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Abstract

This paper is a short repetition of the basic topics in complexity theory. It is not in-
tended to be a complete step by step introduction for beginners but addresses to readers
who want to refresh their knowledge efficiently. We start with the definition of the standard
(non)deterministic time and space bounded complexity classes. Next the important concept
of reduction and completeness is discussed intensively. After a short excursion on Boolean
circuits several completeness results in P , NP and PSPACE strengthen the routine of these
methods and give a broad base for further hardness results. Besides that we have a look at
optimization problems in PNP and classify these problems within the polynomial hierarchy.
The polynomial hierarchy is then characterized through the notion of certificates, which make
it more comfortable and intuitive to handle. With this characterization we close with some
facts about PH collapses.
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1 Complexity Classes

1.1 Space and time bounds

A complexity class[Pa94] is defined by four parameters, the model and mode of computation,
a bounded resource and an asymptotic worst case bound:

TIME(f(n)) := Languages decidable in time O (f(n)) by a DTM

NTIME(f(n)) := Languages decidable in time O (f(n)) by a NTM

SPACE(f(n)) := Languages decidable in space O (f(n)) by a DTM
(besides the (read only) input and the (write only) output)

NSPACE(f(n)) := Languages decidable in space O (f(n)) by a NTM

1.2 Important complexity classes

Having these notations we can easily define the important classical complexity classes:

L := SPACE(log n) NL := NSPACE(log n)

P :=
⋃

k TIME(nk) NP :=
⋃

k NTIME(nk)
coNP := P(Σ∗) \NP

PSPACE :=
⋃

k SPACE(nk)

EXP :=
⋃

k TIME(2nk
) NEXP:=

⋃
k NTIME(2nk

)

2-EXP :=
⋃

k TIME(22nk

)

ELEMENTARY :=
⋃

k k-EXP

1.3 Relationships between complexity classes

Important relationships:

• Hierarchy in PSPACE

– L ⊆ P

– NL ⊆ P

– ⇒ L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE

– L ⊂ PSPACE

• Linear Speedup

– TIME(f(n)) = TIME(εf(n) + n + 2)
– SPACE(f(n)) = SPACE(εf(n) + 2)
– same for nondeterministic classes

• Nondeterministic Space

– coNSPACE = NSPACE

– NSPACE(f(n)) ⊆ SPACE(f2(n))
– ⇒ PSPACE = NPSPACE = coNPSPACE
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1.4 Function problems

Definition 1.1 (Function problems)

A function problem is abstracted by a binary relation R ⊆ Σ∗ × Σ∗.
The task is: Given an input x, find an output y with (x, y) ∈ R.
FC denotes the class of all function problems computable by a TM in C

Definition 1.2 (Decision problems)

A decision problem is abstracted by a language L ⊆ Σ∗.
The task is: Given an input x, decide whether x ∈ L. The decision problem related to the
function problem R is
L(R) := {x | ∃y : (x, y) ∈ R}

1.5 Oracles

Definition 1.3 (Oracle TM)

An oracle TM M? has 3 additional states (qquery, qyes and qno) and one additional query-string
qs.
After being in state qquery M? continues in state qyes / qno depending on the answer of the
oracle on input qs.

Definition 1.4 (Oracle Complexity Class)

CO = Languages decidable by an oracle TM M? ∈ C with oracle language O
CC′

= Languages decidable by an oracle TM M? ∈ C with oracle language O ∈ C ′

2 Reductions

2.1 Idea

The idea behind Reductions is to relate the complexity of languages by trying to transform
instances of the domain A to a domain B. If we can do such a transformation we can solve A
with the help of B. Therefore it seems reasonable to say B is at least as hard as A and write
A ≤ B.

2.2 Reductions

Definition 2.1 (Reductions)

Let f, g, h be functions, then A ≤ B : ⇐⇒
• Cook: A ∈ PB

• Karp: ∃f ∈ FP : x ∈ A ⇐⇒ f(x) ∈ B

• Logspace: ∃f ∈ FL : x ∈ A ⇐⇒ f(x) ∈ B

• Levin: ∃f, g, h ∈ FP :
x ∈ L(R1) ⇐⇒ f(x) ∈ L(R2)
∀x, z : (f(x), z) ∈ R2 =⇒ (x, g(x, z)) ∈ L(R1)
∀(x, y) ∈ R1 : (f(x), h(x, y)) ∈ L(R2)

• L-Reduction: like Karp but preserves approximability
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2.3 Hierarchy and closure

Lemma 2.2 A ≤log B =⇒ A ≤K B =⇒ A ≤C B

Proof:

1. L ⊆ P

2. compute f(x) and ask oracle

tu

Definition 2.3 (Closure under reduction)

C is closed under reduction : ⇐⇒ A ≤ B ∧B ∈ C =⇒ A ∈ C

Proposition 2.4
L, NL, P , NP , coNP , PSPACE, EXP are closed under ≤log

2.4 Transitivity

Lemma 2.5 (Transitivity)

≤C , ≤K , ≤log, and ≤Levin are transitive.

