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Abstract

In the paper the hierarchy theorems for certain classes of languages are proved. Several
cases where hierarchy does not occur are discussed.

1



Contents

1 Introduction 3

2 Basic Definitions 3

3 Hierarchy theorems for DTime, DSpace and NTime 3

3.1 DTime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 DSpace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 NTime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Cases where hierarchy does not occur 6

4.1 GAP Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2 Space theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2



1 Introduction

The main idea of hierarchy theorems is as follows. We observe a time or space bounded class,
e.g. DTime(f(n)) and two functions f(n) and g(n). The Hierarchy Theorem states what
assumptions should be taken for f(n) and g(n) so that we could claim that DTime(f(n)) is
not equal to DTime(g(n)).

2 Basic Definitions

In this section we shall define the complexity classes and the types of functions we are going
to deal with.

Definition 2.1 DTime(f(n)) is a set of languages which can be decided by a DTM in f(n)
steps. Here f(n) is a time constructible function.

Definition 2.2 DSpace(f(n)) is a set of languages which can be decided by DTM using f(n)
space. Here f(n) is a space constructible function.

Definition 2.3 NTime(f(n)) is a set of languages which can be decided by NTM in f(n)
steps. Here f(n) is a time constructible function.

Definition 2.4 For any bounded complexity class CC(f(n)) and Ω, a set of functions, CC(Ω) =
∪f(n)∈ΩCC(f(n))

These definitions are certainly well known, but they are presented here because in literature
CC(f(n)) is often used with the same meaning as in our definitions of CC(O(f(n))). We give
these definitions to introduce our notation.

Definition 2.5 f : N → N is a time constructible function iff there is a DTM which if given
an input consisting of 1n constructs f(n) and which prints it on the output tape in f(n) time
at most.

Definition 2.6 f : N → N is a space constructible function iff there is a DTM which if given
an input consisting of 1n constructs f(n) and which prints it on the output tape using f(n)
space at most.

These definitions are also well known, but in some textbooks they are slightly different. For
example, one can find definitions where DTM does not print the value of f(n), but it must
work for exactly f(n) time in the case of time constructible functions or use exactly f(n)
space in the case of space constructible functions. But it is quite clear that these definitions
are equivalent.

All the proofs in this paper are very technical so we do not give the complete proofs but
the main idea will always be explained.

3 Hierarchy theorems for DTime, DSpace and NTime

3.1 DTime

Theorem 1 If f(n), g(n) are time constructible functions f(n)log(g(n)) = o(g(n)) and
f(n) > n for sufficiently large n ,then DTime(O(f(n)))  DTime(O(g(n))).
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Proof Obviously DTime(O(f(n))) ⊂ DTime(O(g(n))), so we will prove that DTime(O(f(n))) 6=
DTime(O(g(n))). Therefore we shall construct DTM D such that L(D) (the language which
is decided by D) belongs to DTime(O(g(n))) and does not belong to DTime(O(f(n))). First
we give the enumeration of all DTMs in the fallowing way: we enumerate the language and
the states of a machine with binary numbers. DTM is just a number of rules which state
where we should move the head and what we should print on the tape, so all these rules can
also be written as a string in the alphabet {0, 1}. In this way we enumerate all DTMs. We
define Mk as a DTM which corresponds to k in our enumeration.

Then we construct D. D will work with the alphabet {0, 1, $} and it will operate on the
string S in the following way:

• If S 6= k$1l for certain k and l, then D accepts S (here and thereafter, k as part of the
string means binary representation of k).

• If S = k$1l , then D simulates Mk on S for h(n) steps. h(n) will be defined later.

– If Mk doesn’t exist, D accepts S.

– If Mk halts within this time and accepts input, D rejects S.

– If Mk halts within this time and rejects input, D accepts S.

– If Mk doesn’t halt within this time, D accepts S.

1) D ∈ DTime(O(g(n)))
It is easy to see that the checking that the input string is correct takes O(n) time. Therefore,

we do not want the second part of the algorithm to work too long. The question is, what
additional factor for the duration of work of Mk the simulation needs. The answer is that this
factor is logarithmic. It means that the simulation works within O(h(n)log(h(n)) time period.
This simulation construction is complicated, so it will not be given here. Here we need h(n)
to be such that h(n)log(h(n)) = o(g(n)).

