
Two- and Multi-Party Protocols
JASS 05

Julian Traut

June 8, 2005

Abstract

After a short introduction we will present and discuss various protocols taken from
[MOV96, GB01, Pfl96] and thereby introduce different approaches and techniques con-
cerning cryptographic protocols. In the second part we will then outline a proof for the
ability to construct secure protocols for any given functionality, as proposed in [Gol04].

Contents

1 Protocols 4

1.1 Introduction . 4
1.1.1 Why cryptographic protocols? . 4
1.1.2 What is a cryptographic protocol? 4

1.2 Devising a timestamping protocol in multiple steps 5
1.2.1 Task . 5
1.2.2 First Protocol . 5
1.2.3 Discussion of First Protocol . 5
1.2.4 Second Protocol . 6
1.2.5 Discussion of Second Protocol . 6
1.2.6 Third Protocol . 7
1.2.7 Discussion of Third Protocol . 7
1.2.8 Conclusion . 7

1.3 Bit Commitment . 8
1.3.1 Task . 8
1.3.2 Protocol . 8
1.3.3 Discussion . 9

1.4 Coin Flipping . 9
1.4.1 Task . 9
1.4.2 Protocol . 9
1.4.3 Discussion . 9

1.5 Oblivious Transfer . 10
1.5.1 Task . 10
1.5.2 Protocol . 10
1.5.3 Discussion . 10

1.6 Conclusion . 11

2 Proof 12

2.1 Preliminaries . 12
2.1.1 Some Definitions . 12
2.1.2 Ideal-Model vs. Real-Model . 12
2.1.3 Adversaries . 12

2.2 Protocols Used . 13
2.2.1 Oblivious transfer . 13
2.2.2 Multiplication . 13

2

CONTENTS 3

2.3 Proof for semi-honest adversary . 13
2.4 How to force semi-honest behavior . 14
2.5 Conclusion . 14

Chapter 1

Protocols

1.1 Introduction

1.1.1 Why cryptographic protocols?

Talk about cryptography is mostly concerned with secure communication. Although
this represents certainly the main part of cryptography, there is more to it than that.
Since in the last decades dealing with things electronically has found its way into many
areas of life, the need arouse for a way to deal with those new tasks from everyday life.
This is where cryptographic protocols come into play.

1.1.2 What is a cryptographic protocol?

So what we need are algorithms that provide the ability to perform such ’real world’
tasks, where two or more parties are involved, securly and efficiently. Basicly this is
exactly the idea of an cryptographic protocol. In [Gol04] a more formal definition is
given:

[A cryptographic protocol is] a random process which maps m inputs to m

outputs. The inputs to the process are to be thought of as local inputs of
m parties, and the m outputs are their corresponding local outputs. The
random process describes the desired functionality.

We will need this definition later, but for now it will suffice to stick to the rather
informal one stated above. Although some of the tasks proposed on the following pages
may appear of minor concern to the reader, the protocols deviced will be of didactical
value in so far as they will introduce interesting approaches to the reader.

4

CHAPTER 1. PROTOCOLS 5

1.2 Devising a timestamping protocol in multiple

steps

1.2.1 Task

As a first task we will consider timestamping services. Often it is crucial to certify that a
document existed on a certain date. Normally one would make use of the services offered
by a notary, but this requires a hardcopy of the document, which is to be physically
taken to the notary and signed there. We want now to device a protocol for doing so
electronically.
Alice wants to timestamp a document, so she can prove to Bob at a later time, that
she created the document at this certain point in time. Bob and Alice both trust their
friend Trent.

1.2.2 First Protocol

We will try an apporach analogous to the ’real world’ procedure.

1. Alice sends a copy to Trent.

2. Trent stores the copy with the date and time he got it

3. Bob can now ask Trent for the document and the timestamp

Trent

Alice Bob

sends document

’got a document stored by Anja’

’send me the document’

sends document and timestamp

Figure 1.1: Timestamp 1

1.2.3 Discussion of First Protocol

There are several problems with this protocol. First there is no privacy, i.e. Trent has full
access to the content of the document. Since Trent has to store the document somehow
there may be additional problems with privacy, e.g. someone could gain unauthorized
access to the database.
Secondly the protocol lacks efficiency. Trent has to store all documents he timestamps

CHAPTER 1. PROTOCOLS 6

for an indefinite time, this possibly resulting in a huge database.
Third there is the problem of errors that may occure during transmission and storage
of the document. There is no way for Alice to ensure that the document has been
transmitted and stored properly.
Last but not least we have the problem that it is necessary to invoke a trusted third
party. This might not be possible or advisable. So we have to improve the protocol.