Proof: (A ≤ B ∧B ≤ C =⇒ A ≤ C)

1. Cook: A ∈ PB ∧B ∈ PC =⇒ A ∈ PC

• run the PB TM
• instead of asking the oracle compute answer with PC TM
• polynomial queries which take polynomial time can be computed in P

2. Karp: fAC = fBC ◦ fAB

3. Logspace:

• like Karp
• but fAB(x) could be polynomial long
• ⇒ each time fBC needs input compute only this char with fAB

tu

3 Boolean circuits

For a short introduction to boolean Circuits look at [Bl05] or [Pa94].

3.1 Expressive power

Shortly spoken boolean circuits are a potentially more economical way of representing boolean
functions than tables or Boolean expressions. While tables represent a function without com-
pression, boolean expressions can describe many natural dependencies with short formulas. A
Boolean circuit extends the expressive power of Boolean expressions by compressing shared
subexpressions in additional edges. It is an amazing fact that on the one hand this represen-
tation is so efficient that nobody has been able to come up with a natural family of Boolean
functions that require more than a linear number of gates to compute but on the other hand
the next lemma shows that there must exist many exponentially difficult functions.

5



Lemma 3.1
For n > 2 there is a n-ary boolean function which needs more than m = 2n

2n gates.

Proof: (number of circuits < number of boolean functions)

• sorts of gates: (n + 5)

• number of gates: ≤ m

• possible inputs: ≤ m2

=⇒
(
(n + 5)m2

)m =
(
(n + 5) 22n

4n2

) 2n

2n
<

(
22n

) 2n

2n = 22n tu

3.2 Reduction to Boolean expressions

It is clear, that for every Boolean expression Φ we can construct a circuit C with the same
functionality by following the inductive definition of Φ. The other direction is not so simple.
In fact we can have an exponential blow-up if we do not allow introducing new variables.
Without this restriction the linear sized transformation can be done this way:

Lemma 3.2
Every Boolean circuit C is equivalent to a boolean expression with size O(|C|).

Proof:
Give each gate a variable and ”‘translate”’

• variable gate: g ⇐⇒ x

• True gate: g

• False gate: ¬g

• not gate: g ⇐⇒ ¬h

• and gate: g ⇐⇒ a ∧ b

• or gate: g ⇐⇒ a ∨ b

• output gate: g

The conjunction of these clauses is equivalent to the circuit. tu

4 Completeness

4.1 Definition

Definition 4.1 (Completeness)

A is complete for C : ⇐⇒ A ∈ C ∧ ∀L ∈ C : L ≤ A
(maximal elements of the preorder given by ≤ )

4.2 P completeness

Problem 4.2 CIRCUIT VALUE
Given a Boolean circuit C without variable gates, does C compute to True?

Lemma 4.3
CIRCUIT V ALUE is P complete
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Proof:

1. CIRCUIT V ALUE ∈ P :
The circuit can be easily evaluated in polynomial time.

2. ∀L ∈ P : L ≤log CIRCUIT V ALUE:
Having an arbitrary language L ∈ P decided by a TM M in time nk and an input x we
want to build a boolean circuit that is satisfiable ⇐⇒ x ∈ L ⇐⇒ M accepts x.

