
JASS 2005: Algorithms for IT Security

Digital Signatures

Olga Shishenina

Contents

1 Elliptic curves 3
1.1 Elliptic curves over the reals . 3
1.2 Elliptic curves over the finite fields . 6

2 Elliptic Curve Digital Signature Algorithm 6
2.1 ECDSA Domain Parameters . 7

2.1.1 Generating an Elliptic Curve verifiably at Random 7
2.1.2 Domain parameters generation . 9
2.1.3 Domain parameters validation . 9

2.2 ECDSA key pairs . 9
2.2.1 ECDSA key pair generation . 10
2.2.2 Explicit validation of an ECDSA Public Key 10

2.3 ECDSA Signature Generation and Verification . 10
2.3.1 ECDSA Signature Generation . 10
2.3.2 ECDSA Signature Verification . 11

2.4 Security . 11

3 RSA signature algorithm 13
3.1 Key generation in RSA signature scheme . 13
3.2 RSA signature generation and verification . 14
3.3 Multiplicative propery of RSA . 14
3.4 Performance characteristics . 14
3.5 Bandwidth efficiency . 15

2

1 Elliptic curves

Now let’s have a brief look at the elliptic curves defined over the real numbers, because some of the
basic concepts are easier to explain in this setting.

1.1 Elliptic curves over the reals

Definition 1 Let a, b ∈ R be constants such that 4a3 + 27b2 6= 0. A non-singular elliptic curve is
the set E of solutions (x, y) ∈ R × R to the equation

y2 = x3 + ax + b (1)

together with a special point O called the point at infinity. The value 4a3 + 27b2 is called a curve
discriminant.

Let us show that the condition 4a3 +27b2 6= 0 is necessary and sufficient to ensure that the equation
x3 + ax + b = 0 has three distinct roots(which may be real or complex numbers).

Let us consider a case when the equation f(x) = x3 + ax + b = 0 has a multiple root, i.e.

(x − x1)
2(x − x2) = 0.

It’s derivative is defined by the equation

f ′(x) = 2(x − x1)(x − x2) + (x − x1)
2 = (x − x1) · (2(x − x2) + (x − x1)) .

One can proove that gcd(f(x), f ′(x)) 6= 1 ⇔ f(x) has a multiple root.
Let ∃x :{

x3 + ax + b = 0
3x2 + a = 0

⇔
{

x3 + ax + b = 0
x2 + a = −2x2 ⇔

{
−2x3 + b = 0
x2 + a = −2x2 ⇔

{
x = 3

√
b
2

3x2 = −a

3

(
3

√
b

2

)2

= −a ⇔ 4a3 + 27b2 = 0

If 4a3 + 27b2 = 0, then the corresponding elliptic curve is called a singular elliptic curve
Now suppose that E is a non-singular elliptic curve. To define a group structure over it’s points

we have to define a binary operation that satisfies group properties. This operation is usually
denoted by addition.
Identity element: ∀P ∈ E P + O = O + P = P.

Now let us define the addition operation over elliptic curves.
Suppose P,Q ∈ E, where P = (x1, y1), Q = (x2, y2). There are three cases:

1. x1 6= x2

2. x1 = x2 and y1 = −y2

3. x1 = x2 and y1 = y2

3

First case: x1 6= x2.
If P = (x1, y1) and Q = (x2, y2) are two distinct points on a curve, then a third point R = (x3, y3) :
R = P + Q is defined as follows. Firstly we draw a chord L between P and Q and find it’s third
point of intersection with the curve(as the degree of a line equation is equal to one, and degree of
elliptic curve is equal to three). The point R = (x3, y3) symmetric to this point with respect to the
x-axis is the sum P + Q.

It was an geometric approach, now let’s figure out an algebraetic formulae to compute R.

