelation.
In the analysis of recurrent sequences generating functions are often used to simplify
and solve the relations. For example the exponential generating is

f(z) =

∞X

n=0

fn
zn

n!
(9.37)

and Poisson generating function is defined by

f̂ (z) =
∞X

n=0

fne
−z z

n

n!
(9.38)

We consider the transform fn 7→ gn = Dn [f]. Substitution in the exponetial generat-
ing function or the Poisson generating function respectively yields the equations

g(z) = ezf(−z) ĝ(z) = e−zf̂ (−z) (9.39)

So it can be supposed, that when these transforms induce drastical simplifications of
recurences or difference equations, high order differences as Dn may play a significant
role.
We assume in the following, that a holomorphic function φ(x) interpolates the values
of the sequence fn, which means ∀k ∈ N0 : fk = φ(k).

Lemma 9.1. Let φ be a holomorphic function in a domain that contains the half-line
[n0,∞[and C is a positivly oriented closed path in the domain of φ, which encircles
[n0, n] and does not include any of the integers 0, 1, . . . , n0 − 1 nor a point, where φ is
not holomorphic. Then the following holds

nX

k=n0

„
n
k

«

(−1)kφ(k) =
(−1)n

2πi

Z

C
φ(s)

n!

s(s− 1) . . . (s− n)
ds (9.40)

Proof. We apply the residue theorem (9.22). Since the only points where the integrand
is not holomorphic are the integers n0, n0 + 1, . . . , n, we only have to consider these
integers. Let k be such an integer; the residues can be evaluated according to the CIF
(9.17). Then we have:

Res
s=k

φ(s)
n!

s(s− 1) . . . (s− n)
=

Res
s=k

1

s− k

„

φ(s)
n!

s(s− 1) . . . (s− k + 1)(s− k − 1) . . . (s− n)

«

= φ(k)
(−1)n−kn!

k!(n− k)!
(9.41)

Simple summation while taking the sign into account yields the proposition.

For the further discussion the definition of polynomial growth will be important:

Definition 9.8. A function φ in an unbounded domain Ω is said to have polynomial
growth, if for some r the formula |φ(s)| = O(|s|r) holds as s→∞ in Ω. r is called the
degree of φ

If the function in (9.40) is of polynomial growth in the half-plain R(s) > n0−ε for some
ε > 0 and n is sufficiently large, then we have for some n0 > c > max{n0 − ε, n0 − 1}
the representation

nX

k=n0

„
n
k

«

(−1)kφ(k) = − (−1)n

2πi

Z c+i∞

c−i∞
φ(s)

n!

s(s− 1) . . . (s− n)
ds (9.42)

9.4. INTEGRALS OF FUNCTIONS WITH POLES 87

Take as contour of integration the path

γj :

»

−j, j +
1

2

–

→ C;

(

c+ ix −j ≤ x ≤ j
c+ je−2πi(1

4
−x) j ≤ x ≤ j + 1

2

where j > n. This path is negatively oriented (so the sign changes) and we can apply
(9.40). Since for any allowed j (9.40) holds, we consider the limit j → ∞. The
first part of the path yields the integral in (9.42) and the second can be estimated as
O(|j|−n−1+r+1) using formula (9.14), since the integrand and therefor its maximum
has asymtotical growth O(|j|−n−1+r) and the length of the path is 2πj

2
. So if n is

sufficiently large the second part of the integral vanishes.

9.4 Integrals of Functions with Poles and Rep-
resentation of Sumes

9.4.1 Rational functions

Theorem 9.6. Let φ be a rational function holomorphic in a domain that contains
the half-line [n0,∞[. If n is big enough we have

nX

k=n0

„
n
k

«

(−1)kφ(k) = −(−1)n
X

s

Res
s

„

φ(s)
n!

s(s− 1) . . . (s− n)

«

(9.43)

where the sum is taken over all poles of φ and over 0, 1, . . . , n0 − 1

Proof. First we use Lemma 9.1 and take as path of integration a circle of radius R big
enough to encircle all poles. When R → ∞ and n > r the integral on the right side
of (9.40) tends to 0 by a similar argument used for (9.42). Applying once again the
residue theorem (9.22), we find that the sum on the righthand side of (9.43) minus its
lefthand side is 0, which directly yields (9.43)

As a next step we try to express the residues. For this purpose we will need the
incomplete Hurwitz zeta function and the modified Bell polynomials introduced in
(9.30) and (9.33). As every rational function can be expressed as a linear combination
of terms of the form A(x− a)−r, where r ∈ N0, we only have to consider functions φ
of this type.

Lemma 9.2. When α ∈ C \ N0, then

In(α) = (−1)nn! Res
s=α

„
1

(s− α)r

1

s(s− 1) . . . (s− n)

«

(9.44)

has the following asymptotic

In(α) = −Γ(−α)nα (lnn)r−1

(r − 1)!

„

1 +O

„
1

lnn

««

(9.45)

In the following we use the symbol 〈φ(s)〉k,α to denote the kth coefficient in the Laurent
series at a certain point α ∈ C.

88 CHAPTER 9. RICE’S INTEGRALS

Proof.

In(α) =− n!

fi

(s− α)r 1

(−s)(1− s) . . . (n− s)

fl

−1,α

=

− n!

fi
1

(−s)(1− s) . . . (n− s)

fl

r−1,α

=

− n!

fi
1

(−α− s)(1− α− s) . . . (n− α− s)

fl

r−1,0

=

− n!

fi

exp

− ln

nY

j=0

(j − α− s)
!!fl

r−1,0

=

− n!

fi

exp

−
nX

j=0

ln(j − α− s)
!fl

r−1,0

(9.46)

Since we have ln(j − α− x) = ln
“

(j − α)
“

1 + −x
j−α

””

= ln(j − α) + ln
“

1 + −x
j−α

”

, we

can apply the series expansion ln(1 + x) =
∞P

m=1

(−1)m+1 xm

m
to get

= −n! exp

−
nX

j=0

ln(j − α)

!fi

exp

nX

j=0

 ∞X

m=1

1

m

„
s

j − α

«m
!!fl

r−1,0

=

− n!
1

(−α)(1 − α) . . . (n− α)

fi

exp

 ∞X

m=1

nX

j=0

1

(j − α)m

sm

m

!!fl

r−1,0

(9.30)
=

− n!
1

(−α)(1 − α) . . . (n− α)

fi

exp

 ∞X

m=1

ζn+1(m,−α)
sm

m

!fl

r−1,0

(9.33)
=

− Γ(n+ 1)Γ(−α)

Γ(n + 1 − α)
Lr-1(ζn+1(1,−α), ζn+1(2,−α), . . . ζn+1(r − 1,−α))

(9.27)
=

− Γ(n+ 1)Γ(−α)

Γ(n+ 1− α)
Lr-1(lnn− Γ′(−α)

Γ(−α)
+O(1/n), ζn+1(2,−α), . . . ζn+1(r− 1,−α)) =

(9.47)

Since the incomplete Hurwitz zeta function fullfills ζn(r, β) = O(1) for n → ∞ and
r ∈ N \ {1} and since beside the first coefficients of the modified Bell polynomials Lm

all coefficent are of degree smaller than m all other coefficient can be neglected.

= −Γ(n+ 1)Γ(−α)

Γ(n+ 1− α)

1

(r − 1)!
(lnn− Γ′(−α)

Γ(−α)
+O(1/n))r−1 =

− Γ(n + 1)Γ(−α)

Γ(n + 1 − α)

(lnn)r−1

(r − 1)!
·
„

1 +O

„
1

lnn

««
(9.31)
=

− Γ(−α)nα

„

1−O
„

1

n

««
(lnn)r−1

(r − 1)!
·
„

1 +O

„
1

lnn

««

=

− Γ(−α)nα (lnn)r−1

(r − 1)!
·
„

1 +O

„
1

lnn

««

(9.48)

As a first example we analyze for an m ∈ N the asymtotic growth of the sum

Sn(m) =
nX

k=1

„
n
k

«
(−1)k

km
(9.49)

9.4. INTEGRALS OF FUNCTIONS WITH POLES 89

Here we can use the function φ(s) = 1
sm

to interpolate the sequence and we set n0 = 1.
We have only one pole not in {n0, n0 +1, . . . , n}, that is 0, which is of the order m+1.
We have to modify our calculations yielding (9.2), since the pole is in N0:

Sn(m) = −Res
s=0

„
1

sm+1

n

s− n
n− 1

s− n + 1
. . .

2

s+ 2

1

s+ 1

«

=

−Res
s=0

„
1

sm+1

““

1 − s

1

”“

1 − s

2

”

. . .
“

1− s

n

””−1
«

=

−
fi““

1− s

1

”“

1− s

2

”

. . .
“

1 − s

n

””−1
fl

m,0

(9.50)

Similar to the calculations taken out in (9.46) and (9.47) with the generalized harmonic
numbers ζn(k) this is

−
fi

exp

 ∞X

k=1

ζn(k)
sk

k

!fl

m,0

(9.51)

Now we can use once again the modified Bell polynomials and the facts, that ζn(k) =
ζ(k) +O

`
1

nk−1

´
for k ≥ 2 and ζn(1) = ln(n) + γ +O(1/n), which follows from (9.31)

with β = 1 and Γ′(1) = γΓ(1) to get:

− Sn(m) =
X

1m1+2m2+...=m

1

m1!m2! . . .

„
ζn(1)

1

«m1
„
ζn(2)

2

«m2
„
ζn(3)

3

«m3

. . . =

„

1 +O

„
1

n

««
X

1m1+2m2+...=m

1

m1!m2! . . .
·

„

ln(n) + γ +O

„
1

n

««m1
„
ζ(2)

2

«m2
„
ζ(3)

3

«m3

. . . (9.52)

Since the ζ(k) are constants we have for a polynomial Pm of degree m the asymtotics

−Sn(m) = Pm(ln(n)) +O

„
(ln(n))m

n

«

(9.53)

Using the values of the ζ function, we get for the first values of m

−Sn(1) = ln(n) + γ +O

„
1

n

«

(9.54)

−Sn(2) =
1

2
(ln(n))2 + γ ln(n) +

γ

2
+
π2

12
+O

„
ln(n)

n

«

(9.55)

Moreover for m = 1 we get the exact result

nX

k=1

„
n
k

«
(−1)k−1

k
= −Sn(1) = ζn(1) (9.56)

The above asymptotic equation can be generalized for m 6∈ N, as we will see later.
Another example is the sequence

Tn =
nX

k=0

„
n
k

«
(−1)k

k2 + 1
(9.57)

This sequence obeys the recurrence

T0 = 1 T1 =
1

2
Tn =

n

n2 + 1
((2n − 1)Tn−1 − (n− 1)Tn−2) (9.58)

90 CHAPTER 9. RICE’S INTEGRALS

which seams hard to solve or even estimate by conventional methods.
Since the sequence underlaying this differences can be interpolated by φ(s) = (1 +
s2)−1 = 1

s−i
+ 1

s+i
, this allows us to directly applay (9.2) using trigonometric identities

and the fact that |Γ(z)| = |Γ(z)| to get

Γ(−i)ni

„

1 +O

„
1

n

««

+ Γ(i)n−i

„

1 +O

„
1

n

««

=

(Γ(−i)ei ln(n) + Γ(i)e−i ln(n))

„

1 +O

„
1

n

««

= ρ · cos(ln(n) + θ) + o(1) (9.59)

for some θ and ρ = 2 |Γ(i)| = 2
p
π/ sinh(π) ≈ 1.04313.

This example shows, that complex poles introduce periodic behavior in the asymtotics
of a sequence.

9.4.2 Meromorphic functions

Meromorphic functions are generalisations of rational function. Meromorphic func-
tions are holomorphic on an certain domain except isolated singularities.

Theorem 9.7. Let φ be a function holomorphic in a domain that contains the half-line
[n0,∞[. If n is big enough we have

1. If φ is meromorphic on C and of polynomial growth, then

nX

k=n0

„
n
k

«

(−1)kφ(k) = −(−1)n
X

s

Res
s

„

φ(s)
n!

s(s− 1) . . . (s− n)

«

(9.60)

where the sum is taken over all poles of φ and over 0, 1, . . . , n0 − 1

2. If φ is meromorphic on the half-plane defined by R(s) ≥ d for some d < n0 and
of polynomial growth in this set, then

nX

k=n0

„
n
k

«

(−1)kφ(k) = −(−1)n
X

s

Res
s

„

φ(s)
n!

s(s− 1) . . . (s− n)

«

+O(nd)

(9.61)
where the sum is taken over all poles but n0, n0 + 1, . . . , n

Proof. Since in both cases the function is meromorphic, the number of poles are count-
able. So in the first case we can find positively oriented, concentric circles γj whose
radii tend to ∞ and do not come across any pole. In the second case we can find for
any ε > 0 a d < d′ < d + ε, such that the pathes defined by [d′ − iRj , d

′ + iRj] and
the half circle with center d′ and radius Rj don’t cross a pole and Rj tends to infinity.
Since d′ is arbitrarily close to d, we can assume d = d′. Of course, if the theorem
is used in practice, other types of paths can be used, when they have the essential
properties stated and used here.
Now we integrate along these curves and get using the residue theorem similar to
theorem 9.6 the results above. Since φ is of polynomial growth10 we can use the
arguments at (9.42) to get the asymtotics of the integrals over the ”infinite” paths.
In the first case we get 0 for n big enough to overwhelm the polynomial growth. In
the second case the O(nd) comes from the integral along the parallel to the imaginary

10in fact, it is only necessary to have polynomial growth on the union of the paths of
integration – so we don’t have to bother about poles or even infinitly many poles on our
compact set, because we just circumnavigate them; in the second case the polynomial growth
is even only needed beside a compact set, because the path of integration is not allowed to
cross a pole and then holomorphic functions do attain their maximum on a compact set, so
they can be estimated by a constant, which is trivially of polynomial growth

9.4. INTEGRALS OF FUNCTIONS WITH POLES 91

axes, as this argument illustrates (It’s not a proof – it’s just a plausibility argument;
we asume |φ(s)| = O(|s|r) for an integer r):

˛
˛
˛
˛

(−1)n

2πi

Z d+i∞

d−i∞
φ(s)

n!

s(s− 1) . . . (s− n)
ds

˛
˛
˛
˛

(9.13)

≤

1

2π

Z d+i∞

d−i∞

˛
˛
˛
˛φ(s)

n!

s(s− 1) . . . (s− n)

˛
˛
˛
˛ ds ≤

1

2π

Z d+i∞

d−i∞
|s|r

˛
˛
˛
˛

n!

s(s− 1) . . . (s− n)

˛
˛
˛
˛
ds =

1

2π

Z d+i∞

d−i∞

|s|r
|s(s− 1) . . . (s− r + 1) · (s− r)(s− r − 1)| |(n(n− 1) . . . (n − d+ 1))|

˛
˛
˛
˛

(n − d)(n− d− 1) . . . (r + 2− d)
(n − s)(n− s− 1) . . . (r + 2− s)

˛
˛
˛
˛ |(r + 2− d)(r + 1 − d)(r − d) . . . 2 · 1|−1 ds ≤

O(nd)

Z d+i∞

d−i∞

1

|s|2
ds = O(nd) (9.62)

This rough approximation holds for r + 1 − d < 0. For the other case, this argument
is not applicable, although I think, that O(nd) holds even in this case.

As our next example we want to analyze the recurrence relation

fn = an + 2

nX

k=0

„
n
k

«
1

2n
fk (9.63)

Further we will assume that a0 = a1 = 0; this is without loss of generality. Then we
use exponential generating function introduced in (9.37) to get

f(z) =

∞X

n=0

fn
zn

n!
=

∞X

n=0

an + 2

nX

k=0

1

2n

„
n
k

«

fk

!

zn

n!
=

∞X

n=0

an
zn

n!
+

∞X

n=0

2
nX

k=0

1

2n

„
n
k

«

fk
zn

n!