2) D /∈ DTime(O(f(n)))
If f(n) = o(h(n)) then for all Mk which belong to DTime(f(n)) D will stop evaluation

of Mk in time for l that is large enough. But when the simulation stops in time, D gives
the answer opposite to the answer of Mk, therefore D is not equal to Mk for any Mk from
DTime(o(f(n))).

Now we find h(n) such that f(n) ≤ h(n) and h(n)log(h(n)) = o(g(n)). Assume h(n) =
g(n)

log(g(n)) . This will be the function which we want, because f(n)log(g(n)) = o(g(n)).h This
completes the proof. tu

Rem 1 The method used in this proof is called diagonalisation: in this method we construct
TM which, given some other TM and some word as input, simulates all operations of the given
TM and calculates its own answer from the answer of the given TM. Then we just look at how
our machine works if given itself as an input. With the help of this construction we are able
to prove that certain classes do not coincide.

The theorem without O also holds:

Theorem 2 If f(n), g(n) are time constructible functions f(n)log(g(n)) = o(g(n)) and
f(n) > n for sufficiently large n, then DTime(f(n))  DTime(g(n)).

Proof This theorem can be proved in the same way as the previous one. We only need to
define h(n) as ε g(n)

log(g(n)) for ε which is small enough. tu
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3.2 DSpace

Theorem 3 If f(n), g(n) are space constructible functions f(n) = o(g(n)) and f(n) > log(n)
for sufficiently large n, then DSpace(O(f(n)))  DSpace(O(g(n))).

Rem 2 As we can see, here we do not need any additional logarithmic factor.

Proof We use the same enumeration as in the proof of Theorem 1. Here we also have an
obvious inclusion, so our aim is to prove that these classes are not equal. The construction of
D is as follows(S is an input string here):

• If S 6= k$1l for certain k and l, then D accepts S.

• If S = k$1l , then D simulates Mk on S for h(n)2h(n) steps while not more than h(n)
space is used.

– If Mk does not exist, D accepts S.

– If Mk halts after using not more than the allotted space and time and it accepts
input, D rejects S.

– If Mk halts after using not more than the allotted space and time and it rejects
input, D accepts S.

– If Mk does not halt in time or it uses extra space, D accepts S.

Here we have space and time bounds for the simulation. We need a time bound because
if we do not have it one could find such an input S that D never stops. But our time bound
is so large that if a certain TM operates during more than this time and does not use more
than h(n) space then it will never stop because it has to be in the same configuration at least
twice.

1) D ∈ DSpace(O(g(n)))
This inclusion follows from the construction of D where on each step we do not use more

than h(n) steps. So we need h(n) to be O(g(n)).
2) D /∈ DSpace(O(f(n)))
Here we can say that for each TM from DSpace(O(f(n))), D simulates it with no time or

space problems in case f(n) = o(h(n)).
So here we can assume h(n) = g(n). tu

Theorem 4 If f(n) and g(n) are space constructible functions f(n) = o(g(n)) and f(n) >
log(n) for sufficiently large n, then DSpace(f(n))  DSpace(g(n)).

Proof Here we also need h(n) just to have an additional constant εg(n), and this will yield
the proof. tu

3.3 NTime

Theorem 5 If f(n) and g(n) are time constructible functions f(n) = o(g(n)) and f(n) > n
for sufficiently large n, then NTime(O(f(n)))  NTime(O(g(n))).

Proof We shall prove this theorem for the case f(n) = n and g(n) = n2, because in this
theorem there are even more technical details than in the previous ones.

First we define function N(i) = 2222
2i

and function N−1(i) such that N(N−1(i)) < i <
N(N−1(i) + 1)).

We can enumerate all NTMs in the same way as DTMs. As above, we only need to
construct NTM D such that L(D) ∈ NTime(O(g(n))) and D /∈ NTime(O(f(n))). Here is
the construction of D:
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• If S 6= 1n for any n, then D accepts input.

