
 1

Department of Informatics 
Technical University Munich 

 
 
 
 
 
 

Space-Filling Curves 
An Introduction 

 
 
 
 
 
 
 

Paper accompanying the presentation held on April 2nd 2005  
for the Joint Advanced Student School (JASS) 

in St. Petersburg 
 
 
 

Levi Valgaerts 



 2

1. Introduction 
 
This text is interpreted as a general introduction to the concept of space-filling curves 

(SFCs). It is mainly a résumé of the presentation I held on the subject for the Joint 
Advanced Student School 2005. The text covers a short treatment of the most frequently 
encountered SFCs, followed by some illustrations of their application in scientific 
computing. 

 
SFCs are encountered in different fields of computer science, especially where it is 

important to linearize multidimensional data. Examples of multidimensional data are 
matrices, images, tables and computational grids resulting from the discretization of 
partial differential equations (PDEs). Data operations like matrix multiplications, load-
store operations and updating and partitioning of data sets can be simplified when we 
choose an efficient way of going through the data. In many applications SFCs present just 
this optimal manner of mapping multidimensional data onto a one dimensional sequence. 

 
The study of SFCs heavily relies on the knowledge of set theory and topology. The 

easiest approach of the subject though, is through a geometric treatment which makes the 
nature of SFCs much faster comprehensible to the reader. A geometric generating process 
can be applied to all SFCs described in this text. Apart from that I will also mention an 
analytical treatment which is based on the methods presented in [1] and [2]. 

 
 

2. Space-Filling Curves 
 

2.1. Mathematical Description 
 
In this text we will only deal with two dimensional SFCs. Since a two dimensional 

curve is defined as a continuous mapping from a closed and bounded line segment into Ρ2 
and since every closed and bounded line segment is homeomorphic to the closed unit-
interval I, we can assume the curve to have the domain I. Furthermore we will only 
consider mappings from I onto the unit-square Ω or a closed triangular region T. 

One can easily define a surjective mapping from I onto Ω ([2]) and Cantor showed 
that I can even be mapped bijectively onto Ω. Netto though showed that such a bijection 
has to be necessarily discontinuous and can therefore not be called a curve. When we 
drop the condition of bijectivity it turns out that we can still define surjective mappings 
from I onto Ω that are continuous. In other words, there exist curves that pass (at least 
once) through every point of the unit square. Such mappings are called (2D) SFCs. More 
formally a SFC is a continuous mapping f from I onto Ρn where f(I) has a strictly positive 
Jordan content (area for n=2 or volume for n=3). 



 3

2.2. The Hilbert Space-Filling Curve 

2.2.1. Geometric Generation 
 
Hilbert was the first to propose a geometric generation principle for the construction 

of a SFC. The procedure is an exercise in recursive thinking and can be summed up in a 
few lines: 
 

• We assume that I can be mapped continuously onto the unit-square Ω. If we 
partition I into four congruent subintervals than it should be possible to partition 
Ω into four congruent subsquares, such that each subinterval will be mapped 
continuously onto one of the subsquares. We can repeat this reasoning by again 
partitioning each subinterval into four congruent subintervals and doing the same 
for the respective subsquares. 

• When repeating this procedure ad infinitum we have to make sure that the 
subsquares are arranged in such a way that adjacent subsquares correspond to 
adjacent subintervals. Like this we preserve the overall continuity of the mapping. 

• If an interval corresponds to a square, then its subintervals must correspond to the 
subsquares of that square. This inclusion relationship assures that a mapping of 
the nth iteration preserves the mapping of the (n-1)th iteration. 

 
Now every t ™ I can be regarded as the limit of a unique sequence of nested closed 

intervals. With this sequence corresponds a unique sequence of nested closed squares that 
shrink into a point of Ω, the image fh(t) of t. fh(I) is called the Hilbert SFC. 

If we connect the midpoints of the subsquares in the nth iteration of the geometric 
generation procedure in the right order by polygonal lines, we can make the convergence 
to the Hilbert Curve visible. This is done in fig.1 for the first three iterations and the sixth 
iteration. 

Every point in Ω lies in a sequence of nested closed squares, which corresponds to a 
sequence of nested closed intervals. Hence the above defined mapping is surjective. If a 
point in Ω lies on the corner of a square, it may belong to two squares that do not 
correspond to adjacent intervals and therefore to at least two different sequences of 
nested closed squares. This means that there are points in Ω that have more than one 
image in I. fh can therefore not be injective. 

