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Abstract 
 

 

The methods for solving linear systems of equations can be divided into two categories: direct 
and iterative methods. The first ones can determine the exact solutions, but are rather slow 
and are restricted to a certain small set of problems for which they show good performance. 
The iterative methods can be applied to a broader range of problems, but cannot damp the 
smooth components of the error and because of that in some cases show a very slow 
convergence. 

The multigrid methods have developed from the main idea that the amount of computational 
work should be proportional to the amount of real physical changes in the computed system. 
In fully developped multigrid processes the amount of computations should be determined 
only by the amount of real physical information 
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1. Model Problems 
The boundary value problems give a simple testing ground for providing a basic introduction 
to the multigrid methods. Although most of these problems can be handled analytically, the 
numerical methods will be presented and they will serve as model problems in order to 
present the multigrid method in a natural way.  

The one-dimensional boundary value problem describing the steady-state temperature 
distribution in a long uniform rod is given by: 

 

 

With the grid points hjx j ⋅= , nj ,...,1,0=  where 1h
n

= , the domain of the problem is divided 

into n subintervals. The grid for this problem shown on Figure 1 will be denoted with nΩ . 

 
Figure 1 

According to the finite difference method in the interior grid points the original differential 
equations can be replaced by a second-order finite difference approximation: 

  

 

 

where jv  is an approximation to the exact solution ( )ju x  and jf  is ( )jf x  for 

1,2, , 1j n= −K . Defining ( ) ( )( )1 1, , nf x f x −=f K  and ( )1 1, , nv v −=v K the matrix form 
⋅ =A v f of the system above is: 

  

 

   

 

 

 

 

where A  is a ( ) ( )1 1n n− × −  symmetric, positive, definite matrix.  

The two-dimensional boundary value problem has the form: 
 

where 0u = on the boundary of the unit square. The grid showed on Figure 2, is defined with 

the points ( ) ( ), ,i j x yx y i h j h= ⋅ ⋅ , where 11,..., 1,  1,..., 1,  xi m j m h
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Figure 2 

In the same way as for the one-dimensional boundary value problem, replacing the derivatives 
by the second-order finite differences leads to the system of linear equations: 

 

 

 

where ijv  is an approximation of the exact solution ( ),i ju x y  and ( , )ij i jf f x y= . By using 

lexicographical ordering by lines one can define T
1 , 1( ,..., )i i i nv v v −=  and 

T
1 , 1=( ,..., )  for 1,..., 1i i i nf f f i m− = − . According to this notation the block-tridiagonal matrix 

form of the system is ⋅ =A v f  i.e.: 

 

 

   

 

 

 

where 2

1

y

a
h

= , I  is an ( 1) ( 1)n n− × −  identity matrix and iA  is an ( 1) ( 1)n n− × −  tri-diagonal 

matrix given with: 
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2. Basic Iterative Schemes 
The next step is to consider how the model problems that are defined in the previous section 
can be solved using some basic iterative or relaxation schemes. The problems will be given in 
their matrix form ⋅ =A u f , where u  is the exact solution and v  is the corresponding 
approximation. The vector norms will be used as a measure for the error that is defined with 
= −e u v . The residual equation is ⋅ =A e r ,  where the residual is defined as = − ⋅r f A v . 

The equation = +u v e  is the residual correction. When using the equation −− = ⋅1u v A r and 
( )old→v v , ( )  new→u v , an iteration ( ) ( ) ( )new old old= + ⋅v v B r  can be formed where B  is an 

approximation to −1A . The equation for the iteration can take slightly different form 
( ) ( ) ( )new old old g= ⋅ + ⋅ = ⋅ +v R v B f R v , where = − ⋅R I B A . Using this form the exact solution 

will be fixed point i.e. g= ⋅ +u R u . The error will be given by ( ) ( )new old= ⋅e R e , or 
( ) (0)m m= ⋅e R e  if m  iterations are performed and it can be bounded with ( ) (0)mm

∞
≤ ⋅e R e , 

where some proper vector and matrix norms are used. From this inequality it follows that the 
error will tend to zero in the relaxation process if 1<R . 

Definition 1 Assymptotic convergence factor is the spectral radius defined as 
( ) { }1max ,..., nρ λ λ=R .         