1.2.4 Second Protocol

For this protocol we make use of hashfunctions and digital signatures.
Instead of sending the whole document to Trent, Alice will do as follows.

1. Alice hashes the document and transmits the hash to Trent

2. Trent adds a timestamp to the hash, signs both and sends the result back to Alice

3. when Bob requests the document, Alice sends him the document and the signed
and timestamped hash

Trent

Bob

Alice

se
nd

s
ha

sh
of

do
cu

m
en

t

adds timestamp and signs both

se
nd

s
si
gn

ed
ha

sh

’got a cool document’

’sen
d me document

and timesta
mp’

sen
ds

do
cum

ent
an

d sig
ned

ha
sh

with
tim

est
am

p

Figure 1.2: Timestamp 2

1.2.5 Discussion of Second Protocol

This protocol solves all problems but the issue of a trusted third party. Privacy is
granted since Alice has to reveal only the hash of her document, from which no one
can guess on the content. The problem of the huge database is solved since Trent does
not need to store anything at all. Transmission errors are detected immedeatly since
Alice can examine the signed hash right after execution of the protocol. The remaining
problem is that Alice and Trent might collude. So what we need to do next is to emulate
a trusted third party, so that we can do away with Trent.

CHAPTER 1. PROTOCOLS 7

1.2.6 Third Protocol

Instead of using Trent to timestamp the document, Alice will now invoke the protocol
stated just before with several randomly choosen persons. When Bob wants to verify
the validity of the timestamp, Alice can send him the document with the timestamp
collection. Bob can then verify each timestamp in turn.

Alice 1. random person

2. random person

k-1 random person

k random person

Bob

invoke timestamp protocol

present document and timestamp collection

Figure 1.3: Timestamp 3

1.2.7 Discussion of Third Protocol

This protocol makes it very hard for Alice to cheat. The selection of the k random
people could be done by using the hash of the document as input to some pseudo
random number generator. When you choose k sufficiently high it should be impossible
for Alice to collude with all k people.
There may occure a problem though, when someone who is selected by the random
number generator to perform a timestamp is not able to do so, therefore a timestamp
collection should be considered valid if some subset of those k people performed the
protocol properly. In [MOV96] some further improvements are given, which involve the
idea of linking a timestamp with previous timestamps generated.

1.2.8 Conclusion

We have now created an almost secure protocol for timestamping documents. This
we have achieved by starting simply by transfering the ’real world’ procedure into an
electronic setting and then gradually eliminating problems. Thereby we have introduced
a way to emulate a trusted third party by multiple untrustworthy ones. This was needed,
since we wanted the third party actually perform something (timestamp the document),
but often we only want to store a document for a certain period and then reveal the
contend. We will deal with this issue in the next section.

CHAPTER 1. PROTOCOLS 8

1.3 Bit Commitment

1.3.1 Task

Just storing a document is normally no problem at all neither in ’real world’ nor elec-
tronically. But if we impose an additional condition, namely that no one can alter the
document after storage, the task becomes trickier. As before we could make use of a
notary. For shortterm storage a sealed envelope would do, too. Imagine a magician
guessing the card you will pick and writing down his prediction. But both won’t work
electronically.

1.3.2 Protocol

We will try to emulate the ’real world’ procedure, just like we did, when devicing the
protocol for timestamping. But we will in this case not emulate the notary but the idea
of a sealed envelope instead.
We make use of a symmetric encryption algorithm like DES, for which Alice holds a
secret key. The protocol is designed to commit to a single bit only, but this is easily
enhanced to bit strings.

1. Bob will send a random bit string r to Alice

2. Alice will append her prediction bit and encrypt the result using her secret key

3. Alice sends the result to Bob

4. When Alice wants to reveal her prediction (e.g. after Bob has picked a card) she
can simply send her key to Bob

Alice Bob

random-bit string R

EK(R, b)

’I’ll take Ace of Clubs!’

K

Figure 1.4: Bit Commitment

CHAPTER 1. PROTOCOLS 9

1.3.3 Discussion

The reader may have wondered about the necessity of the random bit string. This is
essential to prevent Alice from cheating. If Alice had only to encrypt her prediction,
she could prepare two keys in such a way that, for the given ciphertext, she could alter
her prediction simply by presenting the other key. The random bit string makes this
very hard. Alice would have to find two keys that invert the prediction bit but leave
the random string untouched. A proper encryption algorithm makes this infeasible.
Obviously it is impossible for Bob to cheat, too, since he only gets ciphertext from Alice.
This protocol is used as a basic module for many more sophisticated protocols. Therefore
there exist several other protocols for this task, e.g. involving oneway functions or pseudo
random number generators.
Another basic protocol will be presented in the next section.