In the nth iteration we have partitioned I into 22 n  subintervals, each of length 21/ 2 n . 
The subsquares all have side length of 21/ 2 n . If we choose two points t1 and t2 in I, such 
that 2

1 2 1/ 2 nt t− < , than t1 and t2 lie at the worst in two consecutive subintervals. Their 
images lie at the worst in two consecutive squares and for the distance between the image 
points it holds that 1 2( ) ( ) 5 / 2n

h hf t f t− ≤ , where the 5  comes from the diagonal of 
the rectangle formed by the two squares. In the limiting case for n →∞  this distance 
tends to 0 and :hf I ⎯⎯→Ω  is therefore continuous. 



 4

1

2 3

4
3

21

4

16

3/4
1/4

2/4
4/4

0
4/16

3/16
2/16

1/16
16/16

1

0,0 0,0

1,1 1,1

1st iteration 2nd iteration 3rd iteration

1

2 3

4
3

21

4

16

3/4
1/4

2/4
4/4

0
4/16

3/16
2/16

1/16
16/16

1

0,0 0,0

1,1 1,1

1

2 3

4
3

21

4

16

3/4
1/4

2/4
4/4

0
4/16

3/16
2/16

1/16
16/16

1

1

2 3

41

2 3

4
3

21

4

16

3

21

4

16

3/4
1/4

2/4
4/4

0
4/16

3/16
2/16

1/16
16/16

1

0,0 0,0

1,1 1,1

1st iteration 2nd iteration 3rd iteration
 

 

6th iteration  
 

fig.1.   Geometric generation of the Hilbert space-filling curve 
 

2.2.2. Arithmetic Definition 
 
An arithmetic description of the Hilbert curve would allow us to calculate the 

coordinates of the image point of any t ™ I using a form of parameter representation. If 
we keep in mind that the geometric generation was based on a recursive division of the 
unit interval into four congruent subintervals, we can simplify matters by representing the 
parameter t in quaternary notation: 

2 3
4 1 2 3 1 2 30 ... / 4 / 4 / 4 ..., 0,1,2 3jt q q q q q q q or= = + + + =



 5

Corresponding to the partitions of I there was the recursive division of Ω into four 
subsquares. The former generation principle actually implies that for each step in the 
iteration the subsquares can be regarded as affine transformations of the original unit-
square. To make this clear we take a look at the figures in fig.2. If we apply the recursive 
generating principle than we discover that if the starting point of the curve is (0,0), then 
the end point can only be (1,0) or (0,1). In the 0th iteration we only know that the origin 
is the starting point of the curve and (1,0) the endpoint, how the curve proceeds 
throughout Ω is not important. We therefore choose an orientation as shown in the first 
picture. In the subsequent iterations the orientation of the subsquares have to be such that 
the exit point of each subsquare coincides with the entry point of the following subsquare, 
and this while preserving the previous orientation. Fig.2 shows the only possible orien-
tations for the 1st and 2nd iteration. 
 
 

(0,0) (1,0) 1
2

1
2

1
4

3
4

0th iteration 1st iteration 2nd iteration

(0,0) (0,0)(1,0) (1,0)

0 3

1 2

(0,0) (1,0) 1
2

1
2

1
4

3
4

0th iteration 1st iteration 2nd iteration

(0,0) (0,0)(1,0) (1,0)(0,0) (1,0) 1
2

1
2

1
4

3
4

0th iteration 1st iteration 2nd iteration

(0,0) (0,0)(1,0)(1,0) 1
2

1
2

1
4

3
4

0th iteration 1st iteration 2nd iteration

(0,0) (0,0)(1,0) (1,0)

0 3

1 2

0 3

1 2

 
fig.2.   The steps in the analytical representation of the Hilbert space-filling curve 
 
To achieve the configuration of the 1st iteration we have to subject Ω to affine trans-

formations, meaning a combination of rotations, reflections, scaling and translations. We 
end up with four transformations hj that map Ω to one of the four subsquares. These 
transformations can be represented in complex form or in equivalent matrix form:  
 

0
1
2

z zi=h

1
1
2 2

iz z= +h

2
1 1
2 2 2

iz z= + +h

3
1 1
2 2

iz zi= − + +h

1 1 1
0 0 0

2 2 2

0 1 01 1 1 1
1 0 02 2 2 2

x x x
H h

x x x
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎛ ⎞

= + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥
⎣ ⎦ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