Lemma   m →R 0  as m →∞ if and only if ( ) 1ρ <R . 

Using the lemma defined above and taking into consideration that for any initial vector (0)v , 
( ) 0m →e  as m →∞  if and only if  ( ) 1ρ <R , it can be concluded that the convergence of the 

iteration is given by the condition ( ) 1ρ <R .  

3.1 Jacobi  Relaxation 
One of the basic relaxation schemes is the Jacobi Relaxation Scheme. For simplicity the one-
dimensional boundary value problem will be considered with =0σ  i.e.: 

 

 

The Jacobi relaxation for this problem is given by the following system of equations: 

( )( ) ( ) ( ) 2
1 1

1 ,  1,..., 1
2

new old old
j j j jv v v h f j n− += + + ⋅ = −  

The corresponding matrix form is ( ) ( ) 1new old −= ⋅ + ⋅Jv R v D f , where ( )1−= ⋅ +JR D L U  and 
= − −A D L U .  

The weighted or damped Jacobi relaxation is defined with: 

( ) ( )( ) ( ) ( ) ( ) 2
1 11 , 1,..., 1

2
new old old old

j j j j jv v v v h f j nωω − += − ⋅ + + + ⋅ = −  

or with the equivalent matrix form ( ) ( ) 2new old hω −= ⋅ + ⋅ ⋅ ⋅1
ωv R v D f , where 

( )1 ω ω= − +ω JR I R  and ω∈ ¡ is a weighting factor that is properly chosen.  
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3.2 Gauss-Seidel Relaxation 
The Gauss-Seidel relaxation is similar to the Jacobi relaxation and for the simplified one-
dimensional model problem with =0σ  is defined as follows: 

( )( ) ( ) ( ) 2
1 1

1 ,  1,..., 1
2

new new old
j j j jv v v h f j n− += + + ⋅ = −  

or using a matrix form ( ) 1( ) ( )new old −= ⋅ + − ⋅Gv R v D L f , where ( ) 1−= − ⋅GR D L U  and 
= − −A D L U .  The difference from the Jacobi relaxation is that Gauss-Seidel uses the 

components of the new approximation as soon as they are calculated, which reduces the 
storage requirements for the approximation vector v  to n  locations, because there is no need 
for keeping the values of this vector for the old and the new iteration.  

3.3 Fourier Modes 
For simplicity we will consider the homogeneous linear system ⋅ =A u 0 . We immediately 
can see that the exact solution to this system is =u 0  and the error is = − = −e u v v .  

Definition 2 The vectors sin ,  0 ,  1 1j
j k pv j n k n

n
⋅ ⋅⎛ ⎞= ≤ ≤ ≤ ≤ −⎜ ⎟

⎝ ⎠
, where k  is frequency or 

wavenumber indicating the number of half-sine waves that constitute v  on the domain are 
called Fourier modes (Figure 3). 

 

 

 

 

 

 

 

 

 
                                                     Figure 3 

Definition 3 The wavenumbers in range 1
2
nk≤ ≤  are called smooth or low-frequency modes, 

and those in range 1
2
n k n≤ ≤ −  are called oscillatory or high-frequency modes. 

If we take the Fourier modes given in Figure 3 as initial iteration and we perform 100 sweeps 
of the weighted Jacobi iteration, we will get the results for the error shown in Figure 4. As we 
can see on the figure the error decreases with each iteration, but the higher wave numbers 
show much larger rate of decrease.   

 

 

 

 



 

 

 

  
 

 
 
 
 
 

Figure 4 

In order to see a more realistic case we take an initial guess that does not contain only single 
mode, but a combination of a low-frequency, medium-frequency and high-frequency wave, 

i.e.: 1 6 32sin sin sin
3j

j j jv
n n n
π π π⎡ ⎤⋅ ⋅ ⋅ ⋅ ⋅⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

. As we can see on Figure 5 the error 

decreases very fast only in the first five iterations. After that the decrease of the error becomes 
very slow. 

  

 

 

 

 

 

 

 

 

Figure 5 

The quick elimination of the high-frequency modes of the error gives the fast initial decrease. 
The presence of the low-frequency modes results in a very slow error decrease as we continue 
with the iterations and significantly degrades the performance of the standard iteration 
methods. The iterations would converge fast only if the error contains high-frequency modes, 
which are damped very fast. 