1.4 Coin Flipping

1.4.1 Task

Coin flipping may seem a rather peculiar task on first glance, but in several protocols it
is necessary to agree upon a random bit sequence. This may be done by the following
protocol. Obviously it is important that no party can predetermine the outcome of the
coinflip, but on the other hand both parties should contribute to the result.

1.4.2 Protocol

The protocol makes use of a one-way function. It is in way very similar to the bit
commitment protocol.

1. Bob chooses a random number, applies the one-way function on it and sends the
result to Alice

2. Alice makes a guess on the random number(e.g. even/odd)

3. if Alice guessed right the result is heads, otherwise tails

4. Bob reveals the random number and thereby proclaims the result

1.4.3 Discussion

There are essentially two problems with this protocol. First the security rests only in
the one-way function, but it is not formally proven yet that one-way functions exist at
all. Second if Alice guesses on the least significant bit it is from utmost importance
that it must be uncorrelated to the result of the one-way function, since otherwise Alice
might influence the outcome of the coin toss. This is easily achieved by using a hard-core
predicate as proposed in [Gol04]. As before there exists a bunch of other protocols for
this task.

CHAPTER 1. PROTOCOLS 10

Alice Bob

f(r)

’r is even/odd’

’Your guess is right so its heads’

r

Figure 1.5: Coin Flipping

1.5 Oblivious Transfer

1.5.1 Task

Alice wants to send one message out of two to Bob. For Alice it should be impossible
to know, which of the two messages Bob received and Bob should not be able to guess
on the content of the other message. This task is really strange and seems to have no
direct application at all. But it is important nonetheless, because it can be shown, as
we will outlay in the second chapter that if you can perform this securely you can device
protocols for any given functionality, that provide security, if not efficency.

1.5.2 Protocol

Alice posesses two public-key private-key pairs. Bob generates a random key for some
symmetric algorithm.

1. Bob encrypts his secret key with one of Alice’s two public keys, and sends the
result to Alice

2. Alice decrypts this with both of her private keys (now she holds Bobs original key
and another indistinguishable nonsense key)

3. Alice encrypts the messages with one key respectively and sends them to Bob

4. Bob decrypts both messages with his key. He will recover one plaintext and one
random text

1.5.3 Discussion

There is no way for Alice to know which message Bob received, since she cannot dis-
tinguish between Bobs random key and the result she recovers when decrypting with
the wrong private key. Bob cannot cheat either, because he cannot decipher the other
message, since he does not posess the proper key. The only remaining problem is that

CHAPTER 1. PROTOCOLS 11

Alice Bob

Y := EK1
(KA) or Y := EK2

(KA)

EDK1
(Y)(M1) and EDK2

(Y)(M2)

Figure 1.6: Oblivious Transfer

Alice could simply encrypt two identical messages. This may be prevented by revealing
Alices key pairs at some later time, when secrecy of the other message is not required
anymore.

1.6 Conclusion

In this chapter we have deviced protocols for various tasks. We have seen that there are
several approaches to protocols, differing greatly from one another, e.g. transfering ’real
world’ procedures or emulating a trusted third party. We have used different means
to achieve these tasks, e.g. one-way functions, public-key and symmetric cryptography,
hash functions etc. What we have not done is to device multi-party protocols. For these
please refer to the slides from the authors talk done on Jass 05 and the included exercises.
The fact that there exist so many different solutions applying different techniques derived
from all fields of cryptography makes protocols a very interesting subject of study. We
will look now at protocols from a more theoretical angle to gain knowledge about the
feasibility of devicing protocols in general.

Chapter 2

Proof Sketch - General Two-Party

Computation

2.1 Preliminaries

2.1.1 Some Definitions

We will now look at following result taken from [Gol04].

Assuming the existence of trapdoor permutations, one may provide secure
protocols for any two-party computation (allowing abort) as well as for any

multi-party computation with honest majority.

We will outlay the proof given in [Gol04], therefore we need some formal preliminaries.
First we will get back to the formal definition of a protocol stated at the very beginning
of Chapter 1.

[A cryptographic protocol is] a random process which maps m inputs to m

outputs. The inputs to the process are to be thought of as local inputs of
m parties, and the m outputs are ther corresponding local outputs. The
random process describes the desired functionality.

2.1.2 Ideal-Model vs. Real-Model

Since we want to prove that secure protocols exists, we should define security first. To
do this Goldreich introduces two concepts: ideal-model and real-model
In the ideal-model the parties may employ a trusted thrid party, which is nonexistent
in the real-model. We will consider the ideal-model secure, i.e. we will not consider
actions that may not be prevented in ideal-model (e.g. refusing to participate), when
defining security.