: h

1 1 1
1 1 1

2 2 2

1 0 01 1 1 1
0 1 12 2 2 2

x x x
H h

x x x
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎛ ⎞

= + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥
⎣ ⎦ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

: h

1 1 1
2 2 2

2 2 2

1 0 11 1 1 1
0 1 12 2 2 2

x x x
H h

x x x
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎛ ⎞

= + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥
⎣ ⎦ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

: h

1 1 1
3 3 3

2 2 2

0 1 21 1 1 1
1 0 12 2 2 2

x x x
H h

x x x
−⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎛ ⎞

= + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥−⎣ ⎦ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠
: h

0
1
2

z zi=h

1
1
2 2

iz z= +h

2
1 1
2 2 2

iz z= + +h

3
1 1
2 2

iz zi= − + +h

1 1 1
0 0 0

2 2 2

0 1 01 1 1 1
1 0 02 2 2 2

x x x
H h

x x x
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎛ ⎞

= + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥
⎣ ⎦ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

: h

1 1 1
1 1 1

2 2 2

1 0 01 1 1 1
0 1 12 2 2 2

x x x
H h

x x x
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎛ ⎞

= + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥
⎣ ⎦ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

: h

1 1 1
2 2 2

2 2 2

1 0 11 1 1 1
0 1 12 2 2 2

x x x
H h

x x x
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎛ ⎞

= + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥
⎣ ⎦ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

: h

1 1 1
3 3 3

2 2 2

0 1 21 1 1 1
1 0 12 2 2 2

x x x
H h

x x x
−⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎛ ⎞

= + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥−⎣ ⎦ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠
: h

 



 6

where z and (x1,x2) are the complex and vector representation of a point of the unit-square. 
The indices of hj correspond to the respective subsquare on which Ω is mapped. 
Applying these four transformations to the configuration of the 1st iteration yields the 3rd 
image and so on. 

When we look at the quaternary representation of the parameter t we can conclude 
that fh(t) lies in the q1th subsquare of the first partition, and further in the q2th subsquare 
of the second partition within the q1th  subsquare of the first partition and so on. This 
leads us to the following conclusion : 
 

1 2 3
( ) lim ...

nh q q q qn
f t

→∞
= Ωh h h h  

If we only look at finite quaternaries we get the following simplification : 
 

1 2 34 1 2 3

0
(0 ... ) ...

0nh n q q q qf q q q q
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

h h h h

1 2 34 1 2 3 0 0 0(0 ... ) ... ...
nh n q q q qf q q q q = Ωh h h h h h h

1 2 34 1 2 3

0
(0 ... ) ...

0nh n q q q qf q q q q
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

h h h h

1 2 34 1 2 3 0 0 0(0 ... ) ... ...
nh n q q q qf q q q q = Ωh h h h h h h

 
because h0 only involves scaling. These formulas can be used to calculate the coordinates 
of the image of edge points of subintervals of the nth iteration and can easily be 
implemented into a recursive program ([2]) where n depends on the desired degree of 
precision. The last formula can be worked out further ([1]) resulting in an expression that 
only contains the matrix parts of the affine transformations and can be used to find an 
analytic representation of the component functions of fh. 
 

2.2.3. Approximating Polygons 
 
The polygonal line that connects the image points of the subinterval edges of I of the 

nth iteration, is called the nth approximating polygon for the Hilbert curve or the discrete 
Hilbert curve: 

2 2
2 2 2 2

2 2 2

1 1: : ( ) 2 ( ) ( ) 2 ( ) ( ),
2 2 2 2

/ 2 ( 1) / 2 , 0,1, 2,3,...2 1

n n
n n h hn n n n

n n n

k k k kp I p t t f t f

for k t k k

+ +
→Ω = − − −

≤ ≤ + = −
 

 
passes through 2 2 2 2 2(0), (1/ 2 ), (2 / 2 ), (3 / 2 ),..., ((2 1) / 2 ), (1),n n n n n

h h h h h hf f f f f f− and { }np  
converges uniformly to fh. 

In fig.2 we see the approximating polygons for the first two iterations. We see that 
these curves pass more than once through certain points. The curves from fig.1 that join 
the midpoints of the subsequent squares can be regarded as approximating polygons too 
since they also uniformly converge to fh. 