In order to see why this happened we must examine the problem a bit more formally. At first 
it should be pointed out that the weighted Jacobi method preserves modes, i.e. performing the 
relaxations only the amplitude of the modes is changed. Having the fact that 

( ) ( )1
2 2
ω ωλ λ= − ⋅ ⇒ = − ⋅ω ωR I A R A , we get that ωR  and A  have the same eigenvectors: 



k,jw sin ,  1 1j k k n
n
π⋅ ⋅⎛ ⎞= ≤ ≤ −⎜ ⎟

⎝ ⎠
. The eigenvalues of A  are given with: 

( ) 2
k 4 sin ,  1 1

2
k k n

n
πλ ⋅⎛ ⎞= ⋅ ≤ ≤ −⎜ ⎟⋅⎝ ⎠

A   

and the eigenvalues of ωR  are:  

( ) 2
k 1 2 sin ,  1 1

2
k k n

n
πλ ω ⋅⎛ ⎞= − ⋅ ⋅ ≤ ≤ −⎜ ⎟⋅⎝ ⎠

ωR .  

Having the eigenvectors of A , we can expand the error vector (0)e  in the form: 
(0)

kc
−

=

= ⋅∑
n 1

k
k 1

e w . Using the formula for the error after m iterations and the fact that the 

eigenvectors of  ωR  and A  are the same we get: ( )m
k k kc c λ

− −

= =

= ⋅ ⋅ = ⋅ ⋅∑ ∑
n 1 n 1

m m m
ω k ω k

k 1 k 1
e R w R w . In 

the last formula we can clearly see that the kth mode of the error after m iterations is reduced 
by a factor of ( )m

kλ
m
ωR . If 0 1ω< ≤  then ( )k 1λ <ωR  and we will have a convergent Jacobi 

iteration. But for all , 0 1ω ω< ≤  we get that: 
2 2

2 2
1 1 2 sin 1 2 sin 1

2 2 2
h h

n
π π ω πλ ω ω ⋅ ⋅ ⋅⎛ ⎞ ⎛ ⎞= − ⋅ ⋅ = − ⋅ ⋅ ≈ −⎜ ⎟ ⎜ ⎟⋅⎝ ⎠ ⎝ ⎠

. 

According to this formula the eigenvalue that corresponds to the smoothest mode will always 
be close to one for any choice of ω  and therefore the smooth components of the error 
converge very slowly. If we want to improve the accuracy of the solution by taking smaller 
grid spacing h  then 1λ  will be even more close to 1. No value of ω  can reduce the smooth 
components of the error. We can only find the value of ω  that provides us with the best 
damping of the oscillatory modes of the error. Solving the equation ( ) ( )/ 2n nλ λ= −ω ωR R  for 

the weighted Jacobi method leads to 2=
3

ω  and k
1
3

λ ≤ , for 1
2
n k n≤ ≤ − , which tells us that 

the oscillatory components of the error will be reduced at least by a factor of three in each 
iteration sweep. This brings us to an important characteristic of each standard relaxation 
scheme. 

Definition 4 The largest absolute value among the eigenvalues in the upper half of the 
spectrum (the oscillatory modes) of the iteration matrix is called smoothing factor. 

3. The Multigrid Method 
4.1 Coarse Grids 
Providing a good initial guess can improve the performance of a relaxation scheme in the 
initial iteration sweeps. A good way for getting a better initial guess is taking a coarse grid 
and performing a certain number of iterations. On Figure 6 a smooth wave (wavenumber 4) is 
shown on a grid with 12 points and on a coarse grid with 6 points. We see that the smooth 
wave on the fine grid looks more oscillatory when pojected on the coarse grid i.e. the 
smoothing property when using coarse grids becomes an advantage. Moreover, the relaxation 
on a coarse grid is less expensive because there are less points that should be kept in memory 
and the coarse grid has a marginally improved convergence rate – the convergence factor is 

( )21 h−Ο .  