• If S = 1n then D computes i = N−1(n)

• If Mi does not exist, D accepts S.

• If n 6= N(i + 1), D simulates Mi on the string 1n+1 with the help of nondeterminism for
n1.5 steps. (It means that when Mi makes some nondeterministic choice, D makes the
same choice and their computational trees coincide).

– If Mi halts in time, D outputs the answer of Mi.

– If Mi does not halt in time, D accepts S.

• If n = N(i + 1), D simulates Mi on the string 1N(i)+1 for n1.5 steps, checking all the
brunches.(Here we just look through all brunches of the computational tree).

– If Mi halts in time, D outputs an answer opposite to Mi .

– If Mi does not halt in time, D accepts S.

1)D ∈ NTime(O(g(n)))
We construct D in such a way that every step of our algorithm works within O(g(n)) time,

so the entire algorithm operates within O(g(n)) time.
2) D /∈ NTime(O(f(n)))
Let D be equal to Mk and let D belong to NTime(O(f(n))). In this case D given Mk

as an input works correctly (it means that it stops in time on every brunch of computation).
Let M(i) be the answer of D to 1i for any Turing Machine M and number i. By construction
of D for all N(k) + 1 ≤ i < N(k + 1)D(i) = Mk(i + 1) and D(N(k + 1) 6= Mk(N(k) + 1).
But we assumed that D = Mk, so D(N(k) + 1) = D(N(k) + 2) = . . . = D(N(k + 1) − 1) =
D(N(k + 1)) 6= D(N(k) + 1) ?!?. This proves the theorem. tu

4 Cases where hierarchy does not occur

In this part we shall discuss cases where the function is not time or space constructible or it
does not satisfy some other conditions from the hierarchy theorems.

4.1 GAP Theorem

Theorem 6 There exists such a function f : N → N that: f can be calculated using a certain
DTM (without time or space bounds). DTime(f(n)) = DTime(2f(n)) and f(n) > n for n
that is large enough.

Rem 3 Here we can use any other constructible function instead of 2f(n).

Proof We use the enumeration of all DTMs, which has already been defined. We shall define
a property P (i, k) in the following way. P (i, k) takes place if and only if each machine among
M1, M2 . . . , Mi on each input of length i either halts after fewer than k steps or it halts after
more than 2k steps or it does not halt at all. P (i, k) property can be checked by the following
algorithm:

Simulate all Mj for j = 1 . . . i on all inputs of length i (the number of these inputs for
each machine will be finite, since the alphabets of our machines are finite) for 2k steps. If all
evaluations stopped in less than k steps or did not stop until the time was over, then P (i, k)
takes place; otherwise, it does not.

Let kj(i) be a number of sequences such that: k1(i) = 2i and kj+1(i) = 2kj + 1. And let
N(i) =

∑
ςi
kk = 1i.

Let us consider a DTM which, if given the number n, will follow the algorithm below.
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For all j = 1 . . . N(i) it will decide P (i, kj(i)). And if P (i, kj(i)) takes place, our DTM will
output it.

Since P (i, kj(i)) will take place for at least one j, our algorithm will always output some-
thing and we define f(i) as a result of this algorithm. Now we shall show why this f(n) is a
function we need.

For all i P (i, f(i)) occures. It means that each DTM Mi halts between f(i) and 2f(i) time
only for a finite number of cases, but we can construct a DTM which will check these cases
apart from all the others. Therefore, since this constant does not influence the asymptotic,
we can claim that no language belongs to DTime(2f(n)) \ DTime(f(n)), thus this completes
the proof. tu

4.2 Space theorems

In the space hierarchy theorem we have a bound for f(n) that f(n) ≥ log(n). And now we
shall prove that if we do not have this condition, the hierarchy does not occur. It means that
for a function which is small enough, f(n) DSpace(O(f(n))) = DSpace(O(1)).

Theorem 7 1) DSpace(O(log(log(n)))) ( DSpace(O(1))
2) For all ε > 0 DSpace(O(log(log(n))1−ε)) = DSpace(O(1)).

