
Introduction to Probabilistically Checkable Proofs PCP Theorem - Part 1 Applying PCP Theorem PCP Theorem - Part 2

Course ”Proofs and Computers“, JASS’06

Probabilistically Checkable Proofs

Lukas Bulwahn

Faculty of Computer Science
TU Munich

March 30, 2006

Lukas Bulwahn: PCPs 1/ 39



Introduction to Probabilistically Checkable Proofs PCP Theorem - Part 1 Applying PCP Theorem PCP Theorem - Part 2

History of Inapproximability Results

I 1974: Foundational Paper from Johnson states approximation
algorithms and inapproximability results for Max SAT, Set
Cover, Independent Set, and Coloring.

I 1988: Ben-Or, Goldwasser et al. working on multi-prover
interactive proofs.

I 1991: Feige, Goldwasser et al. created a new model for NP,
namely PCPs.

I 1992: Arora proved the PCP Theorem.

I Many inapproximability results for problems were found in the
mid 1990s.

I 2005: Dinur shows a new proof for the PCP Theorem.
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A (r,q)-restricted verifier

Definition 1
A verifier V is a (r,q)-restricted verifier if for any input x , witness
w , and random string τ of length O(r), the decision
V w (x , τ) = ”yes” is based on at most O(q) bits from the witness
w .

Remarks:
A (r,q)-restricted verifier is called non-adaptive if the queries to the
witness w only depend on the input x and the random string τ . If
the next queries are also dependant from the previous queries from
the witness w , the verifier is called adaptive.
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A (r,q)-restricted verifier
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Probabilistically checkable proofs

Definition 2
A language L is probabilistically checkable using an (r,q)-restricted
verifier V iff

I Completeness: If x ∈ L then there exists a witness w such
that Prτ [V

w (x , τ) = ”yes”] = 1.

I Soundness: If x /∈ L then for every witness w we have
Prτ [V

w (x , τ) = ”yes”] < 1/2.
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Probabilistically checkable proofs

Example 3

Some simple examples for PCP-Classes are:

I P = PCP(0, 0)

I NP = PCP(0, poly)

I NP ⊆ PCP(log, poly)

I co-RP = PCP(poly, 0)

Proofs are easily shown by constructing verifiers which reduces the
one class on the other and vice versa.
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PCP Theorem

Definition 4 (PCP Theorem)

NP = PCP(log(n), 1)
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PCP Theorem

First, we will prove the easier side of the PCP theorem:
PCP(log(n), 1) ⊆ NP.

Proof.
Let L ∈ PCP(log(n), 1) ⇒ there is a (log(n), 1)-verifier V.
For τ there are 2O(log(n)) ≤ nc many random strings, namely
τ1, · · · , τnc

.
The verifier V will work as follows:

1. Reads a random string τ i , 1 ≤ i ≤ nc .

2. Uses x and τ i to calculate q positions i1, · · · , iq to read from
the witness string.

3. Run a calculation with x and wi1 , · · · ,wiq , and answer ”yes”
or ”no”.
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PCP Theorem

Proof.
Now, we will simulate the verifier V on a non-deterministic Turing
machine V’.
The witness string for V’ is w which has polynomial length since V
can only access polynomial positions.
V’ now calculates step 2 and 3 from V for every possible τ i and
answers ”yes” if all simulated calculations of V answered ”yes”.

It is left to show that V’ behaves like V.
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PCP Theorem

Proof.

I x ∈ L and L ∈ PCP(log(n), 1) ⇒ For a given w , V returns yes
with probability 1.
With this witness w V’ will also return yes.

I x /∈ L ⇒ There is no witness string w for V’ because at least
on half of the calculations will not answer ”yes”.
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Selected parts of approximability

Definition 5
An optimization problem O is defined by a cost function
C : Σ∗ × Σ∗ → R+ ∪ {⊥}, that given an instance string x and a
solution string s outputs C (x , s) which is either the cost of the
solution or ⊥ if the solution is illegal.