!

=

a(z) + 2
∞X

n=0

nX

k=0

1

2n−k(n− k)!
fk

2kk!
zk+(n−k)

!

=

a(z) + 2

 ∞X

n=0

1

2n

zn

n!

! ∞X

n=0

fn

n!

“z

2

”n
!

= a(z) + 2ez/2f
“z

2

”

(9.64)

This easily translates into the Poisson generating function via multiplication the whole
equation by e−z to get

f̂ (z) = â(z) + 2f̂
“z

2

”

(9.65)

so for the coefficients f̂n = n!〈f̂ (z)〉n,0 we have

f̂n = ân + 2
1

2n
f̂n ⇒ f̂n =

ân

1− 21−n
(9.66)

Since the equality

fn =

nX

k=0

„
n
k

«

f̂n (9.67)

holds, we get the identity respecting a0 = a1 = 0 and hence â0 = â1 = 0

fn =
nX

k=0

„
n
k

«
âk

1 − 21−k
=

nX

k=2

„
n
k

«
âk

1− 21−k
(9.68)

92 CHAPTER 9. RICE’S INTEGRALS

To proof (9.67) we first show:

f̂n = n!〈f̂ 〉n,0 = n!

fi ∞X

n=0

fne
−z z

n

n!

fl

n,0

= n!

fi ∞X

n=0

fn

∞X

k=0

(−1)k z
k

k!

zn

n!

fl

n,0

=

n!

fi ∞X

i=0

iX

j=0

(−1)j 1

j!
fi−j

zjzi−j

(i − j)!

fl

n,0

= n!

fi ∞X

n=0

iX

k=0

1

k!

1

n − k! (−1)kfn−kz
n

fl

n,0

=

(−1)n

fi ∞X

n=0

iX

k=0

n!

k!(n− k)! (−1)kfkz
n

fl

n,0

= (−1)n
iX

k=0

„
n
k

«

(−1)kfk (9.69)

Next we examine the righthand side of (9.67):

nX

k=0

„
n
k

«

f̂k =

nX

k=0

„
n
k

«

(−1)n
kX

j=0

„
n
j

«

(−1)jfj =

nX

l=0

nX

m=l

(−1)l+m

„
n
m

«„
m
l

«

fl

(9.70)

Since we want this sum to be fn, we have to show, that the inner sum is δl,n
11

nX

m=l

(−1)l+m

„
n
m

«„
m
l

«

=

nX

m=l

(−1)l+m n!

m!(n−m)!

m!

l!(l −m)!
=

nX

m=l

(−1)l+m n!

(n−m)!(l −m)!l!
=
n!

l!

nX

m=l

(−1)l+m 1

(n−m)!(l −m)!
=

n!

l!

n−lX

k=0

(−1)2l+k 1

(n − l − k)!k! =
n!

l!(n− l)!
n−lX

k=0

(−1)k (n− l)!
(n− l − k)!k! =

„
n
l

« n−lX

k=0

„
n − l
k

«

(−1)k(1)n−l−k =

„
n
l

«

(1 + (−1))n−l =

„
n
l

«

δl,n = δl,n (9.71)

Since (9.63) appears in the analysis of tries, the asymptotics of

Un =
nX

k=2

„
n
k

«
âk

1 − 21−k
(9.72)

are of great interest. The âk are usualy simple; for n ≥ 2 we get for the an = n − 1,
which appears taking a closer look to tries, ân = (−1)n. So we can apply theorem 9.7
with fk = (2k−1 − 1)−1. We have infinitly many poles at χk = 1 + 2πik

ln 2
.

We choose as path of integration circles centered at the origin, that avoid the poles
and let the radius tend to ∞. The whole analysis is carried out in Knuth’s ”Art of
computer programming”; we don’t carry it out here, but the result is:

Un =
n

ln 2

0

@ln(n) + γ − 1 − ln 2

2
+

X

k∈Z\{0}
Γ

„

−1− 2πik

ln 2

«

e2πik ln(n)/ ln 2

1

A+O(1)

(9.73)
Since the Γ function decreases rapidly along the imaginary axes the effects of the sum
can almost be neglected and we get the simplyfied asymptotic

n log2(n) + nP (log2(n)) +O(1) (9.74)

More generally regular spaced poles introduce disturbances, which asymptoticaly be-
have like Fourier series in ln(n), as seen her with P .

11This is the widly used Dirac δ symbol

9.4. INTEGRALS OF FUNCTIONS WITH POLES 93

Another example is the sum Vn =
n−1P

k=1

„
n
k

«

Bk
2k−1

, which arises in the analysis of

Patricia tries. Since Bk = 0 for k ∈ 2N + 1, the sign is not necessary, and using
Bk = −kζ(1− k) for k ∈ 2N ∪ {1}, we have to analyze the integral

Vn =
(−1)n

2πi

Z 1/2+i∞

1/2−i∞

n!

(s− 1)(s− 2) . . . (s− n)

ζ(1− s)
2s − 1

ds (9.75)

The path of integration is the infinite rectangle from 1
2
−∞ to 1

2
+∞ and from n− 3

4
+∞

to n − 3
4
−∞; but it can be shown that the integral of the second path is identical

0 for each n and so the rectangle can be extended to ∞ therefor is a variant of the
second part of theorem 9.7, where the residues are not yet evaluated.
Now we have to consider the double pole at 0 (from the ζ function and from (2s−1)−1)
and all the simple poles at χk = 2πik/ ln(2), which yields analog to the example befor

Vn =
ln(n)

ln(2)
− 1

2
− 1

ln(2)

X

k∈Z\{0}
ζ(1 − χk)Γ(1− χk)e2πik ln(n)/ ln(2) +O(1) (9.76)

There are also some other examples, where Rice’s integrals can be used succesfully;
for example digital trees or quad trees used for multidimensional searching.
In the last example the extrapolating function was just given to us, but you can
imagine that this would otherwise be a difficult task – especially with such not everyday
occuring numbers as the Bernoulli numbers. If we have coefficients which are sums or
products of other sequence αk and we can interpolate the elements of this sequence
by α(s), then we can use

An =

nY

k=1

αk ⇒ A(s) =

∞Y

k=1

α(k)

α(k + s)
An =

nX

k=1

αk ⇒ A(s) =

∞X

k=1

(α(k)−α(k+s))

(9.77)

9.4.3 Functions with Algebraic and Logarithmic Singular-
ities

Now we turn to general algebraic and logarithmic functions. The problem with these
function is that they can not to defined on C, even not with some pointwise exceptions,
but only with some uncountable exceptions. For example the complex extension of
the logarithm and the root are defined on C \]−∞, 0]12. For this reason we can not
simply integrate around the points, where the functions are not defined, because every
circle would be “slashed”, but we have to use the so called Hankel contours to get our
integration done.
Because of the difficulties that arise with this class of functions, we will only consider
examples; but the first in more detail. Since we are familiar with the sequence 1

km

from (9.49), where m was an integer, we try to generalise this to arbitrary λ, as we
indicated before.

Theorem 9.8. For any nonintegral λ, the sum

Sn(λ) =

nX

k=1

„
n
k

«

(−1)kk−λ (9.78)

has an asymptotic expansion in descending powers of ln(n) of the form

−Sn(λ) = (ln(n))λ
∞X

j=0

(−1)j Γ(j)(1)

j!Γ(1 + λ− j)
1

(ln(n))j
(9.79)

12People having done some complex analysis know, that there are some means to make this
restriction a little bit more flexible, but you will never get rid of a malicious slash, which cuts
into the complex plane

94 CHAPTER 9. RICE’S INTEGRALS

Proof. As seen in (9.50) we can represent the sum as an integral in an analoge way

Sn(λ) =
1

2πi

Z

C
ωn(s)

ds

sλ+1
with ωn(s) =

““

1 − s

1

”“

1 − s

2

”

. . .
“

1− s

n

””−1

(9.80)

Here C may be the vertical line R(s) = 1
2

as in (9.42). Despite all, these integrals
would be hard to evaluate; since we are only interested to encircle the poles (here
only 1, 2, . . . , n) we can deformate the path of integration as we like unless we don’t
encounter any new pole or the slash. For this reason we introduce the Hankel contour:

C = C1 + C2 + C3 + C4

C1 =

s

˛
˛
˛
˛ |s| = R ∧

„

|I(s)| ≥ 1

ln(n)
∨R(s) > 0

«ff

C2 =

s

˛
˛
˛
˛s =

i − t
ln(n)

∧ t ≥ 0 ∧ |s| ≤ R
ff

C3 =

s

˛
˛
˛
˛s =

eθi

ln(n)
∧ θ ∈

h

−π
2
,
π

2

iff

C4 =

s

˛
˛
˛
˛s =

−i− t
ln(n)

∧ t ≥ 0 ∧ |s| ≤ R
ff

This is a circle of radius R > n around the origin, that circumvents the slash by leaving
some space around it; but as n increases the slash is left less space, so that if n tends
to ∞ any point in the domain of s−λ will be encircled.
Now we split the integral in three parts Sn(λ) = J1 + J2 + J3; we will see that for the
asymptotic J1 and J2 can be neglected.

1. Let J1 be the part, that belongs to the outer “circle” C1. Of course s−λ−1 is of
polynomial growth, so we can once more use our estimate for polynomial growth,
to see that J1 is O(R−n−λ) and in the end, when R→∞, we get J1 = 0

2. Now we will estimate the parts of C2 and C4 with R(s) < − 1√
ln(n)

=: −t0. For

simplification, we forget about the term s−λ−1 and asume we integrate along
the negative real axes till we reach −t013. This simplifications do not touch
the character of our estimate, but make it simpler. Additionaly, we mirror
everything on the imaginary axes, to get:

µ(n) :=

Z ∞

t0

dt

(1 + t
1
) . . . (1 + t

n
)

(9.81)

As next step we split the new path into the intervalls [t0, 1],
h

1, n1/3
i

and
h

n1/3,∞
i

, to get the integrals µ1(n), µ2(n) and µ3(n)

13We asume λ + 1 ≥ 0 and then it is quiet obvious, that we can neglect the powers of s

for the asymptotic analysis, because they would make the asymptotic only smaller; but for
example if λ are negative integers we get the Stirling numbers of second kind, which have
normaly exponential growth – our derivation can not be applayed in this case

9.4. INTEGRALS OF FUNCTIONS WITH POLES 95

(a)

µ1(n) =

Z 1

t0

dt

(1 + t/1) . . . (1 + t/n)
=

Z 1

t0

n!dt

(1 + t)(2 + t) . . . (n + t)
=

Z 1

t0

Γ(n+ 1)Γ(t+ 1)

Γ(n+ t+ 1)
dt

(9.26)
=

Z 1

t0

√
2π(n+ 1)n+1−1/2e−n−1

√
2π(t+ 1)t+1−1/2e−t−1

√
2π(n+ t+ 1)n+t+1−1/2e−n−t−1

„

1 +O

„
1

n

««

dt ≤
Z 1

t0

√
2π(t+ 1)t+1−1/2

e(n+ t+ 1)t

„

1 +O

„
1

n

««

dt = O(1)

Z 1

t0

(t+ 1)t+1−1/2

(n+ t+ 1)t
dt =

O(1)

Z 1

t0

1

(n)t
dt (9.82)

The last few transformation can be carried out because t ∈ [t0, 1], so
is small compared to n and can be ignored or estimated by a constant
respectivly.

O(1)

Z 1

t0

1

(n)t
dt = O(1)

„−1 + n1−t0

n ln(n)

«

= O(e−t0 ln(n)+ln(ln(n)))

= O(e−1/2
√

ln(n)) (9.83)

(b) In the next part we use, that 1 ≤ t

µ2(n) =

Z n1/3

1

n!

(1 + t) . . . (n+ t)
dt =

Z n1/3

1

1 · 2 · 3

2 + t

4

3 + t
. . .

n

n− 1 + t

1

(1 + t)(n+ t)
dt ≤

Z n1/3

1

O(1)
1

(1 + t)(n+ t)
dt = O

„
ln(n1/3 + n)

n − 1

«

= O(n−2/3) (9.84)

(c) Similar to the estimates done in the formula above we get, for n large
enough

µ3(n) =

Z ∞

n1/3

1

(1 + t/1) . . . (1 + t/n)
dt ≤

Z ∞

n1/3

1

e(1/2)t
dt = O(e−(1/2)n1/3

) (9.85)

In the whole we have the result J2 = O(e(1/2)
√

ln(n)), so it is of smaller order
than any negativ power of ln(n)

3. Now we have to estimate J3; this is the integral along the contour of C2∪C3∪C4,
for which R(s) ≥ −t0, denoted in the following by C0.
Again we use Stirlings formula (9.26) to get the asymptotic:

ωn(s) = nsΓ(1− s)
„

1 +O

„
ln(n)

n

««

(9.86)

Since s is very small on C0 the part with O
“

ln(n)
n

”

can be estimated easily by

O(e(1/2)
√

ln(n)) and this yields

J3 = J0 +O(e(1/2)
√

ln(n)) with J0 =
1

2πi

Z

C0

nsΓ(1− s) ds

sλ+1
(9.87)

96 CHAPTER 9. RICE’S INTEGRALS

Now we use the transformation z = s ln(n) with D0 is the image under this
transform of C0 and have

J0 = (ln(n))λ 1

2πi

Z

D0

ezΓ

„

1 − z

ln(n)

«
dz

zλ+1
(9.88)

By the transform we get |z| = O(
p

ln(n)) on D0; this is the reason, we can
expand the Gamma function around 1 in a power series and after changing
summation and integration, we get

J0 = (ln(n))λ
∞X

m=0

(−1)m Γ(m)(1)

m!

1

(ln(n))m

1

2πi

Z

D0

ezzm−λ−1dz (9.89)

Now we have to estimate the remaining integrals; this can be done by the so
called Laplace method, where we extend the contour to −∞ to get L. We will
only present the result here:

1

2πi

Z

L
ezzm−λ−1dz =

1

Γ(1 −m+ λ)
(9.90)

Now, taking together all the parts, we have prooven the theorem.

As an application, we can examine the sum

Xn =
nX

k=1

„
n
k

«
(−1)k

√
1 + k2

(9.91)

We have the local behvior (s±i)−1/2 at the “problem points”, so we get an asymptotic
growth of

p
ln(n). Similar to (9.59) we have for some ρ and θ0

Xn = ρ
p

ln(n) cos(ln(n) + θ0) +O((ln(n))−1/2) (9.92)

Other examples and direct applications are

−Sn(−1/2) =
1

p
π ln(n)

− γ

2
p
π(ln(n))3

+O((ln(n))−5/2) (9.93)

−Sn(1/2) = 2

r

ln(n)

π
+

γ
p
π ln(n)

+O((ln(n))−3/2) (9.94)

In general the coefficients are rational expressions of terms as γ, Γ(−λ) and ζ(2), ζ(3),
. . .

For the rest of this part, we will only state some more examples, where the method of
Rice’s integrals (perhaps with use of the Hankel contour) can be applied succesfully.