L : y = λx + ν

λ = y2−y1

x2−x1
and ν = y1 − λx1 = y2 − λx2

In order to find points in E ∩ L let’s substitute y = λx + ν into equation for E:

(λx + ν)2 = x3 + ax + b

x3 + λ2x2 + (a − 2λν)x + b − ν2 = 0 (2)

As points P and Q lie on L, then their x coordinates are roots of equation 2. Since 2 is a cubic
equation over the reals and it has two real roots x1 and x2, then it must have a third real root x3.

x1 + x2 + x3 = λ2 or x3 = λ2 − x1 − x2

It is easy to understand that if R = (x3, y3), then R′ = (x3,−y3). Since P = (x1, y1) and
R′ = (x3,−y3) lie on L, then

λ =
y1 + y3

x1 − x3

or y3 = λ(x1 − x3) − y1.

Therefore we have derived a formula for P + Q in the first case:
if x1 6= x2, then (x1, y1) + (x2, y2) = (x3, y3), where

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3) − y1

λ = y2−y1

x2−x1

Second case: x1 = x2 and y1 = −y2.
We define:

∀ (x, y) ∈ E (x, y) + (x,−y) = O

It means that (x,−y) is inverse to (x, y) with respect to the elliptic curve addition operation.
Third case: x1 = x2 and y1 = y2.
We consider that y1 6= 0, otherwise we would be in the second case. The third case can be considered
as an extreme case of the first one. If P = Q, then we draw a the tangent line to the curve at
P instead of a chord. A function’s derivative at a certain point equals the slope of the tangent
measured from the positive direction of the x-axis. Using an implicit differentiation of the equation
of E we get:

2y
dy

dx
= 3x2 + a.

4

Since we draw a tangent line at the point P = (x1, y1),then:

λ =
3x2

1 + a

2y1

.

The rest of analysis is the same as in case 1, i.e.:
if x1 = x2 and y1 = y2, then (x1, y1) + (x2, y2) = (x3, y3), where

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3) − y1

λ =
3x2

1
+a

2y1
.

If E is the set of points of the elliptic curve y2 = x3 + ax + b then the above defined addition
operation satisfies the following properties:

• ∀ P, Q ∈ E P + Q ∈ E

• ∃ O ∈ E ∀ P ∈ E : P + O = O + P = P

• ∀ P ∈ E ∃ Q ∈ E : P + Q = Q + P = O

• ∀ P, Q ∈ E P + Q = Q + P

So (E, +) is a group under addition.

Figure 1: Geometric addition and doubling of elliptic curve points.

5

1.2 Elliptic curves over the finite fields

Elliptic curves could be defined over the finite fields exactly as they were defined over the reals
provided that all operations in R are replaced by analogous operations in GF (q). In practice elliptic
curves are usually defined over GF (p) or GF (2m). From now on we will work with finite fields of
a prime order. If q is prime, then all operations are made in Zp.

Definition 2 Let p > 3 be a prime. Let a, b ∈ Zp be constants such that 4a3 + 27b2 6= 0 mod p. A
non-singular elliptic curve is the set E of solutions (x, y) ∈ Zp × Zp to the equation

y2 = x3 + ax + b mod p (3)

together with a special point O called the point at infinity.

The same formulas can be used to define addition and (E, +) still forms a group under addition.
We will denote this group as E(GF (q)).

To determine elements of E(GF (q)) we have to try all possible x ∈ Zp, compute x3+ax+b mod p
and then find if the resulted value is a quadratic residue mod p. A well-known Hasse’s theorem states
that the cardinality #E(GF (q)) = q +1− t, where |t| ≤ 2q. The interval [q +1− 2

√
q, q +1+2

√
q]

is called a Hasse’s interval. #E(GF (q)) is called the order of E and t is called the trace of E.
#E(GF (q)) is roughly equal to the size q of the underlying field. The curve E is said to be
supersingular if t2 = 0, q, 2q, 3q, 4q. Otherwise the curve is said to be non-supersingular.