Let OPT (x) denote the optimal value a solution can get, then:
OPT (x) = maxs:C(x ,s) 6=⊥C (x , s).
An optimization problem is to find a legal solution s∗ that attains
the optimal value of cost, C (x , s∗) = OPT (x).
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Introduction to Probabilistically Checkable Proofs PCP Theorem - Part 1 Applying PCP Theorem PCP Theorem - Part 2

Selected parts of approximability

Definition 5
An optimization problem O is defined by a cost function
C : Σ∗ × Σ∗ → R+ ∪ {⊥}, that given an instance string x and a
solution string s outputs C (x , s) which is either the cost of the
solution or ⊥ if the solution is illegal.
Let OPT (x) denote the optimal value a solution can get, then:
OPT (x) = maxs:C(x ,s) 6=⊥C (x , s).

An optimization problem is to find a legal solution s∗ that attains
the optimal value of cost, C (x , s∗) = OPT (x).

Lukas Bulwahn: PCPs 11/ 39



Introduction to Probabilistically Checkable Proofs PCP Theorem - Part 1 Applying PCP Theorem PCP Theorem - Part 2

Selected parts of approximability

Definition 5
An optimization problem O is defined by a cost function
C : Σ∗ × Σ∗ → R+ ∪ {⊥}, that given an instance string x and a
solution string s outputs C (x , s) which is either the cost of the
solution or ⊥ if the solution is illegal.
Let OPT (x) denote the optimal value a solution can get, then:
OPT (x) = maxs:C(x ,s) 6=⊥C (x , s).
An optimization problem is to find a legal solution s∗ that attains
the optimal value of cost, C (x , s∗) = OPT (x).

Lukas Bulwahn: PCPs 11/ 39



Introduction to Probabilistically Checkable Proofs PCP Theorem - Part 1 Applying PCP Theorem PCP Theorem - Part 2

Selected parts of approximability

Example 6

MAX-3SAT is the problem of finding an assignment A which
maximizes the percent of satisfied clauses of a 3CNF formula ψ.
Of course, if ψ is satisfiable, then the optimal value of MAX-3SAT
is 1.

Lukas Bulwahn: PCPs 12/ 39
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Selected parts of approximability

Definition 7
A is an r-approximation algorithm for a maximation problem iff for
any input x, A finds a solution s that C (x , s) ≥ rOPT (x).
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Selected parts of approximability

Definition 8
Let O be a maximization problem. Let x be an instance of the
problem. A gap(α, β)-O is the problem of deciding between the
following alternatives:

I ”Yes”: OPT (x) ≥ β

I ”No”: OPT (x) ≤ α

If OPT ∈ [α, β) then both alternatives are acceptable.

If the gap problem is NP-hard, then it is the α
β -approximation

algorithm is also NP-hard.
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Equivalence of PCP Theorem and gap-MAX-3SAT is NP-hard.

Lemma 9
The following statements are equivalent:

1. (PCP Theorem) NP = PCP(log(n), 1)

2. There exists α ∈ (0, 1), such that gap(α, 1)-MAX-3SAT is NP
hard.

Lukas Bulwahn: PCPs 15/ 39
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Equivalence of PCP Theorem and gap-MAX-3SAT is NP-hard.

Proof.
(2 ⇒ 1)
Let language L ∈ NP.
Assumption: gap(α, 1)-MAX- 3SAT is NP hard.

=⇒ there exists a 3CNF formula, ψx ,L = c1 ∧ . . . ∧ cm, such that

1. x ∈ L ⇔ ψx ,L is satisfiable.

2. x /∈ L ⇔ for every assignment A, the number of clauses in
ψx ,L that are satisfied is less than αm.
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Equivalence of PCP Theorem and gap-MAX-3SAT is NP-hard.

The verifier V can use the following algorithm to check if a string
x is in the language L:

Algorithm

1. step: Construct the 3CNF formula ψx ,L.

2. step: Get an assignment A and create witness/proof
w = ψx ,L ◦ A.