Theorem 9.9. For the logarithmic differences we have the asymptotics

Yn =
nX

k=1

„
n
k

«

(−1)k ln(k) = ln(ln(n))+γ+
γ

ln(n)
− π2 + 6γ2

12(ln(n))2
+O

„
1

(ln(n))3

«

(9.95)

The method can also be used for entire functions, which have no poles at all (despite
the artificial ones introduced by the kernel . . .). For example for

Zn =
nX

k=0

„
n
k

«
(−1)k

k!
(9.96)

9.5. MELLIN TRANSFORMS AND RICE’S INTEGRALS 97

which obeys the recurrence Zn+2 = (2− 2/n)Zn+1 + (1− 1/n)Zn can be extrapolated
by the entire function 1/Γ(s), and after carrying out Rice’s method it reveals for some
constants c and θ

Zn = cn−1/4 sin(2n1/2 + θ) + o(n−1/4) (9.97)

We have seen many cases were heavy use of complex analysis can resolve the asymp-
totics of recurrences, generalized differences and sums. We summarize all this in the
table below.

Some types of singularities and the asymptotics they introduce
in the corresponding difference

singularity asymptotics

singularity of φ(s) at s0 = σ0 + iτ approximatly ns0 = nσ0eiτ0 ln(n)

simple pole: (s− s0)−1 −Γ(−s0)ns0

multiple pole: (s− s0)−r −Γ(−s0)ns0 (ln(n))r−1

(r−1)!

algebraic singularity: (s− s0)λ −Γ(−s0)ns0 (ln(n))−λ−1

Γ(−λ)

logarithmic singularity: (s− s0)λ(ln(s− s0))r −Γ(−s0)ns0 (ln(n))−λ−1

Γ(−λ) ln(ln(n))r

9.5 Mellin Transforms and Rice’s Integrals

The Mellin transform of a function and its inverse have the form

φ(z) =

Z ∞

0

tz−1f(t)dt f(t) =
1

2πi

Z c+i∞

c−i∞
t−zφ(z)dz (9.98)

If we take a closer look to the integral (9.42) and take into account the asymptotic of
ωn(s) (9.86)14 we get:

1

2πi

Z d+i∞

d−i∞
φ(s)

(−1)nn!

s(s− 1) . . . (s− n)
ds ≈ 1

2πi

Z d+i∞

d−i∞
φ(s)Γ(−s)nsds (9.99)

If we would change the sign of the variable and then compare the result with the
inverse Mellin transform we observe a definite analogy. Without stating it formally,
in cases, were we want to evaluate Rice’s integrals and we get stuck with it, it can
be worth a try to evaluate the corresponding inverse Mellin transform to get an idea
about the size of the asymptotics.
But the similarity can be stated formally as the Poisson-Mellin-Newton cycle.

Theorem 9.10. The coefficients of a Poisson generating function are expressible as
a Rice’s integral of a Mellin transform of the Poisson generating function.

{fn} Poisson GF−−−−−−−→ f̂(t) =
∞X

n=0

fne
−t t

n

n!

Mellin transform−−−−−−−−−−→ f̂∗(s) =

Z ∞

0

f̂ (t)ts−1dt
Rice’s integral−−−−−−−−→ {fn} (9.100)

Proof. We take a closer look to the Mellin transform and state a Newton series to have

f̂∗(s) =

Z ∞

0

f̂ (t)ts−1dt =

∞X

0

fn

n!

Z ∞

0

e−tts+n−1dt
(9.23)
=

Γ(s)

„

f0 + f1
s

1!
+ f2

s(s+ 1)

2!
+ . . .

«

(9.101)

14don’t forget about the additional s in the denominater, so we realy get Γ(−s) and not
Γ(1 − s), after changing sign

98 CHAPTER 9. RICE’S INTEGRALS

By differencing15 we get to the following formula

fn =
nX

k=0

„
n
k

«

(−1)k f̂
∗(−s)

Γ(−s) (9.102)

But these differences are exactly of the Rice type, so we conclude the corresponding
equations

fn =
(−1)n

2πi

Z

C

f̂∗(s)

Γ(−s)
n!

s(s− 1) . . . (s− n)

!

ds (9.103)

f̂∗(s) =

Z ∞

0

e−t
∞X

n=0

fn
tn

n!

!

ts−1dt (9.104)

This are the relations, which were stated.

For example if we carry out the Mellin transform of the Poisson generating function
(9.65) we have f̂∗(s) = â∗(s)

1−21+s and from the formulas above we get the result

fn =

nX

k=0

„
n
k

«
â∗(−k)
Γ(k)

(−1)

1− 21−k
(9.105)

This is formally the same result as if we had carried out the Rice’s method.
There are some other examples as digital search trees, were the Poisson-Mellin-Newton
cycle can be applied. This is a hint that the formal result we get from the cycle can be
developed to an actual result by the Rice’s integrals. The cycle is also an explanation
for some other phenomena, but this would lead too far here.

9.6 Summary

Despite complex analysis seems to be part of pure mathematics, it can be applied
for finding asymptotics of solutions of difference equations and generalized differences,
which are needed in the analysis of algorithms. By the method of Rice’s integrals
we can tackle the average case analysis of tries, digital search trees, multidimensional
searching and other datastructures and algorithms of great practical use. In most
cases a detailed calculation of the asymptotics is in fact much too complex, but you
can get a first estimate of the growth by comparing the problem with the examples
outlined here and the table given at the end of the section befor the last.

15normaly we would differenciate, but here we have not a series in powers of s like sn but a
series in s(s + 1)(s + 2) . . .; since differencing leads to success with s(s− 1)(s− 2) . . ., we have
to play a little bit with the sign and get a result

Chapter 10

Digital Search Trees
Average case analysis of
digital search trees and tries
Nicolai Baron von Hoyningen-Huene

10.1 Introduction

A very common problem in computer science is to search for the appearance of a
string inside a text. There exist algorithms that use suffix trees, which are often
implemented as digital trees to optimize the performance of the search. In this article
some properties of those data structures are analyzed, which can be used to calculate
the average performance and space complexity of algorithms using digital trees. For an
introduction to Rice’s method (see Chapter 9) is recommended, but the mathematical
derivation in this article is largely based on [FS86b].

In the first part basic terms and structures are defined. Subsequently there will be
a detailed analysis of the internal path length and external internal nodes for digital
search trees. The following derivation for properties of tries are just sketched because
of similarity to the precedent part. Then the binary trees are generalized to M -ary
trees and examined. Concluding, a general framework for analysis of properties of
digital trees is presented.

10.2 Trees

First of all we look at rudimentary definitions for the sake of completeness and later
usage, the definitions are taken from [CLR90]. In computer science data has to be
stored in an intelligent way. Often there exist keys which are related to data, thus a
special data structure is needed.

Definition 10.1. A dictionary is defined as an abstract data type storing items, or
keys, associated with values. Basic operations are insert, find, and delete.

The operations new(), insert(i, v, D), and find(i, D) may be defined as follows:

• new () returns a dictionary

99

100 CHAPTER 10. DIGITAL SEARCH TREES

• find (i, insert (i, v,D)) = v
find (i, insert (j, v,D)) = find (i, D) if i 6= j where i and j are items or keys, v
is a value, and D is a dictionary. The operation find (i, new ()) is not defined.

• The modifier function delete (i, D) may be defined as follows.
delete (i, new ()) = new ()
delete (i, insert (i, v,D)) = delete (i, D)
delete (i, insert (j, v,D)) = insert (j, v, delete (i, D)) if i 6= j

We can define find (i, new ()) using a special value: fail. This only changes the return
type of find. find (i, new ()) = fail

A tree is a commonly used structure for implementation of dictionaries:

Definition 10.2. A tree is defined as a data structure accessed beginning at the root
node. Each node is either a leaf or an internal node. An internal node has one or more
child nodes and is called the parent of its child nodes. All children of the same node
are siblings. Contrary to a physical tree, the root is usually depicted at the top of the
structure, and the leaves are depicted at the bottom.

'& %$! "#root

gggggggggggggggggg

VVVVVVVVVVVVVVVV

/.-,()*+
kkkkkkkkkkk

NNNNNNNNNN /.-,()*+
NNNNNNNNNN /.-,()*+

KKKKKKKK

'& %$! "#rootA

ww
ww

w
GG

GG
G

/.-,()*+
��

��
��

1A 2A 3A

Figure 10.1: Example for a trinary tree

And we have a special property of a tree:

Definition 10.3. The depth of a node in a tree is the distance from this node to the
root of the tree.

We can constrain trees to optimize performance for some purpose:

Definition 10.4. A search tree is a tree where every subtree of a node has values less
than any other subtree of the node to its right. The values in a node are conceptually
between subtrees and are greater than any values in subtrees to its left and less than
any values in subtrees to its right.

In the binary world of a computer, trees with binary properties are widely supported:

Definition 10.5. A binary tree is either empty (no nodes), or has a root node, a
left binary tree, and a right binary tree.

10.3 Digital Search Trees

10.3.1 Data Structure of Binary Search Trees

Definition 10.6. A binary search tree is a binary tree and also a search tree. A
new node is added as a leaf.

10.3. DIGITAL SEARCH TREES 101

?>=<89:;D
less

nnnnnnnnnnn
greater

PPPPPPPPPPP

?>=<89:;B
less

~~
~~

~ greater

@@
@@

@@
?>=<89:;H

less

}}
}}

}}

?>=<89:;A ?>=<89:;C ?>=<89:;G

Figure 10.2: Example for a binary search tree with lexical ordering

The worst case for search is in the order of the number of keys N stored in a binary
search tree, since the tree can be degenerated to a linear list. This arise, when keys are
inserted in a a- or descending order. Instead the average case for successful search in a
binary search tree is logarithmic, because the worst case is very unlikely. It evaluates
to

2

„

1 +
1

N

«

HN − 3 = (2 ln 2) lgN + 2γ − 3 +O

„
logN

N

«

.

10.3.2 Data Structure of Digital Search Trees

Keys are always handled by a computer as binary data. Therefore we can use the
digital properties of the keys.

Definition 10.7. A digital tree is a tree for storing a set of strings where nodes are
organized by substrings common to two or more strings.

The ordering of the keys is intuitively: we follow the tree by the bits descending from
the first bit of the key represented as a binary number until we come to a leaf, a zero
directs us to the left, a one to the right. In Figure 10.3 and 10.4 you can see an example
tree, the binary coding of each letter is written next to it. Note, that the structure of
the digital search tree depends of the order of the input of the keys. We define N as
the number of keys stored in this dictionary. The number of nodes is limited by the
number of bits in the keys and larger than lgN but likely less than a constant factor
for many natural situations.

Definition 10.8. A digital search tree is a dictionary implemented as a digital tree
which stores keys in internal nodes, so there is no need for extra leaf nodes to store
the keys.

ONMLHIJKD011

0

kkkkkkkkkkkkk
1

NNNNNNNNN

ONMLHIJKB001

0

wwwwww 1

GGGGG
G

ONMLHIJKG110

1

HHHHHH

ONMLHIJKA000
ONMLHIJKC010

ONMLHIJKH111

Figure 10.3: Example of a digital search tree with internal path length = 8

The worst case is the same as for binary search trees in a similar pathological case.
But the average case for successful search in a digital search tree is improved:

lgN +
γ − 1

ln 2
+

3

2
− α + δ (N) +O

„
logN

N

«

.

102 CHAPTER 10. DIGITAL SEARCH TREES

ONMLHIJKA000

0

kkkkkkkkkkkkkk
1

NNNNNNNNN

ONMLHIJKC010

0

wwwww
w 1

HHHHHH
ONMLHIJKH111

1

HHHHHH

ONMLHIJKB001
ONMLHIJKD011

ONMLHIJKG110

Figure 10.4: Another example of a digital search tree with same keys

10.3.3 Internal Path Length

In this chapter the first property of a digital search tree is analyzed.

Definition 10.9. The internal path length of a tree is the sum of the depth of every
node of the tree.

This property is directly related to the complexity of the data structure: The number
of nodes examined during a successful search in a search tree with N nodes is the path
length of this node and in average case this counts as one plus the internal path length
normalized through division by N .

Let AN be the average internal path length of a digital search tree built from N
(sufficiently long) keys comprised of random bits. Then we have the fundamental
recurrence relation

AN = N − 1 +
∞X

k=0

1

2N−1

N − 1

k

!

(Ak +AN−1−k) , N ≥ 1 (10.1)

with A0 := 0.

The internal path length of any tree of N nodes is the sum of the internal path lengths
of the subtrees of the node plus N − 1, that are the ones missing for the distance from
each node to the root of the whole tree. We count for each possible partition of the
nodes to both subtrees and weight the sum by the number of all possibilities. The
subtrees are randomly built.

We strike now for the goal to approximate AN to get an explicit useful term. By
symmetry Ak is equal to AN−1−k and we get

AN = N − 1 +
∞X

k=0

1

2N−1

N − 1

k

!

(Ak +Ak)

This equation is transformed into a functional one on the exponential generating func-

tion A (z) =
P∞

N=0AN
zN

N!
with A′ (z) =

P∞
N=1AN

zN−1

(N−1)!
by multiplying both sides

10.3. DIGITAL SEARCH TREES 103

by zN−1

(N−1)!
and summing for N ≥ 1:

∞X

N=1

ANz
N−1

(N − 1)!
=

∞X

N=1

(N − 1) zN−1

(N − 1)!
+ 2

∞X

N=1

∞X

k=0

1

2N−1

N − 1

k

!

Ak
zN−1

(N − 1)!

= z
∞X

N=2

zN−2

(N − 2)!
+ 2

∞X

k=0

∞X

N=k+1

Ak

2N−1

(N − 1)!

k! (N − 1 − k)!
zN−1

(N − 1)!

= z
∞X

t=0

zt

t!
+ 2

∞X

k=0

Ak

k!

∞X

N=k+1

zN−1

2N−1 (N − k − 1)!

= zez + 2

∞X

k=0

Ak

k!

∞X

N=k+1

“z

2

”N−1 1

(N − k − 1)!

= zez + 2
∞X

k=0

Ak

k!

∞X

N=0

“z

2

”(N+k+1)−1 1

((N + k + 1)− k − 1)!

= zez + 2
∞X

k=0

Ak

k!

“z

2

”k
∞X

N=0

“z

2

”N 1

N !

= zez + 2
∞X

k=0

Ak

k!

“z

2

”k

e
z
2

A′ (z) = zez + 2A
“z

2

”

e
z
2

We simplify this by substituting ezB (z) for A (z) with

B (z) =
∞X

N=0

BN
zN

N !

and

B′ (z) =

∞X

N=1

BN
zN−1

(N − 1)!

That is, A (z) = ezB (z) and A′ (z) = ezB′ (z) + ezB (z). One can say that B (z)
is the expectation of the internal path length, if the number of keys is Poisson with
parameter z. So the equation reads in terms of B(z) as

ezB′ (z) + ezB (z) = zez + 2B
“z

2

”

e
z
2 e

z
2

B′ (z) +B (z) = z + 2B
“z

2

”

∞X

N=1

BN
zN−1

(N − 1)!
+

∞X

N=0

BN
zN

N !
= z + 2

∞X

N=0

BN

`
z
2

´N

N !

This corresponds to a simple recurrence on the coefficients

BN +BN−1 =
1

2N−2
BN−1

BN = −
„

1 − 1

2N−2

«

BN−1

for N ≥ 3 with B2 = 1.
And leads us to an explicit formula for BN :

BN = (−1)N
N−2Y

j=1

„

1− 1

2j

«

104 CHAPTER 10. DIGITAL SEARCH TREES

So we can get an explicit formula for AN :

A (z) = ezB (z)

= ez
∞X

N=0

BN
zN

N !

=

 ∞X

N=0

zN

N !

! ∞X

N=0

BN
zN

N !

!

=

∞X

N=0

NX

k=0

1

(N − k)!
Bk

k!

!

zN

=
∞X

N=0

NX

k=0

Bk

N

k

!!

zN

N !

AN =
NX

k=0

N

k

!