 7

2.3. The Peano Space-Filling Curve 

2.3.1. Geometric Generation 
 
Peano defined a mapping :pf I →Ω  using ternaries of the parameter t as follows: 

 
2 2 4

1 31

3 1 3 5
3 1 2 3 4

3 2 4

0 ( )( )...
(0 ...)

0 ( )( )...

2 ( 0,1, 2)

t t t

p t tt

j j j

t k t k t
f t t t t

k t k t

with kt t t and k the th iterate of kν ν

+

+

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

= − =

 (2.3.1.) 

and showed it to be surjective and continuous. 
To demonstrate that fp indeed represents a SFC, we can derive from Peano’s defini-

tion the following: 
 

3 2 3 4
3 3 4 5

3 2 3 4

0 0 ...
(0 00 ...)

0 0 ...pf t t t
α α α
β β β

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 and 3 2 3 4
3 3 4 5

3 2 3 4

0 0 ...
(0 01 ...)

0 1 ...pf t t t
α α α
β β β

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 and… 

 

meaning that the subinterval 10,
9

⎡ ⎤
⎢ ⎥⎣ ⎦

 will be mapped onto the subsquare 1 10, 0,
3 3

⎡ ⎤ ⎡ ⎤×⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
, 

the subinterval 1 2,
9 9
⎡ ⎤
⎢ ⎥⎣ ⎦

 will be mapped onto the adjacent subsquare 1 1 20, ,
3 3 3

⎡ ⎤ ⎡ ⎤×⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
,… 

In general we can apply Hilbert’s generation principle as described under 2.2.1. but 
this time we partition I into 23 n  congruent subintervals and map them onto as many sub-
squares of Ω. Fig.3 shows how this is done for the first three iterations. The polygonal 
lines give the order in which the subsquares have to be taken. 
 

1st iteration 2nd iteration 3rd iteration

1

2

3 4

5

6 7

8

9

0 11
3

2
3

1
3

2
3

1

1st iteration 2nd iteration 3rd iteration

1

2

3 4

5

6 7

8

9

0 11
3

2
3

1
3

2
3

1

1

2

3 4

5

6 7

8

9

1

2

3 4

5

6 7

8

9

1

2

3 4

5

6 7

8

9

0 11
3

2
3

1
3

2
3

1

 
 

fig.3.   Geometric generation of the Peano space-filling curve 



 8

2.3.2. Arithmetic Definition 
 
We know that the Peano curve passes through the unit-square diagonally from (0,0) 

to (1,1). As under 2.2.2. we can define an orientation and affine transformations that map 
each iterate to one of the 9 subsquares of the next iterate, while preserving the previous 
orientations. Fig.4 shows the procedure for the first iteration. 
 

 
fig.4.   The steps in the analytical representation of the Peano space-filling curve 

 
The 9 transformations can be defined in a similar way as with the Hilbert curve: 

0 1
1 1 1, ,...
3 3 3 3

iz z z z= = − + +p p  in complex form, 1 1

2 2

1 1 , 0,1,...8
3 3j j j

x x
P p j

x x
⎛ ⎞ ⎛ ⎞

= + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

p  

in matrix notation. Each pj maps Ω to the (j+1)th subsquare of the first iteration as shown 
in fig.3. 

Making use of the ternary representation of t and the equality 
 

3 1 2 2 2 2 9 1 2 3 4 2 1 20 ... ... 0 (3 )(3 )...(3 )...n n n nt t t t t t t t t t− −= + + +  
 

we can proceed in the same manner is with the Hilbert curve. Realizing that 
 

1 2 3 4 2 1 23 3 3( ) lim ...
n np t t t t t tn

f t
−+ + +→∞

= Ωp p p  

 
and applying to finite ternaries gives us an expression for the calculation of the image 
points ([2]). By induction it can be proven that this expression leads to formula (2.3.1) for 
the infinite ternary representation of the parameter t ([1]). 
 

2.3.3. Approximating Polygons 
 
The polygonal line that connects the image points (fig.4) or the midpoints of the 

subsquares (fig.3) in the nth iteration is the nth approximating polygon for the Peano 
curve. Fig.5 shows that there are also other ways of passing through the subsquares that 
satisfy the recursive generating principle. 



 9

 
 

fig.5.   Other ways of going through the subsquares for the Peano curve 
 

2.4. The Sierpinski Space-Filling Curve 
 
We can apply the geometric generation procedure to any closed two dimensional 

region that can be partitioned into mutually congruent (similar) sub regions. We can 
therefore consider the mapping :sf I T→  where T is an isosceles right triangle with 
angular points in (0,0), (1,1) and (2,0), and define it as follows.  