Proof q) Let us define language L as

{0 . . . 00$0 . . . 001$0 . . . 010$ . . . $1 . . . 11| where between two consequent $ there are

exactly k digits}

In this case the length of our string is k2k + 2k − 1. We are going to prove that L belongs
to DSpace(O(log(log(n)))) and does not belong to DSpace(O(1)). We need the following
lemma.

Lemma 4.1 Let L be a language from DSpace(O(1)), then one can find n such that for each
word x from L such that length of x is more than n x can be represented in the following way:
x = abs and for each integer number r abrc belongs to L too.

This lemma is well known and we do not prove it here.
Now let L be from DSpace(O(1)). Then by the lemma we have a representation of our

string {0 . . . 00$0 . . . 001$0 . . . 010$ . . . $1 . . . 11 as a concatenation of a b and c. So for large
enough r we will have an increased length of our string, but the distance between two con-
sequent signs $ is still equal to k. But we know that the length of the string is equal to
k2k + 2k − 1, so L can not be decided with O(1) Space.

Now we need to construct a DTM which will decide L using only O(log(log(n))) space.
The algorithm is as follows:

• While we are not at the accepting or rejecting state, look through all integer i and for
each i we shall observe the sequence of numbers, each number of which is formed of the
last i digits before each $ in our sequence.

• Check that this sequence is correct. It means that we shall check that the first number
only consists of zeros; each number is equal to the previous plus one, and the last number
only consists of units. It is easy to see that it can be done in O(log(log(n))) space.

• If for some i our checking failed, we reject.

• If for some i the ith digit from each $ is $ and for all numbers less than i our checking
succeeds, we accept the input.
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This algorithm decides our language with the help of O(log(log(n))) space. It completes the
proof of the first part of our theorem.

2) We shall now consider a DTM which decides a language L using not more than
O(log(log(n)))1−ε space. Our aim is to prove that this language can also be decided with
the help of O(1) space.

It is well known that configuration of a Turing Machine is a set of a state of the machine,
values of all its cells on the tapes and the positions of all heads. We define pseudo-configuration
as a set of a state of the machine, values of all its cells on the tapes and the position of all
heads except the one on the input tape and the value on the position of the heads on the
input tape (we will call this head the main head). The performance of a Turing Machine can
be characterized by the sequence of configurations which occur during the computation. But
we shall consider the sequence of pseudo configurations.

Lemma 4.2 If Turing Machine M decides a language L using O(log(log(n))1−ε) space, then
the number of sequences of pseudo configurations which can occur during the computation with
a preset position of the main head on a string of length n is o(n).

Proof Let S be a number of states of our machine, and let C be the number of letters in
the alphabet of our machine and f(n) := O(log(log(n))1−ε). Then the number of pseudo
configurations is CSCf(n). But if with a given position of all heads two pseudo-configurations
occur twice, our machine will never stop, so the number of times when the main head is in
the given position is less than the number of different pseudo-configurations. Therefore, the
number of sequences is not greater than (CSC f(n))CSCf(n)

= CS exp(ln(C)f(n)CSCf(n)) =
CS exp(exp(ln ln(C) + ln(f(n)) + ln(C)f(n))) = CS exp(exp(ln ln(C) + ln(ln(ln(n))1−ε) +
ln(C) ln(ln(n))1−ε))) = O(exp(exp(ln(ln(n))1−ε/2)))) = o(n) tu

Let N be such a number that for all n > N the number of sequences is less than n/2. We
want to show that M uses O(log(log(N))) space.

Let S be a string of a length greater than N, such that it is the shortest input on which M
uses more than log(log(n)) space. Then one can find three positions of the main head with the
same sequence of pseudo-configurations. So our input can be represented in the following way:
S = αaβaγaδ. It can be readily seen that each pseudo-configuration which occurs during the
computation of M on the input S should also occur during the computation of M on the input
S = αaβaδ or on the input S = αaγaδ. So if M uses some amount of space when being run on
S, then it uses the same amount of space on some shorter string but we assume that S is the
shortest string on which M uses greater than log(log(n)) space, so we have the contradiction,
and thus the theorem is proved. tu
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