2.1.3 Adversaries

We will diffrentiate between a so called semi-honest adversary and a mailcious adversary.
The semi-honest adversary follows the protocol correctly, but keeps track of all interme-

12

CHAPTER 2. PROOF 13

diate computations. This is not an unlikely situation in reality. While it might be hard
to figure out every step of a complex application it is propably easy to read the memory
resp. registers during execution.
The malicious adversary has more possiblities to interfere with the execution of the
protocol. First he may simply refuse to participate, second he may substitute his local
input and last but not least he may abort the execution of the protocol prematurely.

2.2 Protocols Used

We need two protocols during the proof.

2.2.1 Oblivious transfer

First we need a special version of the oblivious transfer protocol discussed in chapter
1. Instead of one message out of two we want to select one message out of four. The
implementation of this protocol is analogous to the one presented before and thus left
to the reader.

2.2.2 Computing c1 + c2 = (a1 + a2) · (b1 + b2)

We will need a way to compute the result of a multiplication over GF (2), where both
parties hold shares to the input factors and after execution hold shares to the result.
Both parties may not gather knowledge on either the input nor the output shares of the
other party.

1. inputs P1: (a1, b1); P2: (a2, b2)

2. P1 uniformly selects c1 ∈ {0, 1}

3. Parties invoke oblivious transfer protocol from above (P1 shall be the sender P2

the receiver) with following inputs:
P1: (c1 + a1b2, c1 + a1(b1 + 1), c1 + (a1 + 1)b1, c1 + (a1 + 1(b1 + 1))
P2: 1 + 2a2 + b2 ∈ {1, 2, 3, 4}

4. P1 outputs c1; P2 outputs result from OTP

It is easy to verify that this yields the desired result.

2.3 Proof for semi-honest adversary

Both protocols described above are secure with respect to a semi-honest adversary. Using
them we can now create a secure protocol (with respect to a semi-honest adversary) for
any given functionality as follows.

1. Break up the functionality into arithmetic circuits over GF (2).

CHAPTER 2. PROOF 14

2. Create shares to own input wires for the other party, by adding a random bit
which is sent to the other party

3. Now evaluate circuits one by one as follows

4. For multiplication circuits we use the protocol deviced above

5. For addition gates simply both parties add up their own input shares

6. Finally transmit the shares of other parties output wires and recover output

We now can device secure protocols in semi-honest mode for any given functionality.
The protocols resulting are basicly not efficient but useful only as a theoretical model.
What remains is a way to create protocols with respect to a malicious adversary. We
will do this by forcing a malicious adversary to behave in a semi-honest way.

2.4 How to force semi-honest behavior

We will present as sketch only for this. There are mainly three tasks to fullfill. First we
have to guarantee that the substitution of the local input only depends on the original
input and not on the other parties input. We cannot prevent input substitution per se,
but we can prevent it after the protocol has started. This is done during a so called
input-commitment phase. We employ here the method of zero-knowledge-proofs. In
many protocols it is necessary that a party selects some random bit. To enforce the
true randomness of this bit, we set up a random-pad beforehands. This is done by a
variation of the coin flipping protocol and zero-knowledge-proofs. Last but not least we
have to force the adversary to comply with the protocol, i.e. to send only messages that
result from its local input and the random-pad. Again we use zero-knowledge-proofs for
this.

2.5 Conclusion

We have now found a way to create secure two-party protocols for any given functionality.
This we have achieved by first starting from a semi-honest adversary and then transfer
the resulting protocols to malicious-mode. We will not concern us with the multi-party
case here, but the ideas are basicly the same as with two-party protocols. This result
does not imply that there is no more work to do. While we theoretically can create
secure protocols we have seen in chapter 1 that there are several approaches to this
task and none of them employs the method proposed here since it is very unpractical.
Since the triumph of electronic ways to deal with things over the conventional one has
only just begun there will be a lot of interesting work in the future. Interesting topics
not covered here but in the authors talk during JASS 05 are digital cash and electronic
elections, which both will propably become important in the near future.

Bibliography

[MOV96] A. J. Menezes, P. C. van Oorschot, S. A. Vanstone. Handbook of Ap-

plied Cryptography. CRC Press, 1996.

[GB01] Shafi Goldwasser and Mihir Bellare. Lecture notes on cryptography.

2001.

[Pfl96] C. Pfleeger. Security in computing. Prentice Hall, 1996.

[Gol04] Oded Goldreich. Foundations of cryptography: Basic applications.

Cambridge University Press, 2004.

15