#E(GF (q)) is a finite abelian group of rank 1 or 2, in other words, either it is cyclic or else a
product of two cyclic groups. If Cn denotes a cyclic group of order n, then #E(GF (q)) is isomorphic
to Cn1

× Cn2
, for unique integers n1 and n2 where n2|n1 and furthermore n2|q − 1. If n2 = 1, then

E(GF (q)) is said to be cyclic. In this case E(GF (q)) is isomorphic to Cn1
, and there exists a

generator of E(GF (q)): a point P ∈ E(GF (q)) : E(GF (q)) = {kP : 0 ≤ k ≤ n1 − 1}.

2 Elliptic Curve Digital Signature Algorithm

Discrete log cryptosystems were first described in the setting of the multiplicative group of the
integers modulo a prime p. Such systems can be modified to work in the group of points on an
elliptic curve. We next describe the elliptic curve digital signature algorithm (ECDSA), which is
analogous to the DSA.

This algorithm could be divided into six steps:

1. Domain parameters generation

2. Domain parameters validation

3. Key pair generation

4. Key pair validation

5. Signature generation

6. Signature verification

6

2.1 ECDSA Domain Parameters

Let’s assume that there are the parties involved in a communication. The first step is to create
random public abstract groups, which are called domains. For each domain it is necessary to
generate domain parameters, which are identical for all users in the domain. This procedure is
rather complex, however domain parameters can be taken from the published standards.

The domain parameters for ECDSA are:

• a field size q : q is prime or q = 2m

• suitably chosen elliptic curve E defined over GF (q)

• (an optional parameter) a bit string of length ≥ 160 bits

• two elements: xG, yG ∈ GF (q) : G = (xG, yG) has a prime order in E(GF (q))

• the order n of G

• the cofactor h = #E(GF (q))/n

Some restrictions are placed on the domain parameters.
Elliptic curve requirements:

• against Pohlig-Hellman attack n is prime

• against Pollard’s rho attack n ≥ 2160. In this case it is computationally infeasible to mount
this attack.

• against Menezes, Okamoto and Vanstone attack E should be non-supersingular, i.e.
p 6 | q + 1 − #E(GF (q)). More generally, one should verify that
n 6 | qk − 1, ∀ k : 1 ≤ k ≤ 20. 20 suffices in practice so that it is computationally infeasible
to mount this attack.

• finally, to avoid the attack of Semaev, Smart, Satoh and Araki #E(GF (q)) 6= q

A prudent way to guard against these attacks is to generate curve at random or verifiably at
random.The probability that a random curve succumbs to these special-purpose attacks is negligi-
ble.

2.1.1 Generating an Elliptic Curve verifiably at Random

To generate a curve y2 = x3 + ax + b we should generate curve coefficients a, b ∈ GF (q) :
4a3 + 27b2 6= 0 mod p. Method which generates the curve verifiably at random determines these
parameters to be outputs of the one way hash function SHA-1. The input seed to SHA-1 then
serves as proof (under the assumption that SHA-1 cannot be inverted) that the elliptic curve was
indeed generated at random. This provides some assurance to the user of the elliptic curve that
the entity who generated the elliptic curve did not intentionally construct a “weak” curve which it
could subsequently exploit to recover the user’s private keys.

7

The case q=p The following notation is used: t = ⌈log2 p⌉ , s =
⌊

t−1
160

⌋
and v = t − 160s.

Algorithm 3 : Generating a Random Elliptic Curve Over GF (q)

Input: A field size p, where p is an odd prime.
Output: A bit string seedE of length at least 160 bits and field elements
a, b ∈ GF (q) which define an elliptic curve E over GF (q).

1. Choose an arbitrary bit string seedE of length g ≥ 160 bits.

2. Compute H =SHA-1(seedE), and let c0 denote the bit string of length v bits obtained by
taking the v rightmost bits of H.

3. Let W0 denote the bit string of length v bits obtained by setting the leftmost bit of c0 to 0.
(This ensures that r < p.)

4. Let z be the integer whose binary expansion is given by the g-bit string seedE.

5. For i from 1 to s do:

(a) Let si be the g-bit string which is the binary expansion of the integer (z + i) mod 2g.

(b) Compute Wi = SHA-1(si).