• W.L.O.G. M has only one string
• interpret the computation on x as a |x|k+1×|x|k+1 computation table with alphabet

Σ ∪ Σ×K

t . Oq0 T t O t t t t t t t t
t . @ TO t O t t t t t t t t
t . @ T tO O t t t t t t t t
t . @ T t OO t t t t t t t t
t . @ T t O tO t t t t t t t
t . @ T t OO′ t t t t t t t t
t . @ T tqr @ t t t t t t t t
t . @ Tqr t @ t t t t t t t t
t . @qr T t @ t t t t t t t t
t . @ Tq0 t @ t t t t t t t t
t . @ @ tT @ t t t t t t t t
t . @ @ t @T t t t t t t t t
t . @ @ tT ′ @ t t t t t t t t
t . @ @ no @ t t t t t t t t
t . @ @ no @ t t t t t t t t

• a char depends only on the 3 chars above it
• translate it into binary and write a circuit C which computes one char
• with polynomial copies of C build a circuit G which computes the table
• add a circuit which tests for accepting states
• the leftest and rightest columns are (set to) t and the input x is known
• ⇒ no free variables occur
• the value of G is True ⇐⇒ M accepts x

tu

4.3 NP completeness

Problem 4.4 CIRCUIT SAT
Given a Boolean circuit C. Is there a truth assignment to the variable gates of C such that C
computes to true?

Lemma 4.5
CIRCUIT SAT is NP complete
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Proof:
Similar to proof of lemma 4.3

• W.L.O.G. NTM M has single string and 2 nondeterministic choices (0,1) at each step

• a char depends only on the 3 chars above it and the choice

• for each choice build an computation table and translate it into binary

• build a circuit which computes one char using an free variable gate for the choice

• build a circuit for the whole computation table

• this circuit is satisfiable ⇐⇒ an truth assignment to the choice gates exists that leads
to an accepting state ⇐⇒ M accepts x

tu

Problem 4.6 SAT
Given a Boolean expression in CNF, is it satisfiable?

Corollary 4.7
SAT is NP complete

Proof:

• can be solved in NP by guessing and verifying

• for CIRCUITSAT ≤log SAT see lemma 3.2 and replace gate formulas by their CNF
for example: (g ⇐⇒ x) = ((¬g ∨ x) ∧ (g ∨ ¬x))

tu

Problem 4.8 HAMILTON PATH
Given a directed graph, is there a path that visits each node exactly once?

Lemma 4.9
HAMILTON PATH is NP complete

Proof: HAMILTON PATH ∈ NP ∧ SAT ≤log 3SAT ≤log HAMILTON PATH

1. guess and verify

2. without proof (simple logic)

3. short sketch: (for full proof see [Pa94])
given a boolean expression Φ, construct a graph G:
G has a Hamilton path ⇐⇒ Φ is satisfiable:

• each variable 7→ choice gadget
(allowing the true or false path to traverse)

• each clause 7→ constraint gadget
(forming a circle iff all variables are false)

• consistency guaranteed through xor-gadgets
(substitutes two edges so that only one can be traversed)

tu

Problem 4.10
TSP : Given a undirected complete weighted graph, find the shortest tour (circle visiting each
node once)

8



Like for every other optimization problem we can define a related decision problem:

Problem 4.11
TSP (D) : Given a undirected complete weighted graph and an integer budged B, is there a
tour of length at most B?

Lemma 4.12
TSP (D) is NP complete

Proof: TSP (D) ∈ NP ∧ HAMILTON PATH ≤log TSP (D)

1. guess and verify

2. given graph G with n nodes, construct a complete weighted graph G′ with n nodes and
a budget B:

• edges in G′ have weight 1 if they exist in G else 2
• Budget B = n + 1
• G′ has a TSP-Tour with budged B ⇐⇒ G has a Hamilton path

tu

4.4 PSPACE completeness

Problem 4.13 IN PLACE ACCEPTANCE
Given a DTM M and an input x, does M accept x without ever leaving the |x|+1 first symbols
of its string?

Lemma 4.14
IN PLACE ACCEPTANCE is PSPACE complete

Proof: IN PLACE ACCEPTANCE ∈ PSPACE ∧
L ∈ PSPACE =⇒ L ≤log IN PLACE ACCEPTANCE

1. simulate M on x and count steps
reject ⇐⇒ M rejects, leaves the place, or operates more than |K||x||Σ||x| steps

2. DTM M decides L in nk space:
x ∈ L ⇐⇒ M accepts x in |x|k space ⇐⇒ M accepts xt|x|k in place
⇐⇒ (M,xt|x|k) ∈ IN PLACE ACCEPTANCE

tu

5 Polynomial Hierarchy

5.1 Optimization problems in FPNP

Lemma 5.1
TSP is FPNP complete

Proof: TSP is FPNP hard ∧ TSP ∈ FPNP

1. without proof

2. Construct TM M? ∈ FP which decides TSP with TSP (D) oracle

• optimum cost C is an integer between 0 and 2|x|

• ⇒ exact cost C can be computed by binary search asking |x| queries
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• test every edge:
– set its cost to C + 1
– ask TSP (D) oracle whether now an tour with budged C exists
– reset the cost only if the answer is ”‘no”’