    

 

  

 

 

 

 

 

 

 

 

 

Figure 6 

Let us see the projection of the smooth wave on the coarse grid into more detail. The 

thk mode on hΩ  becomes thk mode on 2 h⋅Ω  for 1
2
nk≤ <  i.e. : 

2
,2 ,2

2sin sin
/ 2

h h
k j k j

j k j kw w
n n

π π ⋅
⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. Because of aliasing, for 
2
nk >  the thk mode 

on hΩ  becomes ( ) thn k− mode on 2 h⋅Ω  and the oscillatory modes will be misinterpreted as 
relatively smooth: 

( ) ( ) 2
,2 ,2

22     sin sin sin
/ 2

h h
k j n k j

j n k j n kj kw w
n n n

π ππ ⋅
⋅ − ⋅

⎛ ⎞ ⎛ ⎞⋅ ⋅ ⋅ − ⋅ − ⋅⋅ ⋅ ⋅⎛ ⎞= = − = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. 

The concept of coarse grid and its main property of making smooth modes to look more 
oscillatory, gives the idea to move to coarser grid when the relaxation begins to stall because 
the relaxation will be more effective in damping the oscillatory components of the error. 

4.2 Nested Iteration 
The nested iteration is based on the idea of performing a certain number of preliminary 
iterations in order to get a better initial guess for the fine-grid iteration. It can be described as 
follows: 
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4.3 Correction Scheme 
The correction scheme uses the idea that we can relax directly on the error by using the 
residual equation: ⋅ = = − ⋅A e r f A v  with initial guess =e 0 . Additionally this previously 
described relaxation is equivalent to a relaxation on the equation ⋅ =A u f with an arbitrary 
initial guess v . The correction scheme can be described with: 

 

 

 

 

 

 

The main idea here is that at first we relax on the fine grid. When the convergence becomes 
slow we relax on the residual equation on a coarser grid where we obtain an approximation to 
the error. Then we return back to the fine grid using the obtained approximation to the error.  

4.4 Interpolation Operator 
In the previous two subsections we gave two schemes that can potentially improve the 
performance of the relaxation methods. But some of the steps, like how do we transfer a 
vector from the coarse grid to the fine grid and vice versa, still need to be specified into more  

details. We should also point out that we will consider only the case where the coarse grid has 
twice as less points compared to the preceding fine grid. This is done because of simplicity 
and also because we will get the same conclusions using different grid spacings.  

The interpolation operator is based on a common procedure in numerical analysis called 
interpolation or prolongation and provides us with the necessary tecnique for transferring the 
error approximation 2he  from the coarse grid 2hΩ  to the fine grid hΩ . Practise has shown that 
for most multigrid implementations the linear interpolation gives very good results, so we will 
also use it here.  

The interpolation operator 2Ih
h⋅  is a linear operator from 

1 12  to 
n

n− −¡ ¡ , with a full rank and a 
trivial null-space. It can be seen as a mapping 2

2I :h h h
h

⋅
⋅ Ω →Ω , that transforms coarse-grid 

vectors into fine-grid vectors using the formula 2
2Ih h h

h
⋅

⋅ ⋅ =v v , where 

( )2 2 2
2 2 1 1

1,    ,    0 1
2 2

h h h h h
j j j j j

nv v v v v j⋅ ⋅ ⋅
⋅ ⋅ + += = + ≤ ≤ − . This procedure is illustrated on Figure 7. 

  
  

 
 

 

Figure 7 

It is important to see how this operator works when we have smooth and when we have 
oscillatory vector on the fine grid. The interpolation process when the real vector is smooth is 
illustrated on Figure 8. 



 

 

 

 

 

Figure 8 

From the picture above we can see that if the error on hΩ  is smooth the interpolant will also 
be smooth, i.e. an interpolant of the coarse-grid error gives a good interpretation of the real 
error. 

When the real error is oscillatory, Figure 9 shows that the interpolant is smooth, i.e. in this 
case an interpolant of the coarse-grid error 
may give a poor interpretation of the 
real error.  

 

 
 

 

Figure 9 

Being efficient when the error is smooth, the interpolation operator provides a complement to 
the relaxation process. The interpolation process is a part of the nested iteration and correction 
scheme, so they also show best performance for smooth errors.  