6. Let W be the g-bit string obtained by the concatenation of W0,W1, . . . Ws as follows: W =
W0‖W1‖ · · · ‖Ws.

7. Let r be the integer whose binary expansion is given by W .

8. If r = 0 or if 4r + 27 ≡ 0(mod p) then go to step 1.

9. Choose arbitrary integers a, b ∈ GF (q) : a 6= 0 and b 6= 0 and r · b2 ≡ a3 mod p. (For example
one may take a = r and b = r.)

10. The elliptic curve chosen over GF (p) is E : y2 = x3 + ax + b.

11. Output (seedE, a, b).

Isomorphism Classes of Elliptic Curves Over GF(q)

Definition 4 Two elliptic curves E1 : y2 = x3 + a1x + b1 and E2 : y2 = x3 + a2x + b2 defined
over GF (q) are isomorphic over GF (q) if and only if there exists u ∈ GF (q), u 6= 0 : a1 = u4a2

and b1 = u6b2.

If E1 is isomorphic to E2, then the abelian groups E1(GF (q)) and E1(GF (q)) are isomorphic as

abelian groups. If E1 and E2 are isomorphic and b1 6= 0 (so b2 6= 0), then
a3
1

b2
1

=
a3
2

b2
2

.

The singular curves, i.e. a curves for which 4a3 + 27b2 = 0 mod p are precisely those which have
a = 0 and b = 0, or a3

b2
= −27

4
. This means that at step 9 of algorithm 3 we exclude the singular

elliptic curves from further consideration.
Let us prove that there are precisely two choices for (a, b) in step 9.

8

1. There are at least two choices for (a, b).
We choose u as a quadratic non-residue in GF (p), we chose an arbitrary non-zero pair (a1, b1).
Then we can define the second pair (a2, b2) : a1 6= u4a2 and b1 6= u6b2 as:

∄k : u ≡ k2 mod p
a2 ≡ u2a1 mod p
b2 ≡ u3b1 mod p

∣∣∣∣∣∣
⇒ a3

1

b2
1

≡ a3
2

b2
2

≡ r mod p, i.e. curves are not isomorphic.

2. ∄E3 : E3 6= E1 and E3 6= E2 and E3 is not isomorphic to E1 and E3 is not isomorphic to E2.

Let’s
a3
1

b2
1

≡ a3
2

b2
2

≡ a3
3

b2
3

≡ r mod p.

Let’s ∃ u3 :
a3
3

a3
1

≡ b2
3

b2
1

≡ u6
3 mod p ⇒ a3 ≡ u2

3a1 mod p, b3 ≡ u3
3b1 mod p.

If ∃ l : l2 ≡ u3 mod p ⇒ a3 ≡ u2
3a1 mod p, b3 ≡ u3

3b1(mod p), i.e. isomorphic to E1.
Else

a3 ≡ u2
3a1 mod p

a2 ≡ u2a1 mod p

∣∣∣∣ ⇒ a3 ≡
(

u1

u

)2
a2 mod p, i.e. isomorphic to E2.

It means that if at step 9 r ∈ GF (p), r 6= 0, r 6= −27
4
, then there are precisely 2 isomorphism

classes of curves E : y2 = x3 + ax + b with a3

b2
≡ r mod p.

2.1.2 Domain parameters generation

The following is one way to generate cryptographically secure domain parameters:

1. Generate coefficients (a, b) ∈ GF (q) verifiably at random using 3.

2. Compute N = #E(GF (q))(using for example Schoof’s polynomial time algorithm).

3. Verify that ∃ n : n > 2160, n > 4
√

q and n|N . If not, then go to step 1.

4. Verify that n 6 |qk − 1, ∀k : 1 ≤ k ≤ 20. If not, then go to step 1.

5. Verify that n 6= q. If not, then go to step 1.

6. Select an arbitrary point G′ ∈ E(GF (q)) and set G = (N/n)G′. Repeat until G 6= O.

2.1.3 Domain parameters validation

Domain parameters validation prevent from malicious insertion of invalid domain parameters which
may enable some attacks. To validate domain parameters one should check that they have the
requisite arithmetical properties.