Bk (10.2)

We want to analyse this sum by Rice’s integral resp. a theorem for meromorphic
function, which is derived in 9:

Theorem 10.1. Let φ be a function holomorphic in a domain that contains the half-
line [n0,∞[. If n is big enough we have:
If φ is meromorphic on the half-plane defined by R(s) ≥ d for some d < n0 and of
polynomial growth in this set, then

nX

k=n0

n

k

!

(−1)kφ(k) = −
X

s

(−1)nRess

„

φ(s)
n!

s(s− 1) . . . (s− n)

«

+O(nd) (10.3)

where the sum is taken over all poles but n0, n0 + 1, . . . , n.

Therefore we introduce a new series QN to come closer to the preceding equation:

QN =
NY

j=1

„

1− 1

2j

«

So we can get BN = (−1)N QN−2and by substitution:

AN =
NX

k=2

N

k

!

(−1)k Qk−2 (10.4)

QN is defined only for integers, so we have to find a meromorphic function to extend
QN to the complex plane. We choose the following function

Q (x) =
∞Y

j=1

“

1 − x

2j

”

with obviously Q (1) = Q∞ and you can see clearly that Q(1)

Q(2−N)
is a correct extension:

QN =
NY

j=1

„

1 − 1

2j

«

=

Q∞
j=1

`
1− 1

2j

´

Q∞
j=N

`
1 − 1

2j

´ =
Q (1)

Q∞
j=1

`
1− 1

2j+N

´ =

Q (1)
Q∞

j=1

“

1− 2−N

2j

” =
Q (1)

Q (2−N)

10.3. DIGITAL SEARCH TREES 105

Our equation now has the form:

AN =
NX

k=2

N

k

!

(−1)k Q (1)

Q (2−k+2)

Q (x) is obviously meromorphic on the half-plane defined by R(s) ≥ d with d := 1
2

and
the function is also polynomial. So we get the following equation by theorem 10.1:

AN = −
X

z

(−1)NResz

„

B (N + 1,−z) Q (1)

Q (2−z+2)

«

+O
“

N
1
2

”

(10.5)

We proceed to evaluate the poles at z ≤ 1 for B (N + 1,−z) Q(1)

Q(2−z+2)
:

• B (N + 1,−z) is singular at z = 0, 1 because the Γ function is zero in the
denominator.

• z = j ± 2πik
ln 2

for j = 1, 0,−1, ... and all k ≥ 0 are poles since at these points
2−z+j = 1 which causes one of the factors of Q

`
2−z+2

´
to vanish.

Only the poles for z ≥ 1
2

are within the region of interest.
So we can approximate the residues at the poles. Beginning with z = 1:

−B (N + 1,−z) Q (1)

Q (2−z+2)
= −B (N + 1,−z) 1

1 − 2−z+1

Q (1)

Q (2−z+1)

First analyze −B (N + 1,−z):

−B (N + 1,−z) = −Γ (N + 1) Γ (−z)
Γ (N + 1 − z)

= −N ! (−z − 1)!

(N − z)!

= (−1)N N !
QN

k=0 (z − k)

= (−1)N N !

z
QN

k=1 k
`

z
k
− 1
´

= (−1)N N !

zN !
QN

k=1

`
z
k
− 1
´

=

(−1)N z

NY

k=1

−
“

1 − z

k

”
!−1

= −

z
NY

k=1

“

1− z

k

”
!−1

=

z (z − 1)
NY

k=2

“

1− z

k

”
!−1

We want to approximate this by a Taylor series expansion. To do this the following
lemma is helpful:

Lemma 10.1. If F (z) =
Q

j∈R
1

1−fj(z)
for some index set R, then the Taylor series

expansion of F at a, if it exists, is given by

F (z) = F (a)

1 +
X

j∈R

f ′
j (a)

1 − fj (a)
(z − a) +O

`
(z − a)2

´

!

106 CHAPTER 10. DIGITAL SEARCH TREES

Proof.

G (z) =
Y

j∈R

gj (z)

G′ (z) =
X

j∈R

g′j (z)
Y

k∈R6=j

gk (z)

G′ (z)

G (z)
=

P

j∈R g
′
j (z)

Q

k∈R6=j gk (z)
Q

j∈R gj (z)
=
X

j∈R

g′j (z)

gj (z)

F (z) = F (a)

„

1 +
F ′ (a)

F (a)
(z − a) +O

`
(z − a)2

´
«

=

F (a) + F ′ (a) (z − a) +O
`
(z − a)2

´

At a = 1 we have the expansion for the Beta function:

−B (N + 1,−z) =
1

1 − z z
−1

NY

j=2

„

1− z

j

«−1

=
1

1 − zN
`
1 + (HN−1 − 1) (z − 1) +O

`
(z − 1)2

´´

=
N

1 − z −N (HN−1 − 1) +O (z − 1)

= − N

z − 1
−N (HN−1 − 1) +O (z − 1)

with HN−1 = γ + lnN −O
`

1
N

´
. So we get

−B (N + 1,−z) = − N

z − 1
−N (γ + lnN − 1) +O (z − 1)

Approximation of 1
1−2−z+1 with the series expansion for 1

ex−1
leads to:

1

1 − 2−z+1
=

1

1 − eln 2(−z+1)
= − 1

(−z + 1) ln 2
+

1

2
− −z + 1

12
+O

`
(−z + 1)3

´

=
1

(z − 1) ln 2
+

1

2
+O (z − 1)

The missing part Q(1)

Q(2−z+1)
is analyzed similarly to −B (N + 1,−z) by using the Taylor

expansion for the Q function:

Q (1)

Q (2−z+1)
= Q (1)

Y

j<1

“

1 − 2−z+j
”−1

= 1 − ln 2
X

j<1

2j−1

1 − 2j−1
(z − 1) +O

`
(z − 1)2

´

= 1 − α ln 2 (z − 1) +O
`
(z − 1)2

´

with α = 1 + 1
3

+ 1
7

+ 1
15

+ ... ≈ 1, 606695.
Connecting the analyzed parts, the integrand is approximately:

−B (N + 1,−z) Q (1)

Q (2−z+2)
=

„

− N

z − 1
−N (HN−1 − 1) +O (z − 1)

«

×
„

1

(z − 1) ln 2
+

1

2
+O (z − 1)

«

×
`
1− α ln 2 (z − 1) +O

`
(z − 1)2

´´

10.3. DIGITAL SEARCH TREES 107

The residue at z = 1 is the Laurent coefficient a−1 of 1
z−1

in this product:

Resz=1 = − N

ln 2
(HN−1 − 1) +N

„

α − 1

2

«

= −N lgN −N
„
γ − 1

ln 2
− α+

1

2

«

+O (1)

Then approximate the residues at the other poles z = 1 ± 2πik
ln 2

:

Resz=1± 2πik
ln 2

= − 1

ln 2

X

k 6=0

B

„

N + 1,−1− 2πik

ln 2

«

B

„

N + 1,−1− 2πik

ln 2

«

=
Γ (N + 1) Γ

`
−1 − 2πik

ln 2

´

Γ
`
N − 2πik

ln 2

´

= NΓ

„

−1− 2πik

ln 2

«
Γ (N)

Γ
`
N − 2πik

ln 2

´

Now the standard approximation formula for the Γ function is used to simplify this
term.

Γ (N + 1)

Γ (N + 1− α)
= Nα

„

1 +O

„
1

N

««

Resz=1± 2πik
ln 2

= NΓ

„

−1− 2πik

ln 2

«

(N − 1)
2πik
ln 2

„

1 +O

„
1

N

««

= NΓ

„

−1− 2πik

ln 2

«

N
2πik
ln 2

„

1 +O

„
1

N

««

= NΓ

„

−1− 2πik

ln 2

«

e
2πik lgN

ln 2

„

1 +O

„
1

N

««

The sum of residues at the points z = z = 1 ± 2πIk
ln 2

is found to be

Resz=1± 2πIk
ln 2

= −Nδ (N) +O (1)

where

δ (N) =
1

ln 2

X

k 6=0

Γ

„

−1 − 2πik

ln 2

«

e2πik lg N

is a small oscillatory term. So finally we insert these results in (10.5) and get the
following theorem:

Theorem 10.2. The average internal path length of a digital search tree built from N
records with keys from random bit stream is

AN = N lgN +N

„
γ − 1

ln 2
− α+

1

2
+ δ (N)

«

+O
“

N
1
2

”

Proof. This follows from the derivation above.

10.3.4 External Internal Nodes

A property of trees of some interest is the number of internal nodes which have both
links null. An alternate storage representation could be used for such nodes to save
space.

108 CHAPTER 10. DIGITAL SEARCH TREES

Theorem 10.3. The average number of nodes with both links null in a digital search
tree built from N records with keys from random bit streams is

N

„

β + 1 − 1

Q∞

„
1

ln 2
+ α2 − α

«

+ δ∗ (N)

«

+O
“

N
1
2

”

where the constants involved have the values

α = 1 + 1
3

+ 1
7

+ 1
15

+ ... ≈ 1.606695...,
Q∞ = 1

2
· 3

4
· 7

8
+ ... ≈ .288788... and

β = 1·22

1

`
1
1

´
+ 2·23

1·3
`

1
1

+ 1
3

´
+ 3·24

1·3·7
`

1
1

+ 1
3

+ 1
7

´
+ ... ≈ 7.74313...

The function δ∗ (N) is a periodic function in lgN , with |δ∗ (N) | < 10−6. The approx-
imate value of the coefficient of the leading term is 0.372046812....

Proof. As before, we use a simple transform with generating functions to derive an
explicit sum, then use Rice’s method to evaluate this sum. The number of external
internal nodes is

CN =
∞X

k=0

1

2N−1

N − 1

k

!

(Ck + CN−1−k) , N ≥ 2 (10.6)

with C1 = 1 and C0 = 0. This follows from the fact that the number of nodes with
both links null in a tree is exactly the sum of the numbers of such nodes in the two
subtrees of the root while the tree has more than one node.
In terms of the exponential generating function C (z) =

P∞
N=0

CNzN

N!
by multiplying

both sides by zN−1

(N−1)!
and summing for N ≥ 1, we have:

C1 +
∞X

N=2

CNz
N−1

(N − 1)!
= 1 +

∞X

N=2

2
∞X

k=0

1

2N−1

N − 1

k

!

Ck
zN−1

(N − 1)!

!

∞X

N=1

CNz
N−1

(N − 1)!
= 1 +

∞X

N=2

2
∞X

k=0

1

2N−1

N − 1

k

!

Ck
zN−1

(N − 1)!

!

This leads, similar to AN , to the equation

C′ (z) = 1 + 2C
“z

2

”

e
z
2 (10.7)

Again we introduce a new generating functionD (z) =
P∞

N=0
DNzN

N!
defined byD (z) =

e−zC (z) to get a somewhat more manageable form:

D′ (z) +D (z) = e−z + 2D
“z

2

”

By the recurrence on the coefficients we get:

DN +DN−1 = (−1)N−1 +
1

2N−2
DN−1

DN = (−1)N−1 −
“

1− qN−2
”

DN−1, N ≥ 2 (10.8)

with D1 = 1, D0 = 0.
We define the constant q := 1

2
(we will see that only this constant changes for M-ary

trees). This recurrence is inhomogeneous, so we get a somewhat more complicated
explicit form:

DN = (−1)N−1
N−1X

i=1

N−2Y

j=i

“

1− qj
”

10.3. DIGITAL SEARCH TREES 109

Rewriting this in terms of

RN =

NX

i=1

NY

j=i

„

1− 1

2j

«

=
NX

i=1

QN
j=1

`
1 − 1

2j

´

Qi
j=1

`
1 − 1

2j

´

= QN

NX

i=2

QN
j=1

`
1 − 1

2j

´

Qi
j=1

`
1 − 1

2j

´

= QN +
NX

i=1

QN

Qi

= QN

1 +

NX

k=1

1

Qk

!

and transforming like (10.2) back:

DN = (−1)N RN−2CN

= N −
NX

k=2

N

k

!

DN

We have the following explicit sum for the desired quantity:

CN = N −
∞X

k=2

N

k

!

(−1)k Rk−2 (10.9)

This sum is similar to (10.4) but more difficult to evaluate because RN is more com-
plicated than QN . Because R(z) does not extend RN for positive integers, we get by
Taylor expansion that RN = N + 1− α +R∗

N . R∗
N satisfies a simple recurrence, con-

verges very quickly and is polynomial bounded, so we extend R∗
N by the meromorphic

function R∗ (z)

R∗
N =

(N + 1− α) qN+1

1 − qN+1
+

1

1− qN+1
R∗

N+1

R∗ (z) =

∞X

i=2

(z + 1 + i − α) qz+1+i

Qi
j=0 (1 − qz+1+j)

Substituting, we have

CN = N −
∞X

k=2

N

k

!

(−1)k (R∗
k−2 + k + 1 − α)

After applying the elementary identities of Pascal’s triangle

∞X

k=0

N

k

!

(−1)k =

∞X

k=0

N

k

!

α (−1)k = 0,

we have the simplified result

CN = (N − 1) (α+ 1)−
∞X

k=2

N

k

!

(−1)k R∗
k−2 (10.10)

110 CHAPTER 10. DIGITAL SEARCH TREES

Now, by Theorem 10.1 and again looking only at the half-plane to the right of the line
z = 1

2
, we know that

CN − (N − 1) (α + 1) = −
X

z

(−1)NResz (B (N + 1,−z)R∗ (z − 2)) +O
“

N
1
2

”

(10.11)
In this case we look at the poles for R∗ (z − 2) at 1 ± 2πik

ln 2
and see that they are all

single poles. The main term is given by N limz→1R
∗ (z − 2); the poles for k 6= 0 add

a small oscillatory term.

Lemma 10.2.
∞X

n=0

un

Qn
k=1 (1− qk)

=
1

Q∞
k=0 (1 − qku)

Proof. The coefficient of unqm on both sides is the number of ways to write n as the
sum of m nonnegative integers.

The method of calculating R∗ (−1) is to express R∗ (z) in terms of generating functions,
which generalizes the function of Lemma 10.2, then to expand that function and exploit
certain properties of its derivatives. Specifically, we define

F (u, v) =

∞X

j=1

qjuj

Qj
i=1 (1− qiv)

This is the generating function for restricted partitions, the coefficients of unvmqk is
the number of ways to partition k into m parts not exceeding n. By Lemma 10.2 we
get:

F (u, 1) =
∞X

n=0

qnun

Qn
k=1 (1 − qk)

F (u, 1) + 1 =
∞X

n=0

un

Qn
k=1 (1 − qk)

F (u, 1) =
1

Q∞
k=0 (1− qku)

− 1

F (1, 1) = Q−1
∞ − 1.

Also we have

F ′
1 (u, 1) =

1
Q∞

i=1 (1 − qiu)

∞X

(k=1)

qk

(1 − qku)

so that F ′
1 (1, 1) = α

Q∞
. Furthermore, we have

F
`
1, qz+1

´
=

∞X

j=1

qj

Qj
i=1 (1− qz+1+i)

F ′
1

`
1, qz+1

´
=

∞X

j=1

jqj

Qj
i=1 (1− qz+1+i)

,

which finally gives the following expansion:

R∗ (z) =
qz+1

1− qz+1

`
(z + 1 − α)

`
F
`
1, qz+1´+ 1

´
+ F ′

1

`
1, qz+1´´

From this formulation, a Taylor expansion around z = −1 is straightforward:

qz+1

1− qz+1
=

1

(z + 1) ln q
− 1

2
+O (z + 1)

10.4. DIGITAL SEARCH TRIES 111

F
`
1, qz+1

´
= F (1, 1) + (z + 1) ln qF ′

2 (1, 1) +O (z + 1)2

F ′
1

`
1, qz+1´ = F ′

1 (1, 1) + (z + 1) ln qF ′
12 (1, 1) +O

`
(z + 1)2

´
,

so that

R (z) = −F (1, 1) + 1

ln q
+ αF ′

2 (1, 1) − F ′′
12 (1, 1) +O (z + 1)

F ′
2 (1, 1) =

∞X

j=1

qj

Qj
i=1 (1− qi)

jX

k=1

qk

1− qk

!!