4.5 Restriction Operator 
The restriction operators are used for transferring vectors from a fine grid to a coarse grid. 

They are linear operators from 
11 2 to 

n
n −−¡ ¡  denoted as 2h

hI , are with a full rank and have a 

nullspace of dimension 
2
n . The restriction operators can be seen as mappings 2 2I :h h h

h
⋅ ⋅Ω →Ω  

that using the formula 2 2I h h h
h
⋅ ⋅⋅ =v v  take fine-grid vectors and produce coarse-grid vectors. 

The simplest one is injection, defined with 2
2

h h
j jv v⋅

⋅= , where the corresponding value of the 
fine-grid point is simply taken as a value of the coarse-grid point. Another restriction operator 

is full weighting, defined with ( )2
2 1 2 2 1

1= 2 , 1 -1
4 2

h h h h
j j j j

nv v v v j⋅
⋅ − ⋅ ⋅ +⋅ + ⋅ + ≤ ≤ , where we take 

weighted averages of values at neighbouring fine-grid points in order to get the values of the 
coarse-grid points. This process is illustrated in Figure 10.   

 

 

 

 

 

Figure 10 



1

2 2

2

                         ( , )
 Relax  times on  on  with initial guess 

 Compute the fine-grid residual  and restrict 
it to the coarse grid by I

 Solve 

h h h

h h h h h

h h h h

h h h
h

h

MG
ν

←

• ⋅ = Ω

• = − ⋅

= ⋅

• ⋅

v v f
A u f v

r f A v
r r

A e2 2 2

2 2
2

2

 on 
 Interpolate the coarse-grid error to the fine-grid by 

I  and correct the fine-grid approxiamtion by

 Relax  times on  on  with initial guess 

h h h

h h h
h

h h h

h h h h hν

= Ω
•

= ⋅

← +

• ⋅ = Ω

r

e e

v v e
A u f v

 

 

4.6 Two-Grid Correction Scheme 
Having the detailed definitions of the interpolation and the restriction operator we can now 
give the procedure that describes the two-grid correction scheme.  

 

 

 

 

 

 

 

 

 

 

A nice illustration is given in Figure 11. 

 

 

 

 

 

 

 

 

Figure 11 

As we can see on the picture above, at the beginning we relax usually 1 to 3 times on the fine-
grid. After we calculate the residual of the approximation that we got we transfer it by the 
restriction operator to the coarse grid. Then the residual equation is solved (or approximate 
solution is found) on the coarse grid. The last step is transferring the error (or the 
approximated error) with the interpolation operator back to the fine-grid and correcting the 
fine-grid approximation. This is also followed by a few iteration sweeps.  

The important thing that should be noted here is that with the relaxation we eliminate the 
oscillatory components of the error, and assuming that we can get an accurate solution to the 
residual equation, the interpolation operator will get a relatively smooth error. As we know 
from before the interpolation operator is most effective on smooth errors, so we are supposed 
to get a good correction of the fine grid approximation. 

4.7 V-Cycle Scheme 
There is one problem in the procedure described in the previous subsection and that is the 
solution of the residual equation 2 2 2h h h⋅ =A e r  on the coarse grid. If we can notice that this 



problem is not much different than the original problem we can solve it recursively. Namely 
we can apply the two-grid correction procedure to the residual equation on 2hΩ  and then 
move to a coarser grid i.e.  4hΩ  in order to obtain the correction. We repeat the process until 
we reach a grid where we can find an exact solution of the residual equation (we can even 
reach to grids with one point if it is necessary). After that we go up to the finer grids using the 
corresponding interpolation operators. A notation modification is needed in order to be able to 
describe this recursive procedure algorithmically. The right hand-side of the residual equation 
will be denoted as 2hf , 2hu  will replace the solution of the residual equation 2he  and finally 

2hv  will denote the approximations to 2hu . These changes are appropriate because solving the 
residual equation is handled the same way as the original equations and we get simplified 
notation for describing the whole procedure. It should also be pointed out that as a initial 
guess for the first visit to 2hΩ  we will choose 0=2hv , because there no information available 
for the solution 2hu . The process described above is shown in Figure 12. 