• all edges with cost < C + 1 form an optimal tour

tu

Corollary 5.2
MAXIMUM WEIGHTED SAT ∈ FPNP

Proof:
Construct TM M? ∈ FP

• compute the largest possible weight of satisfied clauses by binary search

• test each variable one-by-one

tu

Corollary 5.3
WEIGHTED MAX CUT ∈ FPNP

KNAPSACK ∈ FPNP

WEIGHTED BISECTION WIDTH ∈ FPNP

...

5.2 Polynomial Hierarchy

After we have seen that PNP captures many important problems it seems reasonable to
consider the corresponding nondeterministic class NPNP . As a nondeterministic class it will
naturally not be closed under complement. We also can have a look at classes using NPNP

and so on. This leads us directly to the definition of the polynomial hierarchy:

Definition 5.4 (Polynomial hierarchy)

∆P
0 = ΣP

0 = ΠP
0 = P

and for all i ≥ 0:

• ∆P
i+1 = PΣP

i

• ΣP
i+1 = NPΣP

i

• ΠP
i+1 = coNPΣP

i

PH =
⋃

i ΣP
i is the cumulative polynomial hierarchy

Looking at the first level of the polynomial hierarchy with ∆P
1 = PP = P ,

ΣP
1 = NPP = NP and ΠP

1 = coNPP = coNP we find our familiar important complexity
classes as a special case within the PH. The second level contains ∆P

2 = PNP studied in the
previous subsection ΣP

2 = NPNP and its complement ΠP
2 = coNPNP .

As we expect it for a hierarchy the following containment relationship holds:

Corollary 5.5
∀i ≥ 0 : ∆P

i ⊆ ΣP
i ∩ΠP

i ⊆ ∆P
i+1
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5.3 Characterization

5.3.1 Certificates and verification

Finding problems for the polynomial hierarchy by using its definition is hard because an
arbitrary long scope of oracles must be taken into consideration. Therefore we are more likely
to argue in terms of witnesses or certificates than in terms of nondeterministic TM. These
certificates encode the accepting paths of NTM and are so proofs for the containment in the
accepted language. Our first step into this direction leads us an alternative characterization of
NP which makes this class so much more intuitive that it is for example used in the informal
description of the P = NP millennium problem.[Clay]

Definition 5.6 (polynomial bounded relation)

A polynomial bounded relation is a relation R ⊆ (Σ∗)l+1 with ∃k ∈ N : ∀(x, y1, y2, ..., yl) ∈
R : |yi| ≤ |x|k.

Definition 5.7 (C-verifiable relation)

A C-verifiable relation R is a polynomial bounded relation, which is decidable in C: {x; y1; y2; ...; yl | (x, y1, y2, ..., yl) ∈
R} ∈ C

5.3.2 Characterization of NP

Lemma 5.8 (Characterization of NP)

NP = { {x | ∃y : (x, y) ∈ R} | R is P -verifiable}

Proof:
”‘⇐”’: R is P -verifiable =⇒ {x | ∃y : (x, y) ∈ R} ∈ NP

• construct NTM M ′ which on input x

– guesses polynomial bounded y

– verify whether (x, y) ∈ R

– accept x ⇐⇒ (x, y) ∈ R

• M ′ ∈ NP

• M ′ accepts x ⇐⇒ ∃y : (x, y) ∈ R

”‘⇒”’: L ∈ NP =⇒ ∃R P -verifiable : L = {x | ∃y : (x, y) ∈ R}
• have TM M ∈ NP deciding L

• for input x ∈ L encode the choices of an accepting path of M into a witness y

• R = {(x, y)| y is witness for x} is the searched relation

– polynomial bounded y (because of the polynomial running time of M)
– polynomial decidable (by DTM M ’ using y to determine the computation path of

M)
– ∃y : (x, y) ∈ R ⇐⇒ M accepts x ⇐⇒ x ∈ L

tu
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5.3.3 Characterization of ΣP
i and ΠP

i

Lemma 5.9 (Characterization of ΣP
i )