(10.12)

F ′′
12 (1, 1) =

∞X

j=1

jqj

Qj
i=1 (1 − qi)

jX

k=1

qk

1− qk

!!

(10.13)

Actually, we can relate F ′
2 (1, 1) to α and Q∞. Because

F ′
1 (1, 1) = F ′

2 (1, 1) + F (1, 1)

there is F ′
2 (1, 1) = α−1

Q∞
+1. There does not seem to be an easy way to express F ′′

12 (1, 1)
in terms of α and Q∞, so we denote that constant simply by β. Collecting terms, we
have shown that the residue of the integrand at z = 1 is

N

„

β + 1 − 1

Q∞

„

α2 − α− 1

ln q

««

It remains to calculate the residues of the integrand at the other singularities.
This calculation is straightforward: the residue of 1

1−qz+1 at z = −1± 2πik
ln q

is − 1
ln q

, and

the other terms in R∗ (z) contribute a factor of 2πik
Q∞ ln q

. The factor for B (N + 1,−z)
is expanded exactly as in the preceding Taylor expansion for the internal path length;
thus we have the oscillatory term

δ∗ (N) =
1

Q∞ ln q

X

k 6=0

2πik

ln q
Γ

„

−1− 2πik

ln q

«

e2πik lg N

This completes the calculation of the coefficient of the linear term.

10.4 Digital Search Tries

10.4.1 Data Structure of Tries

Definition 10.10. A digital search trie is a digital tree for storing a set of strings in
which there is one node for every prefix of every string in the set.

The name of this data structure comes from the word retrieval. The word retrieval is
stressed, because a trie has a lookup time that is equivalent to the length of the string
being looked up. Again we represent the strings as keys in binary form. It may be
convenient to assume that the strings are all of same (binary) length, but the method
is also appropriate for varying length strings, if no string is a prefix of another.
Digital search tries compared to trees have much improved worst case performance.
Their average case performance is asymptotically optimal. If N records with keys from
random bit streams are inserted into an initially empty trie, then the average number
of nodes examined during successful search reads as

lgN +
γ

ln 2
+

1

2
+ δ (N) +O

„
1

N

«

112 CHAPTER 10. DIGITAL SEARCH TREES

/.-,()*+
0

ddddddddddddddddddd
1

TTTTTTTT

/.-,()*+
0

iiiiiiiii 1

UUUUUUUUU /.-,()*+
1

UUUUUUUUU

/.-,()*+
0 xx 1FF /.-,()*+

0 xx 1GG /.-,()*+
0 xx 1GG

A000 B001 C010 D011 G110 H111

Figure 10.5: Example for a digital search trie with external path length = 18

10.4.2 Data Structure of Patricia Tries

You can optimize the performance of a trie constructed with N keys by ensuring that
this trie has just N − 1 internal nodes by collapsing one-way branches on internal
nodes and get the so called Patricia tries:

Definition 10.11. A Patricia tree is defined as a compact representation of a digital
search trie where all nodes with one child are merged with their parent.

/.-,()*+
0

ddddddddddddddddddd
11

XXXXXXXXXXXXX

/.-,()*+
0

kkkkkkkkk
1

SSSSSSSSS /.-,()*+
0qqq

q 1MMM
M

/.-,()*+
0
}}

} 1AA
A

/.-,()*+
0
}}

} 1BB
B G110 H111

A000 B001 C010 D011

Figure 10.6: Example for a Patricia trie

The average number of nodes examined during successful search is one less than for
standard tries.

10.4.3 External Path Length

Definition 10.12. The external path length of a tree is the sum of the depth of every
leaf of the tree.

The fundamental recurrence for the average external path length of a binary trie is

A
[T]
N = N +

∞X

k=0

1

2N

N

k

!
“

A
[T]
k +A

[T]
N−k

”

, N ≥ 2 (10.14)

with A
[T]
0 = A

[T]
1 = 0. This is the number of nodes examined during all successful

searches. Note that since no key is stored at the root, the subtrees have a total of N
keys. The resulting functional equation on the exponential generating function is not
a difference-differential but simply a difference equation:

A[T] (z) = z (ez − 1) + 2A[T]
“z

2

”

ez−2

It is still convenient to transform the equation with A (z) = ezB (z) to get the equation

B[T] (z) = z
`
1 − e−z´+ 2B[T]

“z

2

”

This yields directly

B[T] (z) =
N (−1)N

1 −
`

1
2

´N−1

10.4. DIGITAL SEARCH TRIES 113

and

A
[T]
N =

∞X

k=2

N

k

!

(−1)k k

1−
`

1
2

´k−1

This can be handled directly by Rice’s method or Mellin transform techniques, as
described in full detail in [Szp00].
The fundamental recurrence for the average external path length of a Patricia trie is

A
[P]
N = N

„

1− 1

2N−1

«

+
∞X

k=0

1

2N

N

k

!
“

A
[P]
k +A

[P]
N−k

”

, N ≥ 1 (10.15)

with A
[P]
0 = 0. The external path length is the sum of the ones of the subtries of the

root plus the number of nodes in the subtries (N) unless one of the subtries is empty
which has the probability 1

2N−1 . The resulting functional equation on the exponential
generating function is

A[P] (z) = z
“

ez − e z2
”

+ 2A[P]
“z

2

”

e
z
2

with transformed version

B[P] (z) = z
“

1− e− z
2

”

+ 2B[P]
“z

2

”

which yields directly

B[P] (z) =
N (−1)N

2N−1 − 1

and

A
[P]
N =

∞X

k=2

N

k

!

k (−1)k

2k−1 − 1
= A

[T]
N −N

Given the result for binary tries the average external path length for Patricia tries is
obvious.

10.4.4 External Internal Nodes

The average number of internal nodes with both sons external are computed for Pa-
tricia tries. The derivation is similar to the one for digital search trees, so we only
sketch it here. We start with the recurrence

C
[P]
N =

X 1

2N

N

k

!
“

C
[P]
k + C

[P]
N−k

”

, N ≥ 3 (10.16)

with C
[P]
0 = C

[P]
1 = 0 and C

[P]
2 = 1. This corresponds to the functional equation

C[P] (z) =
“z

2

”2

+ 2C[P]
“z

2

”

e
z
2

which transforms to

D[P] (z) =
“z

2

”2

e−z + 2D[P]
“z

2

”

and eventually gives the sum

C
[P]
N =

1

4

NX

k=2

N

k

!

(−1)k k (k − 1)

1 − 1
2

k−1

Knuth gives specific evaluations of such sums. The eventual result is that the propor-
tion of nodes in Patricia tries with both sons external is 1

4 ln 2
= .3606... plus a small

oscillatory term. Thus, according to this measure, digital search trees are (slightly)
more balanced than Patricia tries.

114 CHAPTER 10. DIGITAL SEARCH TREES

10.5 Multiway Branching

Above only binary trees have been analyzed. But we can generalize the average analysis
to M -ary trees, where each node contains M links to other nodes, numbered from 0 to
M −1. It turns out that the analysis given above survives largely intact for the M -ary
case. For example, to find the average number of nodes in a M -ary digital search tree
with all links null, we begin with the fundamental recurrence:

C
[M]
N =

X

k1+k2+...+kM=N−1

1

MN−1

N − 1

k1, k2, ..., kM

!
“

C
[M]
k1

+ C
[M]
k2

+ ... + C
[M]
kM

”

,

N ≥ 2 (10.17)

with C
[M]
1 = 1 and C

[M]
0 = 0. The argumentation is the same as for the digital

search tree. The number of nodes with all links null in a tree is exactly the number of
such nodes in all the subtrees of the root, unless the tree has just one node. Again the
partitions of N−1 nodes without the root into M subtrees weighted by all possibilities
are examined. All the subtrees are randomly built according to the same model.
By symmetry, (10.17) is equivalent to

C
[M]
N = M

X

k1+k2+...+kM=N−1

1

MN−1

N − 1

k1, k2, ..., kM

!

C
[M]
k1

, N ≥ 2

with C
[M]
1 = 1 and C

[M]
0 = 0. Now we introduce the exponential generating function

C[M] (z) =
P∞

N=0

C
[M]
N

zN

N!
and derive the following difference-differential equation:

C[M]′ (z) = 1+MC[M]
“ z

M

”“

e
z
M

”M−1

= 1+MC[M]
“ z

M

”“

e(1−
1
M)z

”

(10.18)

For M = 2, this is exactly the equation derived from (10.7); moreover none of the
manipulations used for solving it depend in an essential way on the value of that
constant.

Corollary 10.1. The average number of nodes with all links null in an M-ary search
tree (for M ≥ 2) built from N records with keys from random bit streams is

N

β[M] + 1− 1

Q
[M]
∞

„
1

lnM
+ α[M]2 − α[M]

«

+ δ[M] (N)

!

+O
“

N
1
2

”

where the constants involved are given by
α[M] =

P∞
k=1

1
Mk−1

,

Q
[M]
∞ =

Q∞
k=1

`
1− 1

Mk

´
,

β[M] =
P∞

k=1
kMk+1

Qk
i=1(Mi−1)

Pk
j=1

1
Mj−1

and the oscillatory term is
δ[M] (N) = 1

Q∞ ln M

P

k 6=0
2πik
ln M

Γ
`
−1 + 2πik

lnM

´
e2πik lg N .

10.6 General Framework

The methods that we have used in the previous sections can be applied to study many
other properties of digital trees. If X (T) and x (T) are parameters of trees satisfying

X (T) =
X

subtrees Tj of the root of T

X (Tj) + x (T) (10.19)

10.6. GENERAL FRAMEWORK 115

then the exponential generating functions for the expectations XN and xN for an
M -ary digital search tree built from N records with keys from random bit streams
satisfy

X ′ (z) = MX
“ z

M

”

e(1−
1
M)z + x (z)

This is derived in exactly the same manner as (10.18). Now in terms of the generating
functions Y (z) = e−zX (z) and y (z) = e−zx (z) this becomes

Y ′ (z) + Y (z) = MY
“ z

M

”

+ y′ (z) + y (z) (10.20)

This leads to a nonlinear recurrence like (10.8) satisfied by YN , with the solution sought
given by XN =

PN
k=0

`
N
k

´
Yk. If the quantity (−1)k Yk is sufficiently well behaved, we

can study its asymptotics and find a function Y ∗
k which

(i) is simply related to Yk so that
PN

k=0

`
N
k

´ “

Yk − (−1)k Y ∗
k

”

is easily evaluated,

(ii) satisfies a recurrence of the form Y ∗
N+1 = (1 − g (M,N))Y ∗

N + f (M,N),

(iii) goes to zero quickly as N →∞.

Depending on the nature of g (M,N) , f (M,N) and the speed of convergence, condi-
tions (ii) and (iii) may allow the recurrence to be turned around to extend Y ∗

N to the
complex plane and so allow the desired expectation to be computed by evaluating the

sum
PN

k=0

`
N
k

´ “

Yk − (−1)k Y ∗
k

”

as detailed in the previous sections.

The same type of generalization applies to the study of tries (and Patricia tries), and
the simpler nature of the recurrences follows through the generalization. For example,
the exponential generating functions for the expectations XN and xN of parameters
of trees satisfying (10.19) for a random trie built from N records from random bit
stream is

X (z) = MX
“ z

M

”

e
z
M + x (z) (10.21)

which is considerably easier to deal with. The equation can be solved by Rice’s method
and also by Mellin transform techniques.
This general framework allows quite full analysis of the types of trees considered, and
they clearly expose the fundamental differences and similarities among the analyses.

116 CHAPTER 10. DIGITAL SEARCH TREES

Chapter 11

Mellin transforms and
asymptotics: Harmonic
sums
Ilja Posov

This survey presents a unified and essentially self-contained approach
to the asymptotic analysis of a large class of sums that arise in combi-
natorial mathematics, discrete probabilistic models, and the average-case
analysis of algorithms. It relies on the Mellin transform, a close relative
of the integral transforms of Laplace and Fourier. The method applies to
harmonic sums that are superpositions of rather arbitrary ”harmonics” of
a common base function. Its principle is a precise correspondence between
individual terms in the asymptotic expansion of an original function and
singularities of the transformed function. Here no theorem is proved, and
even not every theorem is completely formulated. For precise presentation
of the theory reader is refered to the original paper.

We have to deal a lot with complex variable functions and I’ll remind you some basic
concepts about them. The first concept about complex variable functions is holomor-
phic function. Function is called holomorphic in some area, if it has complex derivative
in every point of this area.

The second concept is ‘analitic function’. Function is analitic in some point z0 of
complex plane, if it can be expanded into Taylor series in this point, i.e. f(z) =
P∞

n=0 cn(z− z0)n = c0 + c1(z− z0) + c2(z− z0)2 + · · · . Similary, the function is called
analitic in an area, if it is analitic in every point of that area. One of the central
result of the complex variable function theory is the theorem, that every holomorphic
in some area function is analitic there. The converse statement holds too. We’ll use
the word ‘analitic’ a lot.

Except holomorphic functions there are meromorphic functions. Meromorphic in an
area function is a function, that is holomorphic there except discrete set of points that
are called poles. Discrete set means a set, every point of which can be isolated from
other points. For example, every finite set is discrete.

Consider a function f(z) = 1
z(z−1)

. It is analitic (and therefore holomorphic) in C \
{0, 1}, but it is meromorphic in entire C with poles z = 0 and z = 1.

The last concept is ‘open strip’. Open strip 〈a, b〉 = {z = x + iy | a < y < b} is a set
of points in a complex plane that looks like:

117

118 CHAPTER 11. MELLIN TRANSFORMS AND ASYMPTOTICS

Open strip can be infinite, if a or b is infinity, and it’s obvious that 〈−∞,∞〉 = C

11.1 Mellin transform definition

Robert Hjalmar Mellin (1854-1933) was Finnish mathematitian who studied the trans-
form which now bears his name and established its reciprocal properties. Now we are
finally going to learn what Mellin transform is.

Definition 11.1. Let f(x) be real function defined on (0,+∞). Then its Mellin
transform is complex valued function that is defined by equality

M [f(x); s] = f∗(s) =

Z +∞

0

f(x)xs−1dx

Of course, integral from definition usually converges not for all s ∈ C, but it usually
converges for all s from some open strip, which in this case is called ‘fundamental’
strip.

Proposition 11.1. If f(x) = O(xu) as x → 0 and f(x) = O(xv) as x → +∞, then
the integral from Mellin transform definition converges for every s ∈ 〈−u,−v〉 and
defines an analitic function in this strip.

Example 11.1. If f(x) = xk, then f(x) = O(xk) as x → 0 and f(x) = O(xk) as
x→ +∞. Proposition states that transform of f(x) (that is f ∗(s)) exists in the open
strip 〈−k,−k〉, but this strip is empty. In fact, transform of xk simply doesn’t exist,
i.e.

R∞
0
xkxs−1dx doesn’t converge for every k ∈ R and s ∈ C. One can simply check

it.

Now I present examples of functions that do have Mellin transforms.