 

 

 

 

 

 

 

 

 

Figure 12 

Taking into account that hv  and hf  must be stored at each level and that for d dimensions the 
coarser grid has -2 d  the number of points as the finer grid, for the storage costs of the V-

Cycle we have ( )2 22 1 2 2 ... 2
1 2

d
d d d Md

d

nn − − −
−+ + + + <

−
. The computational costs of a V-Cycle 

with one pre-Coarse-Grid correction relaxation sweep and one post-Coarse-Grid relaxation 

sweep are given with ( )2 3 22 1 2 2 2 ... 2
1 2

d d d Md
d

− − − −
−+ + + + + <

−
, where the cost of one 

relaxation sweep on the fine grid is one working unit (WU). 

4.8 Full Multigrid V-Cycle 
The full multigrid V-Cycle combines the nested iteration and the V-Cycle. The basic idea here 
is that a better initial guess for the first fine-grid iteration of the V-Cycle can improve its 
performance. In the context of multigriding a good candidate is the nested iteration, which 
suggests performing preliminary iterations on the coarse grid 2hΩ . Now we also need an 
initial guess for the 2hΩ  problem. The nested iteration uses recursion for solving this problem. 
Again we move the problem to the coarser grid  4hΩ , and we continue this process until we 
reach the coarsest grid where we can solve the problem explicitly. After that we move up to 
the finer grids using the interpolation operator.  

The full multigrid V-Cycle, where the coarse-grid right-sides are initialized by transferring hf  
from the fine grid, can be described with the following procedure: 



   

 

   

 

 

 

 

 

 

 

The parameter that specifies the number of V-Cycles performed at each level 0ν  is 
determined experimentally and usually has the value one. As we can see in the described 
procedure each V-Cycle is preceded by a V-Cycle performed on a coarser grid in order to 
provide a good initial guess.  

Figure 13 bellow gives a nice schematic representation. 

 

 

 

 
 

 

 

 

 

Figure 13 

 

The recursive procedure for the full multigrid is as follows: 
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Taking into account that the size of the working unit for the coarse grid j  is 2 jd−  times of the 
size of the working unit on the fine grid, the costs of full multigrid for 0 1 ... 1ν ν= = =  are less 

than ( )
( )

2
2

2 21 2 2 ....
1 2 1 2

d d
d d

− −
− −

⎛ ⎞ + + + =⎜ ⎟−⎝ ⎠ −
.  

4.9 Building 2hA  

At the beginning for simplicity we assume that for the error holds ( )2
h
hI= − ∈ℜh h he u v , i.e. 

the error lies in the range of the interpolation. From this it follows that there exists a vector 
2h∈Ω2hu , such that 2

h
hI= ⋅h 2he u  and for the residual equation we get 2

2Ih h h h
h =A u r . Figure 

14  shows how hA  acts on ( )2Ih
hRange .  

 

 

 

 

 

Figure 14 

The values 2
2Ih h h

hA u  are zero at the odd grid points of hΩ , so the odd rows of 2Ih h
hA  are 

zero and the even rows are actually the coarse-grid points of  2hΩ . According to this if we 
leave out the odd rows in the residual equation we get its coarse-grid form. This can be done 
by applying the restriction operator 2h

hI  and we get 2 2 2
2I I Ih h h h h h

h h h=A u r . From here we can 
define the coarse-grid operator as 2 2

2I Ih h h h
h h=A A . The same result can be obtained when 

using the second-order finite differences when the original problem is discretized on 2hΩ .  

The argument that ( )2Ih h
he Range∈  does not hold in the general case, because if it holds we 

can immediately solve exactly the residual equation on 2hΩ . However, it gives an 
understandable definition of 2hA  and the two very important variational properties: 

 

 

 

that is enough for basic understanding and an introduction to the multigrid method. 

4.10 Spectral Analysis  
The spectral analysis of the restriction and interpolation operator answers the question of how 
these two operators act on the modes of hA . The modes of  hA  for the one-dimensional 
model problem, as we defined them in one of the previous sections, are given with 

k,j w sin ,  1 1,0j k k n j n
n
π⋅ ⋅⎛ ⎞= ≤ ≤ − ≤ ≤⎜ ⎟

⎝ ⎠
.  

When the restriction operator acts upon the modes of hA  we get: 
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According to this we can conclude that using the restriction operator the oscillatory modes on 
hΩ cannot be represented on 2hΩ . This operator transforms this modes into relatively smooth 

modes on 2hΩ . The kth and (n-k)th modes on hΩ , both represent the kth mode on  2hΩ . 