2.2 ECDSA key pairs

A key pair is assocoated with particular domain parameters. Each entity must have the assurance
that the domain parameters are valid prior to key generation.

9

2.2.1 ECDSA key pair generation

Each entity A does the following:

1. Select a random or pseudorandom integer d in the interval [1, n − 1].

2. Compute Q = dG.

3. A’s public key is Q; A’s private key is d.

Public key validation ensures that a public key has a requisite arithmetical properties and that
the corresponding private key logically exists. However it does not demonstrate that someone
actually has computed the private key nor that the claimed owner actually possesses the private
key.

Methods for validating public key are:

• A performs explicit key validation procedure using algorithm shown below.

• A generates Q itself using a trusted system.

• A receives assurance from a trustd party T (e.g. a Certification Authority) that T has
performed explicit key validation procedure.

• A receives assurance from a trusted party T that T was generated using a trusted system.

2.2.2 Explicit validation of an ECDSA Public Key

Input: A public key Q = (xQ, yQ) associated with valid domain parameters.
Output: Acceptance or rejection of the validity of Q.

1. Check that Q 6= O.

2. Check that xQ, yQ ∈ GF (q).

3. Check that y2
Q = x2

Q + axQ + b.

4. Check that nQ = O.

5. If any check fails, then Q is invalid; otherwise Q is valid.

2.3 ECDSA Signature Generation and Verification

This section describes the procedures for generating and verifying signatures using the ECDSA.

2.3.1 ECDSA Signature Generation

To sign a message m, an entity A with domain parameters D = (q, a, b, G, n, h) and associated key
pair (d,Q) does the following:

1. Select a random or pseudorandom integer k, 1 ≤ k ≤ n − 1.

2. Compute kG = (x1, y1) and r = x1 mod n. If r = 0 then go to step 1.

3. Compute k−1 mod n.

10

4. Compute e =SHA-1(m).

5. Compute s = k−1(e + dr) mod n. If s = 0 then go to step 1.

6. A’s signature for the message m is (r, s).

2.3.2 ECDSA Signature Verification

To verify A’s signature (r, s) on m, B does the following:

1. Obtains an authentic copy of A’s domain parameters D = (q, a, b, G, n, h).

2. Obtains an authentic copy of A’s associated public key Q.

3. (Optional) B validates D and Q.

4. Verify that r and s are integers in the interval [1, n − 1].

5. Compute e =SHA-1(m).

6. Compute w = s−1 mod n.

7. Compute u1 = ew mod n and u2 = rw mod n.

8. Compute X = u1G + u2Q. If X = O, then reject the signature. Otherwise, compute
v = x1 mod n where X = (x1, y1).

9. Accept the signature if and only if v = r.

Proof that Signature Verification Works. Notice that if a signature (r, s) on a message m
was indeed generated by A, then:

u1G + u2Q = (u1 + du2)G = kG , because

k ≡ s−1(e + dr) ≡ s−1e + s−1rd ≡ we + wrd ≡ u1 + u2d mod n.

Thus v = r as required.

2.4 Security

The basis for the security of elliptic curve cryptosystems such as ECDSA is the apparent intractabil-
ity of the following elliptic curve discrete logarithm problem (ECDLP):Given an elliptic curve E
defined over GF (q), a point P ∈ E(GF (q)) of order n, and a point Q ∈ E(GF (q)), determine the
integer x : 1 ≤ x ≤ n − 1,such that Q = xP , provided that such an integer exists.

The Pohlig-Hellman algorithm reduces the determination of x to the determination of x modulo
each of the prime factors of n. Hence, in order to achieve the maximum possible security level, n
should be prime. The best general-purpose algorithm known to date for the ECDLP is the Pollard-
ρ method which takes fewer than n1/2+ǫ = 2(1/2+ǫ)l steps if n is an l-bit prime. We now describe
this method.

