
Seminar: Algorithms of IT Security and Cryptography

Zero-Knowledge Proofs and Protocols

Nikolay Vyahhi

June 8, 2005

Abstract

A proof is whatever convinces me.
Shimon Even, 1978.

Zero-knowledge proof is usual proof, but you must not give more information to verifier,
than your statement (which you prove) can give alone. So, in this paper, some facts about
zero-knowledge, interactive protocols and proofs will be given. Also, with examples.

1

Contents

1 Introduction 3
1.1 Applications . 3

2 Theory 3
2.1 Interactive Proof Systems and Interactive Protocol 3
2.2 QNR example . 4
2.3 Indistinguishability of Random Variables . 4
2.4 Approximability of Random Variables . 5
2.5 Zero-Knowledge . 5
2.6 Known Facts and Open Problems . 5

3 Exapmles 6
3.1 Graph Isomorphism . 6
3.2 Graph NonIsomorphism . 6
3.3 Quadratic NonResidue . 6

4 Non-Interactive ZK Proofs 7

2

1 Introduction

Main idea of zero-knowledge is to prove some fact (theorem for example) to another person,
but don’t give him more information, than only this fact.

1.1 Applications

Applications of zero-knowledge are:

• authentication (user proves to system, that he is valid user)
Weakness: Adversary E can prove to B, that she is A, just by asking A to prove it to
her and simulating this protocol with B.

• protecting against chosen message attack by augmenting the ciphertext by a zero-knowledge
proof of knowledge of the cleartext.

• non-oblivious commitment schemes

2 Theory

2.1 Interactive Proof Systems and Interactive Protocol

Intuitively, what should we require from an efficient theorem-proving procedure?

• That it should be possible to ”prove” a true theorem.

• That it should be impossible to ”prove” a false theorem.

• That communicating the ”proof” should be efficient. Namely regardless of how much
time it takes to come up with the proof, its correctness should be efficiently verified.

More formal. An interactive Turing machine (ITM) is a Turing machine equipped with
read-only input tape, a work tape, a random tape, one read-only and one write-only commu-
nication tapes. The random tape contains an infinite sequence of random bits, and can be
scanned only from left to right.

An interactive protocol is an ordered pair of ITM’s A (prover) and B (verifier) such
that A and B share the same input tape, B’s write-only communication tape is A’s read-only
communication tape and vice versa. And machine A is not computationally bounded, while
B is bounded by a polynomial in the length of common input. These two machines take turns
in being active, with B being active first. During an active stage A(B) perform some internal
computation using its tapes; and then it writes a string (for B(A)) on its write-only commu-
nication tape. Then it deactivates and machine B(A) becomes active. Machine B accepts (or
rejects) the input by outputting ”accept” (or ”reject”) and terminating the protocol.

An interactive protocol (A,B) is called an interactive proof system for language L over
(0, 1)∗ if we have the following:

• For each k, for sufficiently large x ∈ L given as input to (A,B), B halts and accepts with
probability at least 1− |x|−k.

• For each k, for sufficiently large x /∈ L, for any ITM A′, on input x to (A′, B), B accepts
with probability at most |x|−k.

The probabilities here are taken over the readings of random bits of A and B.

Interactive Polynomial time (IP) is the class of languages for which there exists in-
teractive proof system.

3

2.2 QNR example

Informally, zero-knowledge means that for every polynomial time B′, the distribution that B′

”sees” on all its tapes, when interacting with A on input x ∈ L, is ”indistinguishable” from a
distribution that can be computed from x in polynomial time.

Let’s consider

QNR = { (x, y) — y is quadratic nonresidue mod x }

That means, that there is no such z, that y = z2 mod x. So lets try to prove with zero-
knowledge for some y, that it is from QNR. With prover A, verifier B, input (x, y) and |x| = n.

• B begins by flipping coins to obtain random bits b1, b2, ...bn.

• Then B flips additional coins for obtaining random z1, z2...zn (0 < zi < x and gcd(zi, x) =
1 for each zi).

• B computes w1, w2, ...wn as follows:

wi = (z2
i) mod x, if bi = 0

wi = (z2
i y) mod x, otherwise, if bi = 1

• B sends w1, w2, ...wn to A.