Definition 5 The pair of fine grid modes { },h h
k n kw w − is called complementary modes. It also 

holds that ( ) 1
, ,1 jh h

n k j k jw w+
− = − ⋅ . 

Denoting { },h h h
k k n kW span w w −= , it can be stated that { }2 2I :  h h h

h k kW span w→ . 

The same analysis, but now performed on the interpolation operator 2Ih
h  gives: 

2 2 2
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, so we can conclude that interpolation of 

smooth modes on 2hΩ  creates oscillatory modes on hΩ .  

For the two-grid correction scheme (TG) we have:  
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As we know from before, the error can be expressed as a linear combination of the modes of 
hA . We are now interested in finding out how TG acts on the modes of hA . If we consider 

TG with no iterations ( 0ν = ) and the made spectral analysis of the operators, we have: 

,   1
2

k k k k n k

n k k k k n k

TGw s w s w
nTGw c w c w k

−

− −

= +

= + ≤ ≤
  . 

From the equations above it can be seen that TG without relaxations eliminates the smooth 
modes of the error and leaves the oscillatory modes undamped. If we include the relaxations, 
we have: 
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where kλ  is the eigenvalue of the relaxation method corresponding to kw . Observing the 
equations above, the fact that the relaxations show the best efficiency on the oscillatory modes 
and TG alone acts on the smooth modes, we can conclude that this combination will eliminate 
both the oscillatory and the smooth modes of the error. 

4.11 Algebraic Analysis  
From the properties of the interpolation and restriction operator, and the orthogonality 

relationships between the subspaces of a linear operator, we get: ( ) ( )( )2 2I I
Th h

h hN Range⊥ . 



The second variational property then gives us: ( ) ( )2
2I Ih h

h hN Range⊥ . If also the notion of A-

orthogonality is used it can be obtained that: ( ) ( )2
2I Ih h h

h hN Range⊥ hA
A . This allows us to 

decompose the space hΩ  in the following way: ( ) ( )2
2I Ih h h h

h hRange NΩ = ⊕ A . Each vector 
h∈Ωhe , can now be represented in the form: h h h= +e s t , where ( )2

h
hRange I∈hs  and 

( )2h
hN I∈ ⋅h ht A . Taking into account this decomposition and the variational properties, it can 

be shown that TG is the identity when it acts on  ( )2h
hN I hA , and its null space is exactly 

( )2
h
hRange I . 

Overall, we got a spectral decomposition h L HΩ = ⊕ , where L contains the low-frequency 
modes and H contains the high-frequency modes, and an algebraic decomposition 

( ) ( )2
2I Ih h h h

h hRange NΩ = ⊕ A  of  hΩ . 

4.12 How it works? 
Now we are ready to see what happens behind the curtons and how the multigrid method 
manages to eliminate the error in a very efficient manner. The Figure 15 gives a very good 
illustration of the process. 

  

   

 

 
 

 

 

 

Figure 15 

The axes in the figure correspond to the two previously described decompositions. The vector 
h∈Ωhe , can have projections on the four axes and those projections can be further projected. 

Analysing the pictures in Figure 15 in the direction left to right, bottom to top, we can see 
how the error is efficiently damped. First the relaxation sweeps eliminate the high-frequency 
components of the error ( he  is projected onto the L-axis), then the two-grid correction scheme 



eliminates the component of he  along the ( )2
h
hRange I  axis, since that is the null space of TG 

( he  is projected onto the ( )2h
hN I hA -axis). The non-zero component of the error along the H-

axis is because TG excites oscillatory modes. Repeating this process efficiently eliminates the 
error.   

4. Is everything really that simple? 
Although the application of the multigrid method can be very natural and gives very good 
results on some basic problems, that is not always the case in reality. There are many 
problems that introduce very difficult and not trivial problems in choosing specifying the grid, 
choosing the operators and so on. Some of those problems are given in the list bellow, but it is 
above the scope of this introduction to the multigrid method to try to solve or describe them 
into more details.  

• Anisotropic operators and grids 

• Discontinuous or anisotropic coefficients 

• Nonlinear problems 

• Non-scalar PDE systems 

• High order discretization 

• Algebraic Turbulence models 

• Chemicaly reacting flows 

• Shocks 

• Small-scale singularities 
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