3. step: Choose k = O(1) clauses from the witness.

4. step: If all k clauses are satisfied, return ”yes”.
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Equivalence of PCP Theorem and gap-MAX-3SAT is NP-hard.

Proof.

I Completeness:
If the assignment A satisfies the formula, V will answer ”yes”
no matter which k clauses were chosen.

√

I Soundness:
If A does not satisfy ψx ,L, then it satisfies at most αm clauses
=⇒the probability to answer ”yes” is at most αk .

With k > log(1/2)/log(α) : Prτ [V
wx , τ = ”yes”] ≤ αk =⇒

Prτ [V
w (x , τ) = ”yes”] < 1/2.

√
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Equivalence of PCP Theorem and gap-MAX-3SAT is NP-hard.

Proof.
(1 ⇒ 2)
Proof by reduction from gap-MAX-3SAT to 3SAT.
3SAT ∈ NP =⇒ 3SAT ∈ PCP[log , 1]
=⇒ there exists a verifier V such that a given 3CNF formula φ:

I φ is satisfiable ⇒ ∃w : Prτ [V
w (φ, τ) = ”yes”] = 1.

I φ is not satisfiable ⇒ ∀w : Prτ [V
w (φ, τ) = ”yes”] < 1/2.
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Equivalence of PCP Theorem and gap-MAX-3SAT is NP-hard.

Proof.
The verifier only considers q bits of the witness w for its decision.
⇒ acceptance is determined with local constraint ψφτ and variable
assignment according to the positions in the witness w . It is still
true that:

I φ is satisfiable ⇒ all local constraints ψφτ are satisfied.

I φ is not satisfiable ⇒ ∀ assignments A at most half of the
local constraints are satisfied.
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Equivalence of PCP Theorem and gap-MAX-3SAT is NP-hard.

Proof.
Construct a new formula φ′ = ψφτ1 ∧ · · · ∧ψ

φ
τ c
n

with τ1, · · · τnc are all
random string of the length O(log(n)). For φ′, we have:

I φ is satisfiable ⇒ φ′ is satisfied.

I φ is not satisfiable ⇒ any assignment for φ′ satisfies at most
half of the clauses of φ′.
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Equivalence of PCP Theorem and gap-MAX-3SAT is NP-hard.

Proof.
Construct a 3CNF formula from each local constraint.
φ′′ = (ψ1,1 ∧ . . . ∧ ψ1,k)︸ ︷︷ ︸

ψφ
τ1

∧ . . . ∧ (ψnc ,1 ∧ . . . ∧ ψnc ,k)︸ ︷︷ ︸
ψφ

τnc

I φ is satisfiable ⇒ φ′′ is satisfied.

I φ is not satisfiable ⇒ any assignment for φ′ satisfies at most
2k−1
2k of the clauses of φ′′.

This concludes the reduction from gap(α,1)-MAX-3SAT for
α = 2k−1

2k to 3SAT assuming the PCP Theorem.
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Outlook of MAX-3SAT

Theorem 10 (John Hastad, 1997)

For any α ∈
(

7
8 , 1

)
, the problem gap(α,1)-MAX-3SAT is NP-hard.
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Outlook of MAX-3SAT

Fact
But notice this interesting fact:
Howard Karloff and Uri Zwick have stated a 7

8 -Approximation
Algorithm for MAX-3-SAT
and provided strong evidence that the algorithm performs equally
well on arbitrary MAX-3-SAT instances.
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Constraint Graphs

Definition 11
G = 〈(V ,E ),Σ,C 〉 is called a constraint graph, if

1. (V,E) is an undirected graph, called the underlying graph of G.

2. The set V is also viewed as a set of variables assuming values
over alphabet Σ.

3. Each edge e ∈ E carries a constraint ce : Σ2 → {T ,F} and
C = {ce}e∈E .
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Constraint Graphs

Definition 12
An assignment is a mapping σ : V → Σ that gives each vertex in
V a value from Σ.