• A computes (somehow) for each i whether or not wi is quadratic residue mod x, and
sends this information (c1, c2, ...cn) to B.

• B checks if bi = ci for every i, and if so is ”convinced” that (x, y) ∈ QNR.

It seems to be zero-knowledge proof, but... What if B were to cheat? B could begin by
setting w1 = 42 for example, and then behave correctly. So, B can compute whether or not
42 is a quadratic residue x, given x and a quadratic nonresidue y. At this time it is not known
how compute this in polynomial time, so this proof system may not be zero-knowledge! How
to construct right zero-knowledge proof of QNR we’ll see later.

2.3 Indistinguishability of Random Variables

Consider families of random variables U = U(x), where x ∈ L, a particular subset of
{0, 1}∗, and all random variables take values in {0, 1}∗.

Let U(x) and V (x) be two families of random variables. We want to express the fact that,
when the length of x increases, U(x) essentially becomes ”replaceable” by V (x). So, a random
sample is selected form U(x) or from V (x) and it is handed to a ”judge”. After studying the
sample, he proclaims, from which families our sample is.

Two families of random variables {U(x)} and {V (x)} are:

• Equal if the judges verdict will be meaningless even if he is given samples of arbitrary
size and he can study them for an arbitrary amount of time.

• Statically indistinguishable if the judges verdict became meaningless when he is given
an infinite amount of time but only random, polynomial (in |x|) size samples to work
on.

• Computationally indistinguishable if the judges verdict become meaningless when
he is only given polynomial (|x|)-size samples and polynomial (|x|) time.

4

2.4 Approximability of Random Variables

Let M be a probabilistic Turing machine that on input x always halts. We denote by M(x)
the random variable that, for each string, which is equal to α, have the same probability that
M on input x outputs α.

U is perfectly approximable on L if there exist a probabilistic Turing machine M , run-
ning expected polynomial time, such that for all x ∈ L, M(x) is equal to U(x).

U is statically (computationally) approximable on L if there exist a probabilistic Tur-
ing machine M , running expected polynomial time, such that for families of random variables
{M(x)} and {U(x)} are statically (computationally) indistinguishable on L.

2.5 Zero-Knowledge

So, ITM B′ has an extra input tape H, which length is bounded above be a polynomial in
the length of x. When B′ interacts with A, A sees only x on its tape, whereas B′ sees (x, H).
H is just a some knowledge about x that the cheating B′ already possess. Or H can be con-
sidered as the history of previous interactions that B′ is trying to use to get knowledge from A.

Let V iewA,B′(x,H) be the random variables whose value is view of B′ (random tape, mes-
sages between parties, private tape). For convenience, we consider each view to be a string
from {0, 1}∗ of length |x|c for some fixed c > 0.

We say that (A,B) is perfectly (statically) (computationally) zero-knowledge on
L for B′ if the family of random variables V iewA,B is perfectly (statically) (computationally)
approximable on

L′ = {(x,H)|x ∈ L and |H| = |x|c}.

And, at last, an interactive protocol (A,B) is perfectly (statically) (computationally)
zero-knowledge on L if it is perfectly (statically) (computationally) zero-knowledge on L
for all probabilistic polynomial time ITM B′. Note, that this definition only depends on A
and not at all on B.

Usually, only computationally zero-knowledge is consided.

2.6 Known Facts and Open Problems

• Every language in NP has a perfect zero knowledge proof (if one-way permutations
exists).

• Every language in IP has a zero knowledge proof.

• Its known that (obvious)

BPP ⊆ PZK ⊆ SZK ⊆ CZK ⊆ IP

BPP means class of bounded probabilistic polynomial time problems, PZK (SZK, CZK)
is the class of languages for which there exists perfectly (statically, computationally)
zero-knowledge proof, IP - interactive proof.

• Goldreich’s belief is that

BPP ⊂ PZK ⊆ SZK ⊂ CZK = IP

5

• The relationship of PZK and SZK remains an open problem (with no evidence either
way).

3 Exapmles

3.1 Graph Isomorphism

Problem (GI Graph Isomorphism): You have two graphs (G0, G1), are they isomorphic?

• A chooses one graph (G0 or G1), and transform it to any another isomorphic one G2

(anyhow).

• A sends this graph G2 to B.