We can divide I into 2n  or 22 n  subintervals and T into as many subtriangles such 
that adjacent intervals are mapped to adjacent triangles with an edge in common. 
Dividing in each step by 4 allows us to derive a simpler arithmetic representation since 
the transformations will only include rotations over / 2π . When we repeat the 
partitioning ad infinitum there will correspond with every sequence of nested closed 
intervals a sequence of nested closed triangles that uniquely converges to a point fs(t) in T.  
fs(I) is called the Sierpinski SFC and fig.6 shows the successive generation steps. 
 

 
fig.6.   Geometric generation of the Sierpinski space-filling curve 

 
Obtaining an analytical representation is analogous to the method presented for the 

previous two SFCs using quaternaries for t ™ I  ([1,2]).  
 

2.5. The Lebesgue Space-Filling Curve 
 
The mapping  
 

2 1 3 5
3 1 2 3

2 2 4 6

0 ...
(0 (2 )(2 )(2 )...)

0 ...
t t t

f t t t
t t t

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 



 10

from the Cantor Set 3 1 2 3{0 (2 )(2 )(2 )... | 0 1}jt t t t orΓ = =  onto Ω can be shown to be 
continuous and surjective. In order to obtain a continuous mapping on I we have to 
extend f into cΓ  continuously. When this is done by linear interpolation between the 
image points of interval edges that where removed during the construction of Γ , we get a 
mapping fl that is called the Lebesque SFC. Fig.7 shows the successive generation steps 
according to the steps in the recursive construction of Γ . 
 

1st iteration 4th iteration2nd iteration1st iteration 4th iteration2nd iteration
 

fig.7.   Geometric generation of the Lebesgue space-filling curve 
 

The Lebesque SFC is due to its definition almost everywhere differentiable, unlike 
the SFCs we have seen thus far. On the contrary it lacks the locality property all previous 
curves possess, meaning that it jumps across the unit-square and that not every restriction 
of fl to a subinterval of I is space-filling. 

 

2.6. Representation of Space-Filling Curves Through a Grammar 
 
In the construction of the Hilbert curve we can distinguish four templates which 

reoccur in every iteration step and can be labeled H, A, B and C (fig.8). These templates 
are translated in every iteration step into a first iteration of the Hilbert curve (fig.9). 
These fixed translation schemes can be described by a grammar: 
 

 
 
which is given by the four templates and the transitions between them. The grammar 
delivers an easy recipe for implementing the order in which the subsquares of the discrete 
Hilbert curve have to be traversed: 
 



 11

 
 
 

 
 

fig.8.   Identification of the four templates 
 

 
 

fig.9.   Translation scheme of the four templates 
 
 
3. Applications of Space-Filling Curves 

 
SFCs present a way of mapping multidimensional data onto a one dimensional 

sequence and thus a way of going through a multidimensional data set in a certain order. 
Some of the most favorable properties of SFCs in this respect are their locality, their 
recursive nature and the fact that the linearization is easily computable. 

Locality means that a SFC never leaves a region at any level of refinement before 
traversing all points of that region. Thus neighboring data in a multidimensional space 
remain neighboring after linearization. This clustering of data is important in exploiting 
cache memory during computation and for the partitioning of computational grids. The 
recursive behavior of SFCs allows for example for the linearization of recursive 
hierarchical data structures. 



 12

 
Storing a computational grid in memory requires a suitable data structure. When we 

are dealing with adaptively refined grids, adaptive grid refinement algorithms need to be 
implemented in such a way that the computational complexity remains acceptable ([4]). 
To ensure that the grid manipulation part does not become too expensive, appropriate 
representations of the grid must be chosen. 

Besides arrays and hash tables, space trees can be used as an implementation of a 
computational grid. Space trees are data structures in which every node is a new space 
tree or a leaf corresponding to a grid cell (fig.10). Their recursive nature allows for 
refinement to any arbitrary level within each cell. Linearizing this data structure can be 
important to define a traversing order of the cells or to map the data to memory. Since 
discrete SFCs are defined by a recursion themselves, the order can be deducted directly 
from the SFC in a top-down depth-first process (in contrary to a breadth first numbering, 
fig.10). Cells of the first refinement level are visited first according to the first iterate of 
the SFC. If a cell is further refined, the sub cells are traversed according to the respective 
iterate of the SFC. Figure 10 shows this for the Peano curve on a grid where the middle 
cell has been further refined. In the implementation we can make use of the grammar 
rules as presented earlier. 