Example 11.2. Let f(x) = 1
1+x

. f(x) = O(1) = O(x0) as x→ 0, and f(x) = O(x−1)
as x → +∞. Now we can make use of proposition 11.1, here u = 0 and v = −1.
Proposition states, that in this case Mellin transform f∗(s) =

R +∞
0

1
1+x

xs−1dx exists
in the fundamental strip 〈0, 1〉. The integral can be evaluated and it occurs, that
f∗(s) = π

sin πs
. But the equality holds only for s ∈ 〈0, 1〉, for other s integral simply

doesn’t converge. By the way, function π
sin πs

by itself can be evaluated practically in
entire C, except, may be, integer points.

Example 11.3 (Gamma function). Now we consider the function f(x) = e−x.
f(x) = O(1) = O(x0) as x → 0, and ∀M>0 f(x) = O(x−M) as x → +∞. Again,
after using the proposition 11.1 we obtain, that Mellin transform of f(x) exists in the
open strip 〈0,M〉 for every M > 0. It means, that the fundamental strip of this Mellin
transform is 〈0,+∞〉. Now let’s evaluate the transform. f∗(s) =

R +∞
0

e−xxs−1dx.
This integral is called Gamma function and notation is Γ(s). There is a well known
functional equation on gamma function which states that sΓ(s) = Γ(s + 1). This
equation allows us to evalute gamma function not only in the right half of complex
plane, but also in every other point of complex plane. For example, (− 1

2
)Γ(− 1

2
) =

Γ(1
2
) =

√
π, so Γ(− 1

2
) = −2

√
π. The problem is only with nonpositive integers.

11.2. MELLIN TRANSFORM BASIC PROPERTIES 119

Statement 0Γ(0) = Γ(1) doesn’t allow us to evaluate gamma function in zero, it
demonstrates, that there is a pole of gamma function in zero. Every negative integer
is a pole of gamma function for the same reason.

Gamma function occurs frequently in Mellin transforms. But now we look on the last
example of Mellin transform before going to learn basic properties of Mellin transform.

Example 11.4 (Transform of step function).

H(x) =

(

1, x ∈ (0, 1)

0, x ∈ (1,+∞)

As in the previous example and for the same reasons, fundamental strip of the trans-
formed function is 〈0,+∞〉. Here the transform can be simply evaluated. H∗(s) =
R +∞
0

H(x)xs−1dx =
R 1

0
xs−1dx = 1

s
. As in the all previous examples, we see that

transformed function is defined not only in the fundamental strip. Here fundamental
strip is 〈0,+∞〉, but 1

s
may be evaluated in C \ {0}. Fundamental strip is only the

place where an integral converges.

If we had considered another step function H(x) = 1−H(x), we would have obtained
the transform H

∗
(s) = − 1

s
with fundamental strip 〈−∞, 0〉.

11.2 Mellin transform basic properties

All basic properties of Mellin transform can be simply obtained by means of such
methods as integration by parts and change of variable. Here they are summarized in
a table.

f(x) f∗(s) 〈α, β〉

(1) xνf(x) f∗(s+ ν) 〈α− ν, β − ν〉

(2) f(xρ) 1
ρ
f∗(s

ρ
) 〈ρα, ρβ〉 ρ > 0

(3) f(1
x
) −f∗(−s) 〈−β,−α〉

(4) f(µx) 1
µs
f∗(s) 〈α, β〉 µ > 0

(5)
P

k λkf(µkx)
“
P

k
λk
µs

”

f∗(s)

(6) f(x) log x d
ds
f∗(s) 〈α, β〉

(7) Θf(x) −sf∗(s) 〈α′, β′〉 Θ = x d
dx

(8) d
dx
f(x) −(s− 1)f∗(s− 1) 〈α′ + 1, β′ + 1〉

(9)
R x

0
f(t)dt − 1

s
f∗(s+ 1)

The most interesting are the fourth and the fifth properties. The fourth one is
called ‘separation property’ and the fifth property is its generalisation. If the sum
P

k λkf(µkx) is finite, fifth property is obvious because of linearity of Mellin trans-
form. But if the sum is infinite, the fifth property holds only if function f(x) and series
P

k
λk
µs

satisfy some additional conditions. Anyway, we’ll use this property in this pa-
per for infinite sums without paing attention to the problem. All studied functions
are good enough and fifth property holds for them.

120 CHAPTER 11. MELLIN TRANSFORMS AND ASYMPTOTICS

Example 11.5 (Zeta function). Here we’ll use the fifth property to introduce zeta
function. Consider the function

g(x) =
e−x

1− e−x
= e−x + e−2x + e−3x + · · ·

The series converges for every x > 0. Now we apply the fifth property. λk = 1, µk = k
and f(x) = e−x, so

g∗(s) =

„
1

1s
+

1

2s
+

1

3s
+ · · ·

«

M
ˆ
e−x; s

˜
= ζ(s)Γ(s)

Series ζ(s) = 1
1s

+ 1
2s

+ 1
3s

+ · · · converges for every s ∈ 〈1,+∞〉. Fundamental strip
of the transform is 〈1,+∞〉 too, and why it is so we’ll discuss later.

Now we’ll summarize in a table a number of Mellin transforms, some of them were
obtained earlier, some of them can be obtained by means of Mellin transform basic
properties.

f(x) f∗(s) 〈α, β〉
e−x Γ(s) 〈0,+∞〉
e−x − 1 Γ(s) 〈−1, 0〉

e−x2 1
2
Γ(1

2
s) 〈0,+∞〉

e−x

1−e−x
ζ(s)Γ(s) 〈1,+∞〉

1
1+x

π
sin πs

〈0, 1〉
log(1 + x) π

s sin πs
〈−1, 0〉

H(x) ≡ 10<x<1
1
s

〈0,+∞〉

xα(log x)kH(x) (−1)kk!

(s+α)k+1 〈−α,+∞〉 k ∈ N

Here the most interesting is in the first two lines, we see two different functions having
the same Mellin transform. The only diffence is in fundamential strips of the trans-
forms. And now it’s a good moment to formulate a theorem about reconstruction of
initial function having only its Mellin transform.

Theorem 11.1. Let f(x) have Mellin transform f ∗(s) with fundamental strip 〈α, β〉.
Let α < c < β and f∗(c+ it) is integrable. Then the equality

1

2πi

Z c+i∞

c−i∞
f∗(s)x−sdx = f(x)

holds almost everywhere.

The picture presents a patch of integration used in the theorem.

11.3. SINGULARITIES 121

11.3 Singularities

Definition 11.2. Laurent expansion of function φ(s) in point s0 is an equality:

φ(s) =

+∞X

k≥−r

ck(s− s0)k

Here c−r 6= 0. If r > 0, then s0 is called a pole of order r. If r = 1, then pole is called
simple. If r = 2, pole is double.

If r ≤ 0, then function is analitic in s0, because Laurent series in this case degenerates
into Taylor series.

Example 11.6. Consider the function 1
s2(s+1)

, it has two poles on the complex plane.

Double pole is at s0 = 0 and simple pole is at s0 = −1:

1

s2(s+ 1)
=

1

s+ 1
+ 2 + 3(s+ 1) + · · · s0 = −1

1

s2(s+ 1)
=

1

s2
− 1

s
+ 1− s+ · · · s0 = 0

Definition 11.3. A singular element (s.e.) of φ(s) at s0 is an initial sum of Laurent
expansion truncated at terms of O(1) or smaller.

Example 11.7. We consider the same function φ(s) = 1
s2(s+1)

as in the previous

example. Singular elements at s0 = 0 are:

»
1

s2
− 1

s

–

,

»
1

s2
− 1

s
+ 1

–

, . . .

Here we can trancate the Laurant expansion wherever we want, but we are to include
terms with negative degree of s. The same is about singular elements in s0 = 1. They
are: »

1

s+ 1

–

,

»
1

s+ 1
+ 2

–

,

»
1

s+ 1
+ 2 + 3(s+ 1)

–

, . . .

We are to include all items with negative degree of s+ 1, other items we can include
if we want, but usually there is no need to do it.

Definition 11.4. Let φ(s) be meromorphic in some area Ω with G including all the
poles of φ(s) in Ω. A singular expansion of φ(s) in Ω is a formal sum of singular
elements of φ(s) at all points of G. Notation: φ(s) � E.

Example 11.8.

1

s2(s+ 1)
�
»

1

s+ 1

–

s=−1

+

»
1

s2
− 1

s

–

s=0

+

»
1

2

–

s=1

s ∈ C

It is a singular expansion of function φ(s) = 1
s2(s+1)

in all complex plane. G =

{−1, 0, 1}. There is no pole at point s0 = 1, but we can include a singular element at
it in a singular expansion, if we want. G is to include all the poles of the function, but
it also may include any other points. However there is usually no sense in it.

Singular expansion is only a formal sum, we are not trying to evaluate it or even to
simplify. This sum only shows us which poles does function have and what singular
elements are there.

122 CHAPTER 11. MELLIN TRANSFORMS AND ASYMPTOTICS

Example 11.9 (Singular expansion of gamma function). I’ll remind you that
gamma function is defined by the equality

Γ(s) =

Z +∞

0

e−xxs−1dx

Integral converges for s ∈ 〈0,+∞〉, but functional equation sΓ(s) = Γ(s+ 1) allows to
make a continuation of the gamma function to all complex plane except nonpositive
integers. (It has been already noticed in example 11.3) Now we are going to obtain a
singular expansion of gamma function in C.
First af all, functional equation on gamma function implies

Γ(s) =
Γ(s+m+ 1)

s(s+ 1)(s+ 2) . . . (s+m)
, m ∈ N ∪ {0}

It demonstrates again, that gamma function has poles in nonpositive integers, but now
we can learn much more about them. After making a kind of substitution of −m for
s we obtain

Γ(s) ∼
(−1)m

m!

1

s+m
, as s→ −m

This means that left side divided by right side tends to 1 as s tends to −m. But we
can understand it as that the right side is a singular element of gamma function in
point s = −m. Now we know singular elements in all the poles of gamma function
and thus we can write a singular expansion:

Γ(s) �
+∞X

k=0

(−1)k

k!

1

s+ k
, m ∈ C

As it was already said, we are not trying to evaluate the sum, we only look on it and
see what poles does Gamma function have, and what singular elements are there. For
example we see that all poles of gamma function are simple.

Here the arrangement of gamma function poles is demonstrated at the picture.

11.4 Direct mapping

We have already seen in proposition 11.1, that asymptotics of function f(x) in zero
results on the leftmost boundary of the fundamental strip of Mellin transform f ∗(s).
The same is with the asimptotics in infinity. It results on the rightmost boundary
of the fundamental strip. Direct mapping is a theorem about what information can
we obtain about Mellin transform, if we know a more detailed asymptotics of inital
function f(x) in zero and infinity.

Theorem 11.2 (Direct mapping). Let f(x) have a transform f ∗(s) with nonemty
fundamental strip 〈α, β〉. Let

f(x) =
X

(ξ,k)∈A

cξ,kx
ξ(log x)k + O(xγ), x→ 0

11.4. DIRECT MAPPING 123

where k ∈ N ∪ {0}, −γ < −ξ ≤ α. Then f∗(s) is continuable to a meromorphic
function in the strip 〈−γ, β〉, where it admits the singular expansion

f∗(s) �
X

(ξ,k)∈A

cξ,k
(−1)kk!

(s+ ξ)k+1
, s ∈ 〈−γ, β〉

If asymptotic expansion is given at infinity, then the similar result holds. The only
difference is, that meromorphic continuation is to the right of the fundamental strip
and there is an additional minus sign in singular expansion of transformed function.
Look for explanation in two tables given below.

Singular expansion of transformed function presented in the theorem may seem to be
confusing, but in real life there are no logarithms in asymptotic expansions. If there
is one, it comes in the first degree. In this cases k equals 0 or 1, which makes singular
expansion much more simple.

Let’s put in a table some information that we know about connection between asymp-
totic expansion of initial function and properties of transformed one.

f(x) f∗(s)

Order at 0: O(x−α) Leftmost boundary of f.s. at <(s) = α

Order at +∞: O(x−β) Rightmost boundary of f.s. at <(s) = β
Expansion till O(xγ) at 0 Meromorphic continuation till <(s) = −γ
Expansion till O(xδ) at +∞ Meromorphic continuation till <(s) = −δ

The next table contains information about connections between terms in asymptotic
expansion of initial function and singularities of its Mellin transform.

f(x) f∗(s)

Term xa(log x)k at 0 Pole with s.e. (−1)kk!

(s+a)k+1

Term xa(log x)k at +∞ Pole with s.e. − (−1)kk!

(s+a)k+1

Term xa at 0 Pole with s.e. 1
s+a

Term xa log x at 0 Pole with s.e. − 1
(s+a)2

Information contained in two tables is visualized on these two pictures.

Example 11.10. We have already obtained the singular expansion of gamma function
by means of functional equation on it. Now we’ll obtain the same result, but by
applying the direct mapping theorem.

It was shown in example 11.3, that function f(x) = e−x has Mellin transform f∗(s) =
Γ(s). Asymptotic expansion of f(x) at 0 is as follows:

f(x) = e−x = 1 − x+
x2

2!
− x3

3!
+ · · · =

MX

j=0

(−1)j

j!
xj + O(xM+1)

Theorem states, that f∗(s) is meromorphicaly continuable to 〈−M − 1,+∞〉. (And

124 CHAPTER 11. MELLIN TRANSFORMS AND ASYMPTOTICS

we do know it already) The asymptotic expansion of continued function is:

f∗(s) �
MX

j=0

(−1)j

j!

1

s+ j
s ∈ 〈−M − 1,+∞〉

The last holds for every positive M , so we can rewrite it in the following way:

f∗(s) �
+∞X

j=0

(−1)j

j!

1

s+ j
s ∈ C

and this is an asymptotic expansion in entire C. This expansion we have already seen
in example 11.9.

Example 11.11. In example 11.5 we intoduced the Mellin pair

g(x) =
e−x

1− e−x
; g∗(s) = ζ(s)Γ(s)

with fundamental strip 〈1,+∞〉. The asymptotic expansion of g(x) at 0 is

g(x) =
e−x

1 − e−x
=

+∞X

j=−1

Bj+1
xj

(j + 1)!

where Bj are so-called Bernoulli numbers, we can suppose that this asymptotic ex-
pansion is a definition of Bernoully numbers. B0 = 1, B1 = −1/2. As in the previous
example, asymptotic expansion is complete, i.e. we can write, that g(x) = . . .+O(xM)
for any positive M we want. So, direct mapping theorem states, that transform g∗(s)
has meromorphic continuation to strip 〈−∞,+∞〉 = C. The singular expansion there
is

g∗(s) = ζ(s)Γ(s) �
+∞X

j=−1

Bj+1

(j + 1)!

1

s+ j
, s ∈ C

If we compare it with singular expansion of gamma funcion

Γ(s) =

+∞X

j=0

(−1)j

j!

1

s+ j
, m ∈ C

we can extract the singular expansion of zeta function

ζ(s) =

»
1

s− 1

–

s=1

+

+∞X

j=0

»

(−1)j Bj+1

j + 1

–

s=−j

We see, that there are no poles in nonpositive integers, so we have obtained a result,
that zeta function in meromorphic in entire C with the only pole in s0 = 1. Since
singular expansion is a sum of initial sums of Laurent expansions, we can extract
information about values of zeta function in nonpositive integers.