ΣP
i = { {x | ∃y : (x, y) ∈ R} | R is ΠP

i−1-verifiable}

Proof: (by induction on i)
i = 1: exactly the characterization of NP

(i− 1) → i:
”‘⇐”’: R is ΠP

i−1-verifiable =⇒ {x | ∃y : (x, y) ∈ R} ∈ ΣP
i

• construct NTM M? ∈ NP which on input x

– guesses polynomial bounded y

– aks an oracle K ∈ ΣP
i−1 whether (x, y) ∈ R

– accepts x ⇐⇒ (x, y) ∈ R

• MK ∈ ΣP
i (since ΣP

i−1 ⊆ ΣP
i )

• MK accepts x ⇐⇒ ∃y : (x, y) ∈ R

”‘⇒”’: L ∈ ΣP
i =⇒ ∃R ΠP

i−1-verifiable : L = {x | ∃y : (x, y) ∈ R}

• have NTM M? ∈ NP ? deciding L with oracle K ∈ ΣP
i−1

• for input x ∈ L encode all choices and queries of M? into a certificate y of x (example:
y = (c0, c4, qs1 /∈ K, c1, qs2 ∈ K + cert, ...) )

• define R = {(x, y)| y is certificate for x}
– R is polynomial bounded
– x /∈ K is ΠP

i−1-decidable
– x ∈ K is ΠP

i−2-verifiable (by induction)
– ⇒ R is ΠP

i−1-verifiable

• ∃y : (x, y) ∈ R ⇐⇒ MK accept x ⇐⇒ x ∈ L

tu

Corollary 5.10 (Characterization of ΠP
i )

ΠP
i = { {x | ∀y : |y| < |x|k ⇒ (x, y) ∈ R } | R is ΣP

i−1-verifiable}

Corollary 5.11
L ∈ ΣP

i ⇐⇒ ∃R : R is P -verifiable ∧ L = {x | ∃y1∀y2∃y3 ... : (x, y1, y2, ..., yi) ∈ R}
L ∈ ΠP

i ⇐⇒ ∃R : R is P -verifiable ∧ L = {x | ∀y1∃y2∀y3 ... : (x, y1, y2, ..., yi) ∈ R}

5.4 Problems in PH

Problem 5.12 MINIMUM CIRCUIT
Given a Boolean circuit C, is it true that there is no circuit with fewer gates computing the
same Boolean function?

Lemma 5.13
MINIMUM CIRCUIT ∈ ΠP

2
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Proof:

• C is accepted ⇐⇒ ∀C ′ : |C ′| < |C| : ∃ input x : C ′(x) 6= C(x)

• and C ′(x) 6= C(x) can be checked in polynomial time

tu

Problem 5.14 QSATi

Decide whether a quantified boolean expression with i alternations of quantifiers (beginning
with an existential quantifier) is satisfiable

Lemma 5.15
QSATi is ΣP

i complete

Proof:
Sketch: Combine the above characterization of ΣP

i with the equivalence of accepting compu-
tation and satisfiability of Boolean circuits/expressions shown at page 7 tu

5.5 PH collapses

The recursive reuse of each level as an oracle to define the next level leads naturally to
an extremely fragile structure. Therefore any jitter, at any level of this hierarchy yields to
disastrous consequences further up.[Pa94]

Definition 5.16 (Collapse of PH)

PH collapses to the ith level means: ∀j > i : ΣP
j = ΠP

j = ∆P
j = ΣP

i

Lemma 5.17 (Collapse of PH)

If for some i ≤ 1 ΣP
i = ΠP

i then PH collapses to the ith level.

Proof: ΣP
i = ΠP

i =⇒ ΣP
i+1 = ΣP

i

L ∈ ΣP
i+1 ⇐⇒ L = {x | ∃y : (x, y) ∈ R} with R is ΠP

i -verifiable
⇐⇒ L = {x | ∃y : (x, y) ∈ R} with R is ΣP

i -verifiable
⇐⇒ L = {x | ∃y : (x, y) ∈ R} with[

(x, y) ∈ R ⇐⇒ ∃z : (x, y, z) ∈ S with S is ΠP
i−1-verifiable

]
⇐⇒ L = {x | ∃y, z : (x, y, z) ∈ S} with S is ΠP

i−1-verifiable
⇐⇒ L ∈ ΣP

i

tu

Corollary 5.18 (PH complete Problems)

If PH has complete problems, then it collapses to some finite level.

Corollary 5.19 (PH and PSPACE)

PH ⊆ PSPACE and PH = PSPACE =⇒ PH collapses

Proof:

1. trivial

2. PSPACE has complete problems

tu
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