For any assignment σ, define SATσ(G ) = Pr(ce(σ(u), σ(v)) = T ]
and SAT (G ) = maxσSATσ(G ).
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Constraint Graphs

Example 13

Constructing a constraint graph from a 3-SAT-formula:
φ = (A ∨ B ∨ C )︸ ︷︷ ︸

v1

∧ (A ∨ D ∨ E )︸ ︷︷ ︸
v2

∧ (D ∨ F ∨ G )︸ ︷︷ ︸
v3

1. Encode each clause as a vertex.

2. Encode the satisfying assigments to a clause as the alphabet
Σ.

(T, T, T) (T, T, F) (T, F, T) (T, F, F) (F, T, T) (F, T, F) (F, F, T)

1 2 3 4 5 6 7

3. Put a consistency constraint for every pair of clauses that a
share a variable.
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Constraint Graphs

For φ the constraint graph G will look like this:
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Constraint Graphs

Theorem 14
Given a constraint graph G = 〈(V ,E ),Σ,C 〉 with |Σ| ≤ 7, it is
NP-hard to decide if SAT (G ) = 1.

Proof by using last Example to reduce to 3SAT.
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Expander Graphs

Definition 15
Let G = (V ,E ) be a d-regular graph. Let E (S ,S) =

∣∣(S × S) ∩ E
∣∣

equal the number of edges from a subset S ⊆ V to its complement.

The edge expansion is defined as h(G ) = minS ,|S |<|V |/2
E(S ,S)
|S | .
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Expander Graphs

Example 16

I A disconnected graph has an expansion of 0.

I A random d-regular graph has an expansion of about d/2,
independent of the number of vertices.
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Expander Graphs

Lemma 17
There exist d0 ∈ N and h0 > 0, such that there is a
polynomial-time constructible family {Xn}n∈N of d0-regular graphs
Xn on n vertices with h(Xn) ≥ h0.
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Expander Graphs

Example 18

All graphs of size p (for all primes). Here Vp = Zp and d = 3.
Ever vertex is connected to its neighbors (x + 1,x − 1) and its
inverse (x−1).
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Expander Graphs

Lemma 19
Let G be a d-regular graph, h(G) denotes the edge expansion of G
and let λ(G ) be the second largest eigenvalue of the adjacency

matrix of G. Then λ(G ) ≤ d − h(G)2

d .
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Expander Graphs

Lemma 20 (Expander Mixing Lemma)

for all S ,T ⊆ V :∣∣∣E (S ,T )− d |S ||T |
n

∣∣∣ ≤ λ
√
|S | |T |

A small λ means a graph with allot of ”randomness”.
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Expander Graphs

Theorem 21
Let G = (V ,E ) be a d-regular graph with a second largest
eigenvalue λ. Let F ⊆ E be a set of edges. The probability p that
a random walk that starts at a random edge in F takes the i + 1st

step in F as well, is bounded by |F |
|E | +

(
λ
d

)i
.
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Expander Graphs

Example 22 (Amplifying the success probability of random
algorithms)

L ∈ RP. A decides whether x ∈ L with m coin tosses and
one-sided-error probability β.
Simple way: Pr(A fails)≤ βt and uses m · t coin tosses.
With random walk on expander graphs:
Pr(A fails)≤ (β + λ

d )t and uses m + t · log(d) coin tosses.
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Probability

Lemma 23
For any non-negative variable X , Pr(X > 0) ≥ E2(X )

E(X 2)
.

Proof.
X is non-negative =⇒ E (X 2) = E (X 2 : X > 0) · Pr(X > 0) and
E (X ) = E (X : X > 0) · Pr(X > 0).

=⇒ E2(X )
E(X 2)

= (E(X :X>0)·Pr(X>0))2

E(X 2:X>0)·Pr(X>0)
≤ Pr [(X > 0).

because E (X 2 : X > 0) ≥ E 2(X : X > 0).
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Probability

Thank you for your attention!
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