 
 

               
 

fig.10.   Using a space tree and the Hilbert space-filling curve to represent a computational grid (left 
and middle). Using a Peano curve to traverse the cells in an adaptively refined grid (right) 

 
 

One of the bottlenecks in high performance computing is the time needed to access 
data in memory. Jumps in the address space during computation can lead to cache misses 
and substantial slow down. In designing cache-aware algorithms for the solution of 
partial differential equations in particular, SFCs can be used to build data structures that 
allow fast data access and that exploit cache hierarchies in modern computers ([3]). 

The result of a discretization scheme (finite differences, finite elements,…) is a 
system of linear equations that can be solved by using various techniques. The 
discretization gives rise to 2D stencils that represent the discrete operator. For the 
evaluation in one grid point, most of the time only direct neighboring points or needed, 
thus showing the locality of the discrete operator. In the case where the grid is associated 
with space trees, we can run through the leaves in a sequence described by a SFC. The 
leaves of the tree correspond to the grid cells and the discrete operator can be 



 13

decomposed into parts per cell which accumulate to the whole operator value after one 
run over all grid cells. 

Using SFCs to define the processing order of grid cells allows us to make use of a 
fixed number of stack data structures and this in such a way that the data needed at a 
certain point in the sequence of operations are always on top of the stack. Figure 11 
shows how grid points are being processed linearly forward and backward in time if we 
go through the grid in a strictly cell-oriented way using a discrete Peano curve. Therefore 
stacks are ideal to store the information that corresponds to the grid points. Because all 
required data always lies on top, data access becomes more cache-efficient. 

 
 

                           
 

fig.11.   Processing order of the grid cells (left) and the use of two stacks (red and black) with the 
Peano curve (right) 

 
 
For a 2D regular grid we only need two stacks (fig.10), for adaptively refined grids it 

can be shown that additional stacks are needed to transfer data over the grid levels. In 
addition the combination of SFCs and stacks makes the memory behavior deterministic 
and allows the processing order of the data to be inverted easily. This last property makes 
it possible to efficiently process the data several times, as required by iterative solvers. 

 
Since most computations in scientific computing will take place on parallel systems, 

load balancing is necessary ([2, 4]). This means that it is imperative that the same work 
load is assigned to all processors and none of them becomes idle during computation. 
Because the work load mainly depends on the amount of data to be processed, a data 
parallel approach is appropriate. Data partitioning is, in case of PDE solvers, a grid 
partitioning problem. 

Because the local discretization schemes for PDEs use immediately neighboring 
nodes for the evaluation, we require that the partitions are compact in order to keep data 
transfer between different processors as small as possible. For the same reason we 
demand that the edges (separators) of the partitions are as small as possible. 



 14

 
The basic idea in using SFCs for load balancing is to map the elements in space (Ω) 

to points on an iterate of a discrete SFC. These points can be mapped on I using the 
inverse mapping of the SFC. The image points on I can now be sorted and grouped 
together (partitioned), after which each group is mapped to a processor. When I is divided 
into subintervals of equal workload, we automatically attain a perfect load balance.  

SFC can be used for efficient parallelization because they give a simple means to 
calculate balanced partitions of which the separators can be shown to be almost optimal. 
The use of Hilbert or Peano curves assures that neighboring points on the unit interval 
will be mapped to neighboring entities in the multidimensional space, thus satisfying the 
compactness requirement. Lebesgue-type SFCs do not satisfy the so called Hölder 
continuity criterion and tend to give disconnected partitions. 



 15

References 
 
[1] H. Sagan, Space-Filling Curves, Springer-Verlag, New York, 1994. 
 
[2] M. Bader, Raumfüllende Kurven, Begleitendes Skriptum zum entsprechenden Kapitel 

der Vorlesung „Algorithmen des Wissenschaftlichen Rechnens“,Technischen 
Universität München, 2004. 

 
[3] F. Günther, M. Mehl, M. Pögl, C. Zenger, A cache-aware algorithm for PDEs on 

hierarchical data structures based on space-filling curves, SIAM Journal of Scientific 
Computing, submitted. 

 
[4] G. Zumbusch, Adaptive Parallel Multilevel Methods for Partial Differential Equations, 

Habilitation, Universität Bonn, 2001. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