Given P and Q in a cyclic order-n subgroup G ⊂ E(GF (q)), we want to find x such that
Q = xP . First, partition G = S1 ∪ S2 ∪ S3 randomly into three sets of roughly equal size. Select
X0 = a0P + b0Q with random a0, b0. Construct a recursive sequence of points

Xi+1 =

Q + Xi if Xi ∈ S1;
2Xi if Xi ∈ S2;
P + Xi if Xi ∈ S2;

11

Figure 2: ρ-like shape of the sequence {Xi} in the Pollard ρ-method, where t = tail length and s
= cycle length.

and recursive sequences of integers

ai+1 =

ai if Xi ∈ S1;
2ai if Xi ∈ S2;
1 + ai if Xi ∈ S2;

and

bi+1 =

bi + 1 if Xi ∈ S1;
2bi if Xi ∈ S2;
bi if Xi ∈ S2;

Then Xi = aiP + biQ for all i. The idea is that this sequence eventually becomes periodic.
Figure 2 shows how the ρ-method got its name.

Once we find i and j such that Xi = Xj we have

Xi = aiP + biQ = (ai + xbi)P = Xj = (aj + xbj)P

and hence
ai + xbi ≡ aj + xbj mod n

from which x can be determined except in the very unlikely event that bi ≡ bj mod n

x ≡ ai − aj

bj − bi

mod n

In order to greatly reduce storage, in practice one looks for a match between Xi and X2i.
This slightly increases the running time, but reduces the storage almost to zero. It was a crucial
observation (due to Pollard) that the search for a match between Xi and Xj - which would require
storage of order O(

√
n) - can be replaced for a search for a match between Xi and X2i. Otherwise,

the ρ-method would have been no better than an earlier deterministic matching method of D.
Shanks called “baby step - giant step” that takes roughly the same amount of time and requires
O(

√
n) storage.

12

Assuming that the above map from Xi to Xi+1 behaves like a random mapping, a match can be
found by the time i reaches O(

√
n). Much research has been devoted to improving the Pollard-ρ

method . The general form of the estimate for the number of steps remains O(
√

n) even after all
the modifications. Thus, the aim is to reduce the constant in O(

√
n).

Sometimes ECDLP can be replaced by the DLP in GF (qk). A necessary condition for a cyclic
subgroup of E(GF (q)) of order n to be embedded in GF (qk) is that n|qk −1. In this case the Index

Calculus method with subexponential running time 2l1/3+ǫ
can be applied, where l = log2(q

k). If
k > log2(q) then the Index Calculus algorithm for GF (qk) takes fully exponential time in log q.

For the very special class of supersingular curves, it is known that k < 6. For these curves
a subexponential-time algorithm for the ECDLP is known. However, a randomly generated ellip-
tic curve has an exponentially small probability of being supersingular; and for most randomly
generated elliptic curves we have k > log2 q.

Also if #E(GF (q)) = q then Satoh-Araki , Semaev, and Smart showed how to imbed the elliptic
curve group into the additive group of integers mod p and thereby solve the ECDLP very quickly.

No subexponential-time algorithm is known for the ECDLP except for the special classes dis-
cussed above.

3 RSA signature algorithm

This chapter describes the RSA signature algorithm.The sequrity of this scheme lies on the in-
tractability of the integer factorization poblem.
Used notation:

• M is a set of elements called the message space.

• MS is a set of elements called the signing space.

• R is a 1-1 mapping from M to MS called the redundancy function.

• MR is the image of R.

• R−1 is the inverse to R, i.e. R−1 : MR → M

For RSA signature scheme M = MS = S = Zn, where n = pq. A redundancy function R is a
public knowledge.

3.1 Key generation in RSA signature scheme

Each entity creates an RSA public key and a corresponding private key. Each entity A should do
the following:

1. Generate two large distinct primes p and q, each roughly the same size.

2. Compute n = pq and ϕ = (n − 1)(q − 1)

3. Select a random integer e : 1 < e < ϕ and gcd(e, ϕ) = 1.

4. Compute unique integer d : 1 < e < ϕ and ed ≡ 1 mod ϕ.

5. A’s public key is (n, e). A’s private key is d.

13

3.2 RSA signature generation and verification

Entity A signs message m ∈ M . Any entity B can verify A’s signature and recover the message m
from the signature.