ζ(−m) = (−1)m Bm+1

m+ 1
, m ∈ N ∪ {0}

By the way, B2k+1 = 0 for k ∈ N, so zeta function is zero in even negative integers,
ζ(0) = −1/2, and

ζ(−2m+ 1) = −B2m

2m
, m ∈ N

11.5. CONVERSE MAPPING 125

Example 11.12. There was another Mallin pair

f(x) =
1

x+ 1
; f∗(s) =

π

sinπs

with fundamental strip 〈0, 1〉. Asymptotic expansion at 0

f(x) =
1

1 + x
=

+∞X

n=0

(−1)nxn, x→ 0

implies posibility of continuation of transformed function to the left of fundamental
strip, namly to 〈−∞, 1〉. Singular expansion there is

f∗(s) �
+∞X

n=0

(−1)n

s+ n
, s ∈ 〈−∞, 1〉

If we consider asymptotic expansion at +∞

f(x) =
1/x

1 + 1/x
=

+∞X

n=0

(−1)n−1x−n, x→ +∞

we learn about meromorphic continuation of transformed function to the right of
fundumantal strip. Singular expansion to the right of fundamental strip is

f∗(s) � −
+∞X

n=1

(−1)n−1

s− n , s ∈ 〈0,∞〉

Minus sign, as it has been already said, comes from the fact, that we consider the
asymptotic expansion at infinity.
Now two singular expansions we can conbine into one and it gives us singular expansion
of transformed function in entire C

f∗(s) ≡ π

sinπx
�
X

n∈Z

(−1)n

s+ n
, s ∈ C

As we see, expansion is right, but we could have obtained it much easier.

11.5 Converse mapping

Direct mapping theorem was a method of obtaining information about transformed
function given the initial function. But usually it is not very interesting. We are
interested in information about initial function and not about its transform. So now we
are ready to introduce converse mapping theorem. It will be given exact formulation,
but further we will apply the theorem without checking if exemined function satisfies
all conditions.

Theorem 11.3 (Converse mapping). Let f(x) be continious on (0,+∞) function,
that has a transform f∗(s) with nonempty fundammental strip 〈α, β〉. Let f ∗(s) be
meromorphically continuable to 〈−γ, β〉 with a fininte number of poles there, and be
analytic on <(s) = −γ. Let f∗(s) = O(|s|−r) with r > 1 when |s| → +∞ in 〈−γ, β〉.
If

f∗(x) �
X

(ξ,k)∈A

dξ,k
1

(s− ξ)k
, s ∈ 〈−γ, β〉

Then an asymptotic expansion of f(x) at 0 is

f(x) =
X

(ξ,k)∈A

dξ,k

„
(−1)k−1

(k − 1)!
x−ξ(log x)k−1

«

+ O(xγ)

126 CHAPTER 11. MELLIN TRANSFORMS AND ASYMPTOTICS

Converse mapping theorem is a theorem, that derives asymptotics of initial function
from singularities of transformed. Next table includes some explanation of the theo-
rem.

f∗(f) f(x)

Pole at ξ Term in asymptotic expansion ≈ x−ξ

left of f.s. expansion at 0

right of f.s. expansion at +∞

Simple pole

left: 1
s−ξ

x−ξ at 0

right: 1
s−ξ

−x−ξ at +∞

Multiple pole logarifmic factor

left: 1
(s−ξ)k+1

(−1)k

k!
x−ξ(log x)k at 0

right: 1
(s−ξ)k+1 − (−1)k

k!
x−ξ(log x)k at +∞

Example 11.13. Consider a function φ(s) = Γ(s)Γ(ν−s)
Γ(ν)

. It is analytic in strip 〈0, ν〉.
We know the singular expansion of gamma function an we can use this knwoledge to
obtain the singular expansion of φ(s) in the strip 〈−∞, ν〉:

φ(s) �
+∞X

j=0

(−1)j

j!

Γ(ν + j − 1)

Γ(ν)

1

s+ j
, s ∈ 〈−∞, ν〉

This φ(s) is a Mellin transform of some function f(x), which can be obtained by
applying of theorem 11.1

f(x) =
1

2πi

Z ν/2+i∞

ν/2−i∞
φ(s)x−sds

Singularities of φ(s) in strip 〈−∞, ν〉 encode asymptotics for f(x) at 0

f(x) =
+∞X

j=0

(−1)j

j!

Γ(ν + j − 1)

Γ(ν)
xj , x→ 0

One could have remembed binomial theorem and noticed, that function f (x) = (1 +
x)−ν has the same expansion at 0. This means, that difference $(x) = f(x) − f (x)
decase to zero faster, than any power of x, i.e. $(x) = O(xM), ∀M > 0. In fact,
$(x) ≡ 0, and we have indirectly obtained a new Mellin pair

f(x) = (1 + x)−ν , f∗(s) =
Γ(s)Γ(ν − s)

Γ(ν)

Example 11.14. Consider a function φ(s) = Γ(1 − s) π
sin πs

. It is analitic in strip
〈0, 1〉. We know singular expansion of every factor in this function and thus we can
write singular expansion

φ(s) �
+∞X

0

(−1)nn!
1

s+ n
, s ∈ 〈−∞, 1〉

11.6. HARMONIC SUMS 127

Applying of converse mapping theorem yields an asymptics for initial function f(x)

f(x) ∼

+∞X

n=0

(−1)nn!xn, x→ 0

Symbol ‘∼’ is written instead of ‘=’ to make an emphasis, that expansion is only
asymptotic, i.e. series from the right side doesn’t converge for any x > 0, but we can
write, that f(x) =

PM
n=0(−1)nn!xn + O(xM) as x → 0 for any positive M . In fact,

f(x) =
R +∞
0

e−t

1+xt
dt.

11.6 Harmonic sums

Definition 11.5. A sum of the type G(x) =
P

k λkf(µkx) is called harmonic sum

with base function g(x), frequencies µk and amplitudes λk. Series Λ(s) =
P

k
λk
µs

is
called the Dirichlet series.

Now we are going to discuss when the fifth basic property of Mellin transform holds
for infinite harmonic sums. Next proposition is not formulated fully, base function and
Dirichlet series are to satisfy some certain conditions about speed of growth, but all
this is skipped here for simplicity.

Proposition 11.2. The Mellin transform of the harmonic sum G(x) =
P

k λkf(µkx)
is defined in the intersection of the the fundamental strip of g(x) and the domain
of absolute convergence of the Dirichlet series Λ(s) =

P

k
λk
µs

which is of the form
<(s) > σa (or <(s) < σa) for some real σa. In addition, G∗(s) = Λ(s)g∗(s).

In next (and last) two examples we’ll derive two well known asymptotics. One is an
asymptotic of harmonic numbers, and the second is Stirling’s formula. But here we’ll
obtain complete asymptotics, which is not known so well.

Example 11.15 (Harmonic numbers). Consider the function

h(x) =
+∞X

k=1

»
1

k
− 1

k + x

–

=
+∞X

k=1

1

k

x/k

1 + x/k

It is usuall harmonic sum with frequencies µk = 1/k, amplitudes λk = 1/k and base
function g(x) = x

1+x
. Function h(x) is connected with harmonic numbers in very

simple way: h(n) = 1 + 1
2

+ · · · + 1
n

= Hn for any n ∈ N. Now we are going to
evaluate Mellin transform of G(x). To do this, we are to evaluate the Dirichlet series
Λ(s) and the tranform of base functon g(x). Λ(s) =

P

k
λk
µs

=
P+∞

k=1 k
−1+s = ζ(1− s).

Transform of base function is g∗(s) = − π
sin πs

with fundamental strip 〈−1, 0〉, which is
the result of applying of the first base property of Mellin transform. Notice, that the
Dirichlet series Λ(s) = ζ(1− s) converges absolutely in the strip 〈−1, 0〉
Now we are ready to write the transform of h(x), which is

h∗(s) = Λ(s)g∗(s) = −ζ(1− s) π

sinπs
, s ∈ 〈−1, 0〉

Before trying to write a singular expansion, we are to study zeta function some more.
We know that ζ(s) ∼

1
s−1

, it’s a begining of Laurent expansion of zeta function
at 1, but it’s not enough for us. We want to know a coeficient of the zero de-
gree in the Laurant expansion. Let it be γ, so we can write ζ(s) = 1

s−1
+ γ +

· · · as s → 1. This γ is so-called Euler constant, which is approximatly equal to
0.577215664901532860606512090082402431042159. Keeping all of this in mind, we
can write singular expansion of h∗(s):

h∗(s) �
»

1

s2
− γ

s

–

−
+∞X

k=1

(−1)k ζ(1 − k)
s− k , s ∈ 〈−1,+∞〉

128 CHAPTER 11. MELLIN TRANSFORMS AND ASYMPTOTICS

Fundamental strip of the transform and its poles to the right of the fundamental strip
are presented at the picture:

Double pole at zero is marked with a big circle.
Now we can finally apply converse mapping theorem and we obtain wishful asympotics:

Hn ∼ log n+ γ +
X

k≥1

(−1)kBk

k

1

nk
= log n+ γ +

1

2n
− 1

12n2
+

1

120n4
− · · ·

Example 11.16 (Stirling’s formula). In this example we are to use the product
decomposition of gamma function, that looks like

log Γ(x+ 1) + γx =

+∞X

n=1

hx

n
− log

“

1 +
x

n

”i

Let’s denote the right side as `(x). This is a harmonic sum with amplitudes λn = 1,
frequencies µn = 1/n and a base function g(x) = x− log(1 + x). The Dirichlet series
is Λ(s) =

P+∞
n=1 λnµ

−s
n =

P+∞
n=1 n

s = ζ(−s). Transform of g(x) can be evaluated
by means of the first and the ninth basic properties of Mellin transform. The result
is g∗(s) = − π

s sin πs
with fundamental strip 〈−2,−1〉. As in the previous example,

the Dirichlet series Λ(s) = ζ(−s) converges absolutely in the fundamental strip of
transform of base function. So, fundamental strip of transform of `(s) is 〈−2,−1〉 too.

`∗(s) = −ζ(−s) π

s sinπs
, s ∈ 〈−2,−1〉

We want to obtain an asymptotics in infinity, so we look on meromorphic continuation
to the right of the fundamental strip. Laurant expansion of zeta function at zero is
ζ(s) = 1

2
− 1

2
log(2π)+O(s), so singular expansion of `∗(s) to the right of fundamental

strip is

`∗(s) �
»

1

(s+ 1)2
+

1− γ
(s+ 1)

–

+

»
1

2s2
− log

√
2π

s

–

+

+∞X

n=1

(−1)n−1ζ(−n)

n(s+ n)
, s ∈ 〈−2,+∞〉

Now we can apply converse mapping theorem and derive an asymptotics of function
`(s), which is

`(x) =

»

x log x− (1 − γ)x
–

+

»
1

2
log x+ log

√
2π

–

+
+∞X

n=1

B2n

2n(2n − 1)

1

x2n−1
, x→ +∞

Here every item from singular expansion was converted to an item in asymptotic
expansion without any simplification, but now we do some, keeping in mind, that
Γ(x+ 1) = x!, so

log(x!) = log
“

xxe−x
√

2πx
”

+
+∞X

n=1

B2n

2n(2n − 1)

1

x2n−1
, x→ +∞

This dazzling formula is named after Stirling and this is a good reason to finish the
paper right here.

Chapter 12

Automaton Searching on
Tries.
Mikhail Lakunin

Above there were considered a lot of algorithms that allow us to search
for a pattern in a string and a few powerful methods to give asymptotic
estimations of such algorithms. There is an extension of such algorithms,
not for one pattern but for a regular expression. The algorithms that are
to be reviewed there run on the preprocessed text (we use Patricia tree)
and are of logarithmic expected time of the size of the text for the stricted
class of regular expressions and in a sublinear expected time for all regular
expressions.

It’s the first such algorithm to be found with this complexity.
The main purpose of the text is to give understanding of what’s going

on, and therefore some of the technicals could be omitted. For the precise
explanation the reader is referred to the original paper.

12.1 Structure of the paper

1. What we actually want to do or our task

2. The algorithms in a “few words”

3. Introducing indexing structures such as suffix tries and Patricia trees and a
notation used in the Regular Languages theory(the Theory of formal languages)

4. Consider the simple algorithm for the stricted class of a regular expression that
runs in logarithmic time.

5. Consider more complicated general algorithm.

6. Give estimation of the general algorithm considering sketch of technicals.

7. How to apply “general estimation theorem” to the particular cases.

8. Consider some heuristic for improving size of the query.

9. Open problems and conclusion (generalization of what we has spoken about)

12.2 Our task or what we want to do

We want to find efficient algorithm of finding all occurrences of a query given in the
form of a regular language searching on the static preprocessed text. By finding all

129

130 CHAPTER 12. AUTOMATON SEARCHING ON TRIES.

the occurrences we mean that we are going to find all the positions of the text from
where one substring from our query set could start. In general queries are not of the
big length, so there and below we state that the size of the query is bounded by the
constant. We use there automaton that searches through the indexing tree and we state
that our algorithm is pretty efficient, i.e. works in sublinear expected time (in average
case). Moreover there exist small stricted subset of such queries that the expected
time will be logarithmic. Besides we consider a powerful tool for estimating expected
time of given automaton, the theorem that allows it on basis of some knowledge about
incidence matrix of the automaton. And after all of that we suggest an heuristic for
enhancing or for clarifying the query that helps to work all the algorithm faster.

12.3 Algorithm in a “few words”

As in previous parts we’ve got a large input text that is static or in other words we
can construct indexing structure on it and we don’t bother about how to reconstruct
it if the text will change. So we construct a trie (from word retrieval) that is indexing
binary tree (we suppose our alphabet is binary; if it’s not we just use some encoding
to obtain binary text and hence binary alphabet) was discussed by Olga Sergeeva. It
becomes obvious to us that we can find arbitrary substring in the text in height of
indexing tree length. In the case of perfectly balanced tree it’s log2 n, where n is the
length of the string.
Now we’re able to find a single substring in a large text in logarithmic of the size of the
text expected time (in average case, considering uniform distribution) Let’s complicate
the task. If set of all the substrings we are to find in the text could be represented
as a prefix from minimal preword set concatenated with any continuation. For such
a set we can state that it’s possible to search for that query in a time o(

‚
‚query

‚
‚)

independently of the size of the answer, i.e. in logarithmic expected time of size of the
text.
Then we consider general regular expression query, construct Deterministic Automaton
for it and traverse it on the index trie. It could be showed that Automaton don’t visit
all the vertices of the index trie (the quantity of which is O(n)),but only a part of
them in average case, that’s the main idea of sublinear expected time.

12.4 Basic index structures and notation

To approach crystal understanding we need to introduce or just to help to recall some
basics facts we are going to manage with soon after.
As it has been said we consider only binary alphabet, any other alphabet could be
easily converted to the binary one with some encoding

12.4.1 Indexing structures

Definition 12.1. Trie is a binary index tree for a text(tree each edge of that is
marked with a character), that satisfy following conditions:

1. each path of it (from the root to a leaf) consist of the prefix of one and only one
of the suffixes of the text

2. paths are as short as possible satisfying first condition

3. each leaf of it is marked with the position of the first character of the corre-
sponded suffix

The main problem of the pure trie is that the upper bound of the number of inner
nodes is O(n2) that approaches in unbalanced tries, that’s why in practice enhanced
structure is of often use. It’s so-called Patricia tree.

12.4. BASIC INDEX STRUCTURES AND NOTATION 131

Figure 12.1: Binary trie (external node label indicates position in the text) for
the 01100100010111

132 CHAPTER 12. AUTOMATON SEARCHING ON TRIES.

Definition 12.2. Patricia tree constructed on the basis of the trie, but with one
enhancement. We exclude such nodes that have only one descendant and one ancestor,
in other words we exclude nodes that are not leafs and that are not nodes of the
“bifurcation”. To not miss the correspondence with the initial text we remember the
quantity of steps we need to omit to get to the next “bifurcation” node.