• B flips a coin, and sends this bit b (0 or 1) to A. A must show isomorphism of G2 and
Gb to B, otherwise B can not accept.

So, if A cheating, she can’t show isomorphism of those two graphs with probability 1
2 . But

A can cheat with 1
2 probability also. And if B repeats this protocol n times, A can cheat at

most with probability only 1
2

n = 2−n. At last, B can’t get some additional information from
this interaction, so it’s really zero-knowledge proof.

3.2 Graph NonIsomorphism

Problem (GNI - Graph NonIsomorphism): You have two graphs (G0, G1), are they
nonisomorphic?

• B chooses one graph (G0 or G1), and transform it to any another isomorphic one G2

(anyway).

• B sends this graph G2 to A.

• A must say, which graph was chosen by B.

If A cheating, so graphs G0 and G1 are isomorphic, and she can not say exactly, to which
one G2 is isomorphic. Probability of being caught is 1− 1

2

n. But (!) B can get some additional
information from this interaction. So it’s not zero-knowledge at all. Here, we can see the same
situation, like with QNR earlier.

So, we must modify verifier B, so that he’ll prove to the prover A, that he (B) knows the
answer to his query graph (i.e. he knows an isomorphism to the appropriate input graph),
and the prover answers the query only if she is convinced of this claim. Of course, that B’s
proof must be zero-knowledge.

3.3 Quadratic NonResidue

Like we saw earlier, Problem (QNR - Quadratic NonResidue):

QNR = { (x, y) — y is quadratic nonresidue mod x }

That means, that there is no such z, that y = z2 mod x. Let’s consider a zero-knowledge
proof for this.

• B picks a random integer r and one bit. if bit = 0 then B sets w = r2 mod x, otherwise
w = r2y mod x. B sends w to A.

6

• For some 1 ≤ j ≤ m, B picks random integer rj1 , rj2 and random bitj . B sets

aj = r2
j1 mod x

bj = yr2
j2 mod x

If bitj = 1, B sends A the ordered pair (aj , bj), else (bj , aj).

• A sends B an m-long random bit vector i = i1, i2, ...im.

• B sends A the sequence v = v1, v2, ...vm.

– if ij = 0 then vj = (rj1 , rj2)
– if ij = 1 then

∗ if bit = 0 then vj = rrj1 mod x

∗ else vj = yrrj2 mod x.

The intuition behind this step is as follows: if ij = 0, then B is convincing A that pair
was chosen correctly; if ij = 1 then B is convincing that if pair was chosen correctly,
then w was chosen correctly.

• A verifies that the sequence v was properly constructed. If not, A sends terminate to
B and halts. Otherwise. A sets answer = 0 if w is a quadratic residue mod x and 1
otherwise, A sends answer to B.

• B checks whether answer = bit. If so B continues the protocol, otherwise B rejects and
halts.

• After m repetition of this protocol, if B did not reject thus far, B accepts and halts.

Conclusion: So, we force B to prove, that he is not cheating. And now he can not obtain
any other information from this protocol (only is y a quadratic nonredisue or not). ⇒ It’s a
(statically) zero-knowledge proof.

4 Non-Interactive ZK Proofs

Non-interactive proofs used when A and B can’t interact directly. General Idea is to use
one-way function instead of verifier B. So, for example:

• A generates n random numbers, and so generates n different isomorphic (to initial)
problems.

• A publish all this new problems.

• A uses one-way functions, to generate ”random” bit string b from definitions of that new
problems, which was published (it’ll be like B’s random tape).

• If bi = 0 then A proves isomorphism of initial and i-th new problem, otherwise she opens
solution of i-th new problem. Then A publish this information.

• Anyone can verify this proof without interaction.

But, A must chose large n, otherwise it’ll be simple to cheat (for A), because A has more time
than in online interaction with B.

References

[GMR89] S. Goldwasser, S. Micali, C. Rackoff. The knowledge complexity of interactive proof
systems, 1989 (1986 originally).

7

[FFS88] U. Fiege, A. Fiat, A. Shamir. Zero-Knowledge Proofs of Identity, 1988.

[Schneier96] B. Schneier. Applied Cryptography, 1996.

[Goldreich01] O. Goldreich. Foundation of Cryptography, 2001.

8