• Signature generation. Entity A should do the following:

1. Compute m̃ = R(m), an integer in the range [0, n − 1].

2. Compute s = m̃d mod n.

3. A’s signature for m is s.

• Signature verification. To verify A’s signature and recover the message m, B should do
the following:

1. Obtain A’s authentic public key (n, e).

2. Compute m̃ = se mod n.

3. Verify that m̃ ∈ MR; if not then reject the signature.

4. Recover m = R−1(m̃).

Proof that signature verification works:

s ≡ m̃d mod n, where m̃ = R(m)
ed ≡ 1 mod ϕ ⇒ se ≡ m̃ed ≡ m̃ mod n
Finally, R−1(m̃) = R−1(R(m)) = m.

In practice numbers with the right bit length are chosen randomly and tested for primality using
statistical tests, i.e. Strassen–Test or Miller – Rabin – Test, so there always exists a chance that p
and q are not prime.

RSA is based on integer factorisation problem, so anyone who succeeds in factoring n = pq can
immediately break RSA by finding inverse of e modulo ϕ(n).

3.3 Multiplicative propery of RSA

The RSA signature scheme has the following multiplicative property. If s1 = m̃1
d mod n and

s2 = m̃2
d mod n and if m̃ = m̃1m̃2, then s = (m̃1m̃2)

d = s1s2. If m̃ ∈ MR then s is valid
signature for m : m̃ = R(m). Hence, to avoid this attack the redundancy function R must not be
multiplicative, i.e. ∀ a, b ∈ m R(ab) 6= R(a)R(b).

3.4 Performance characteristics

Let n = pq is a 2k-bit number, where p and q are each k-bit primes. Computing a signature s =
md mod n requires O(k3) bit operations. One can compute a signature using a Chinese remainder
theorem: calculate s1 = md mod p and s2 = md mod q and then determine s. The complexity of
this operation still remains O(k3), however it is considerably more efficient in some situations.

If one will choose a public exponent e to be a special number (e.g. 3 or 216 + 1; the choice is
based on the fact that e is a prime number and m̃e mod n can be computed with only 16 mod-
ular squarings and one modular multiplication), then verification requires O(n2) bit operations.
The RSA signature is well suited when signature verification is the predominant operation being
performed.

It is not recommended to restrict the size of d in order to improve efficiency of signature
generation.

14

3.5 Bandwidth efficiency

For RSA the redundancy function specified by ISO/IEC 9796 takes k-bit messages and encodes
them to 2k-bit elements in MS from which a 2k-bit signature is formed. The bandwidth efficiency
in this case is 1

2
. So if an entity wants to sign a kt-bit message she should divide it into t blocks

each k-bit long such that m = m1‖m2‖ · · · ‖mt and sign each block individually. The bandwidth
requirement for this case is 2kt bits. Another variant is to hash message m to a bitstring of length
l ≤ k and then sign the hash value.The bandwidth requirement for this case is kt + 2k bits (since
we have to transmit extra the kt-bit message). If t ≥ 2 then kt + 2k ≤ 2kt, so it follows that
the most bandwidth efficient is to use RSA schemes with appendix. For message of at most k-bits
scheme with message recovery is preferred.

15

References

[1] D. Johnson, A. Menezes, The Elliptic Curve Digital Signature Algorithm (ECDSA),
Technical Report CORR 99–34, Dept. of C&O, University of Waterloo, Canada, 2000.
Also available from http://www.cacr.math.uwaterloo.ca

[2] D. Stinson, Cryptography: Theory and Practice, 2nd edition, CRC Press, 2002.

[3] A. Menezes, P. Oorschot, S. Vanstone, Handbook of Applied cryptography, CRC Press,
1996.

[4] A. Menezes, N. Koblitz, A Survey of Public-Key Cryptosystems, 2004.

16