Note. Asymptotically in average case:
Height of the trie is: 2log2(n) +O(log2(n)) [Reg81]
Height of the Patricia tree: log2(n) +O(log2(n)) [Reg81]

12.4.2 Basic definitions of the Theory of Formal Languages

General definition and notation.

1. Σ is a set of all characters (Alphabet), in some cases one character from the set

2. ε is an empty string

3. xy is concatenation of strings x and y

4. w = xyz if w is concatenation of strings x, y, z then:

(a) x is a prefix of w

(b) z is a suffix of w

(c) y is a substring of w

Let’s define operations we are to use specifying regular expression (RE).

1. r,q are sets of strings

2. r + q is a unite of these sets (r + q = r ∪ q)
3. r? is one or zero occurrences of r (r? = ε+ r in our notation)

4. rk is k occurrences of r

5. r≤k is from zero to k occurrences of r (r≤k =
Pk

i=0 r
i)

6. r∗ is Kleene closure,i.e. any number of occurrences of r (r∗ =
P+∞

i=0 r
i)

7. r+ is one or more occurrences of r (r+ =
P+∞

i=1 r
i)

12.5 Algorithm for a restricted class of regular
expression

There we consider algorithm of searching for the stricted class of queries. It was briefly
reviewed above, there we define it more exactly.
Let’s introduce new expression class so-called prefixed regular expressions that is sub-
class of regular expressions class that was defined above.

Definition 12.3. Prefixed regular expression (PRE) is:

1. ∅ is a PRE (the empty set)

2. ε is a PRE({ε} the set of empty string)

3. for each a ∈ Σ, a is a PRE ({a})
4. if p, q ∈ PRE and r ∈ RE (such that ε ∈ r) and x ε Σ then:

(a) p+ q is a PRE (union)

(b) xp is a PRE (concatenation with a character on the left)

(c) pr is a PRE (concatenation with ε-regular expression on the right)

12.5. A RESTRICTED CLASS OF REGULAR EXPRESSION 133

(d) p∗ is a PRE

Example 12.1. This is PRE

ab(bc∗ + d+ + f(a+ b))

Example 12.2. This is not PRE

aΣ∗b

Example 12.3. This is not PRE too

(a+ b)(c+ d)(e+ f)

Statement. There exist such unique and finite subset(we call it preword set) of the
(given) PRE set that satisfy following conditions:

1. for every word in the PRE set there exist unique prefix from preword set

2. for every word from the preword set there’s no other prefix in the set

To search a PRE query, we construct a tree (so-called Complete Prefix Trie) in similar
way as we construct trie, but we use not suffixes of the text as we do in case of trie
but all the strings in preword set of the query. And then traverse through that tree
and through our index trie simultaneously for an answer.

Definition 12.4. Complete Prefix Trie (CPT) is the trie of the set of the strings
such that:

1. there are no truncated paths(as in Patricia tree), that is, every word corresponds
to a complete path in the trie

2. if a word x is a prefix of another word w, then only x is stored in the trie.

The second rule has appeared since the search for x is sufficient to also find the
occurrences of w. We are going to find only starting positions, aren’t we?
We’ve constructed the Complete Prefix Trie so we are now able to traverse through
that.
We traverse simultaneously, if possible, the complete prefix trie(CPT) and the trie
(Patricia tree) of all suffixes of the text (the index). That is, follow at the same time a
0 or 1 edge(we consider binary alphabet), if they exist in both the trie and the CPT.
All the subtrees in the index associated with terminal nodes in the complete prefix
trie are the answer. As in prefix searching, because we may skip bits while traversing
the index, a final comparison with the actual text is needed to verify the result.
Let’s formulate the algorithm.

Algorithm. Searching for a query:

1. Construct the Complete Prefix Trie from the query

2. Traverse simultaneously the complete prefix trie and Patricia tree to obtain an
answer.

Note. Since we may skip bits while traversing the index(if we used Patricia tree), a
final comparison with the actual text is needed to verify the result.

Because the number of nodes of the complete prefix trie of the preword set is O(|query|),
the search time is also O(|query|).

Conclusion. It is possible to search a PRE-query in time O(|query|) independently
of the size of the answer.

134 CHAPTER 12. AUTOMATON SEARCHING ON TRIES.

Figure 12.2: Complete Prefix Trie for a query ab(bc∗ + d+ + f(a+ b))

12.6. GENERAL ALGORITHM 135

12.6 General algorithm

The extension of the previously discussed idea leads to general algorithm of searching
query given as regular expression.

12.6.1 What we want to do there

There we present the algorithm that can search for arbitrary regular expression in
time sublinear in n on the average. For this, we simulate a DFA (Deterministic Finite
Automaton) in a binary trie built from all the suffixes of a text.
Since the situation is pretty similar with the previous algorithm. Let’s start from
presenting algorithm itself.

Algorithm. General Automaton Search

1. Convert the regular expression(query) into minimized DFA(independent of the
size of the text)

2. Eliminate outgoing transitions from final states

3. Convert character DFA into binary DFA (Each state will then have at most two
outgoing transitions, one labeled with 0 and one labeled with 1), i.e. applying
some encoding

4. Simulate binary DFA on the binary trie of all suffixes we’ve constructed(See
pictures of DFA and binary index trie).
That is:

(a) root of the tree with initial state.

(b) for any internal node associated with state i, associate its left descendant
with state j, if i > j for a bit 0, and associate its right descendant with
state k, if i > k for a bit 1.

5. For every node of the index associated with a final state, accept the whole
subtree and halt.

6. On reaching an external node, run the remainder of the automaton on the single
string determined by this external node.

12.7 Efficiency Estimation for the General Al-
gorithm

The precise average case analysis of the above algorithm is not simple. Some explana-
tions were given in “few words” in the start of the paper, There I’ll try to clarify the
situation a bit, for precise explanation reader is referred to the original paper.

12.7.1 The structure of the proof

The situation is as follows. We have Patricia indexing trie with O(n) nodes and the
DFA(Deterministic finite automaton) and we want to calculate how many nodes of
the Patricia indexing trie will be visited by automaton. We want to prove that this
quantity is less then O(n) (asymptotically).
There I want to give a sketch of the proof on step by step basis.

1. We introduce N i
n, i.e. the quantity of nodes of our index Patricia tree that was

visited by Automaton when the quantity of suffixes in the tree is n and we’ve
engaged our automaton on the i-th node.

136 CHAPTER 12. AUTOMATON SEARCHING ON TRIES.

Figure 12.3: DFA with corresponded index trie
4

2. We note that our automaton from each node can go only in 2 directions in the
index tree and taking into account all the possible combinations of the ways
suffixes could go in i-th node we can say , therefore we can say that:

N i
n = 1 +

1

2n

nX

l=0

n

l

!
“

N j
l +Nk

n−l

”
!

where j, k are states DFA goes on 0, 1 correspondingly (see picture with DFA
and trie)

3. Now it looks like equation could be solvable with generating function. We apply
generate function,

4. and convert it to matrix equation writing it for all the starting nodes in a unit.

5. Then we “solve” equation and find the generating function. The generating
function equals to the matrix series, where the matrix is incidence matrix of
DFA.

6. Then we convert it to a Jordan form and decompose matrix equation looking at
the single values in a matrix.

7. Then we apply Mellin transform method to get some knowledge about this single
values series and about matrix series

8. Using that we got some estimation of eigenvalues and information about N , i.e.
about number of nodes was visited and about number of comparison DFA made
(in average case)

9. Finally we obtain following theorem(taking in account number of steps we need
for verifying in case of Patricia tree):

Theorem 12.1. The expected number of comparisons performed by a minimal
DFA for a query q represented by its incidence matrix H while searching the trie
of n random strings is sublinear, and given by:

O
`
(log2n)t nr

´

,where r = log2λ,λ = maxi(|λi|),t = maxi(mi − 1,such that |λ| = λi), and the
λi are the eigenvalues of H with multiplicities mi.

12.8. APLLYING THE GENERAL ESTIMATION THEOREM 137

12.8 How to apply “general estimation theorem”
to the particular cases

To analyze average time of searching for particular query or particular type of the
query ,we need to consider DFA of the query and its incidence matrix and eigenvalues
of the matrix. And then we can apply “the main theorem” to obtain estimation.

Example 12.4. For example, DFAs having only cycles of length 1, have a largest
eigenvalue equal to 1, but with multiplicity proportional to the number of cycles,
obtaining a complexity of O(polylog(n)).

Example 12.5. For the regular expression (0(011)0)∗1, the eigenvalues are:

21/3,−1

2
(21/3 − 31/221/3i),−1

2
(21/3 − 31/221/3i), 0

, and the first 3 have the same modulus. The solution in this case is N 1
n = O(n1/3)

12.9 Heuristic for optimizing the query

12.9.1 What we mean by optimizing

In this section, we present a general heuristic, which we call substring analysis,
to plan what algorithms and order of execution should be used for a generic pattern
matching problem, which we apply to regular expressions.
The aim of this section is to find from every query a set of necessary conditions that
have to be satisfied.

12.9.2 Substring graph

Definition 12.5. Substring graph of a regular expression is an acyclic directed
graph such that each node is labeled by a string. And its defined recursively by the
following rules:

1. G(ε) is a single node labeled ε.

2. G(x) for any x ∈ Σ is a single node labeled with x.

3. G(s+t) is the graph built from G(s) and G(t) with an ε-labeled node with edges
to the source nodes and an ε-labeled node with edges from the sink nodes.

4. G(st) is the graph built from joining the sink node of G(s) with the source node
of G(t), and relabeling the node with the concatenation of the sink label and
the source label.

5. G(r+) are two copies of G(r) with an edge from the sink node of one to the
source node of the other.

6. G(r∗) is two ε-labeled nodes connected by an edge .

12.9.3 How to Use

reducing the size of the query

After building G(q), we search for all node labels in G(q) in our index of suffixes, deter-
mining whether or not that string exists in the text (O(|q|) time). For all nonexistent
labels, we remove:

1. the corresponding node,

138 CHAPTER 12. AUTOMATON SEARCHING ON TRIES.

2. adjacent edges,

3. and any adjacent nodes (recursively) from which all incoming edges or all out-
going edges have been deleted.

This reduces the size of the query.

estimating final answer size

From the number of occurrences for each label we can obtain an upper bound on the
size of the final answer to the query:

1. for adjacent nodes (serial, or “and” nodes) we multiply both numbers

2. for parallel nodes (“or” nodes) we add the number of occurrences

Note. ε-nodes are treated in special way.

Managing ε-nodes:

1. consecutive serial ε-nodes are replaced by a single ε-node.

2. chains that are parallel to a single ε-node, are deleted

3. the number of occurrences in the remaining ε-nodes is defined as 1

After the simplifications,ε-nodes are always adjacent to non-ε-nodes, since ε was as-
sumed not to be a member of the query

12.10 Open problems and conclusion

We have shown that using a trie or Patricia tree, we can search for many types of
string searching queries in logarithmic average time, independently of the size of the
answer. We also show that automaton searching in a trie is sublinear in the size of
the text on average for any regular expression, this being the first algorithm found
to achieve this complexity. Similar ideas have been used since for approximate string
searching by simulating dynamic programming over a digital tree [Gonnet et al. 1992;
Ukkonen 1993], also achieving sublinear time on average. In particular, Gonnet et al.
[1992] have used this algorithm for protein matching.
In general, however, the worst case of automata searching is linear. For some regular
expressions and a given algorithm it is possible to construct a text such that the
algorithm must be forced to inspect a linear number of characters. The pathological
cases consist of periodic patterns or unusual pieces of text that, in practice, are rarely
found.
Finding an algorithm with logarithmic search time for any RE query is still an open
problem [Galil 1985]. Another open problem is to derive a lower bound for searching
REs in preprocessed text.

Bibliography

[BFC00] Michael A. Bender and Martin Farach-Colton, The lca problem revisited,
Latin American Theoretical INformatics, may 2000, pp. 88–94.

[BYG96] Ricardo A. Baeza-Yates and Gaston H. Gonnet, Fast text searching for reg-
ular expressions or automaton searching on tries, Journal of the ACM 43
(1996), no. 6, 915–936.

[CL94] William I. Chang and Eugene L. Lawler, Sublinear approximate string
matching and biological applications, Algorithmica 12 (1994), 327–344.

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest, Introduc-
tion to algorithms, MIT Press, 1990.

[FGD95] Philippe Flajolet, Xavier Gourdon, and Philippe Dumas, Mellin transforms
and asymptotics: Harmonic sums, Theoretical Comp. Science 144 (1995),
no. 1–2, 3–58.

[FS86a] Philippe Flajolet and Robert Sedgewick, Digital search trees revisited, SIAM
J. Comput. 15 (1986), no. 3, 748–767.

[FS86b] , Digital search trees revisited, SIAM J. Comput. 15 (1986), no. 3,
748–767.

[FS95] , Mellin transforms and asymptotics: Finite differences and rice’s
integral, Theoretical Computer Science 144 (1995), no. 1-2, 101–124.

[FS98] A. Frieze and W. Szpankowski, Greedy algorithms for the shortest common
superstring that are asymptotically optimal, Algorithmica 21 (1998), 21–36.

[GO81] L. J. Guibas and A. M. Odlyzko, String overlaps, pattern matching, and
nontransitive games, J. of Combinatorial Theory, Series A 30 (1981), 183–
208.

[Gus97] Dan Gusfield, Algorithms on strings, trees, and sequences: Comp. science
and computational biology, Cambridge University Press, 1997.

[GV00] Roberto Grossi and Jeffry Scott Vitter, Compressed suffix arrays and suffix
trees with applications to text indexing and string matching, 32nd Symp. on
Theory of Comput., 2000, pp. 397–406.

[Jac89] Guy Jacobson, Sapce-efficient static trees and graphs, IEEE Symposium on
Foundations of Computer Science (1989), 549–554.

[KS03] Juha Kärkkäinen and Peter Sanders, Simple linear work suffix array con-
struction, Proc. 30th Int. Colloq. on Automata, Languages and Program-
ming (ICALP), LNCS, vol. 2719, Springer, 2003, pp. 943–955.

[MM93] Udi Manber and Gene Myers, Suffix arrays: A new method for on-line string
searches, SIAM J. Comput. 22 (1993), no. 5, 935–948.

[NBY00] G. Navarro and R. Baeza-Yates, A hybrid indexing method for approximate
string matching, Journal of Discrete Algorithms (JDA) 1 (2000), no. 1, 205–
209, Special issue on Matching Patterns.

139

140 BIBLIOGRAPHY

[Reg81] M. Regnier, On the average height of trees in digital search and dynamic
hashing, Inf. Proc.Lett 13 (1981), 64–67.

[RS98a] M. Regnier and W. Szpankowski, Complexity of sequential pattern matching
algorithms, Proc. RANDOM, LNCS, vol. 1518, Springer, 1998, pp. 187–199.

[RS98b] Mireille Regnier and Wojciech Szpankowski, On pattern frequency occur-
rences in a markovian sequence, Algorithmica 22 (1998), 631–649.

[Sad00] Kunihiko Sadakane, Compressed text databases with efficient query algo-
rithms based on the compressed suffix array, Proc. ISAAC, LNCS, vol. 1969,
Springer, 2000, pp. 410–421.

[Szp93] Wojciech Szpankowski, Asymptotic properties of data compression and suffix
trees, IEEE Transactions on Information Theory 39 (1993), no. 5, 1647–
1659.

[Szp00] , Average case analysis of algorithms on sequences, 1 ed., Wiley-
Interscience, 2000.

[Ukk95] E. Ukkonen, On-line construction of suffix trees, Algorithmica 14 (1995),
249–260.

