Complexity Classes and Reductions JASS 2006 Course One: Proofs and Computers

Bernhard Häupler

Technische Universität München

April 2006

What this talk is about:

• Complexity classes and Problems

・ロン ・回と ・ヨン・

What this talk is about:

- Complexity classes and Problems
- Function Problems

・ロン ・回 と ・ ヨ と ・ ヨ と

What this talk is about:

- Complexity classes and Problems
- Function Problems
- Oracles

・ロン ・回と ・ヨン・

What this talk is about:

- Complexity classes and Problems
- Function Problems
- Oracles
- Reductions and Completeness

・ロン ・回と ・ヨン・

What this talk is about:

- Complexity classes and Problems
- Function Problems
- Oracles
- Reductions and Completeness
- Boolean Circuits

イロト イヨト イヨト イヨト

What this talk is about:

- Complexity classes and Problems
- Function Problems
- Oracles
- Reductions and Completeness
- Boolean Circuits
- P, NP and PSPACE completeness results

イロン 不同と 不同と 不同と

What this talk is about:

- Complexity classes and Problems
- Function Problems
- Oracles
- Reductions and Completeness
- Boolean Circuits
- P, NP and PSPACE completeness results
- Problems in *FP^{NP}*

・ロン ・回と ・ヨン ・ヨン

What this talk is about:

- Complexity classes and Problems
- Function Problems
- Oracles
- Reductions and Completeness
- Boolean Circuits
- P, NP and PSPACE completeness results
- Problems in *FP^{NP}*
- Polynomial Hierarchy

Complexity Classes Definitions: Reductions Important Complexity Classes: Completeness Relationships between Complexity Classes Polynomial Hierarchy Function problems and Oracles

Definitions:

TIME(f(n)) := Languages decidable in time O(f(n)) by a DTM

NTIME(f(n)) := Languages decidable in time O(f(n)) by a NTM

SPACE(f(n)) := Languages decidable in space O(f(n)) by a DTM (besides the (read only) input and the (write only) output)

NSPACE(f(n)) := Languages decidable in space O(f(n)) by a NTM

Definitions: Important Complexity Classes: Relationships between Complexity Classes Function problems and Oracles

Important Complexity Classes

$$L \qquad := SPACE(\log n)$$

$$P \qquad := \bigcup_k TIME(n^k)$$

$$NL := NSPACE(\log n)$$

$$NP := \bigcup_k NTIME(n^k)$$

 $coNP := P(\Sigma^*) \setminus NP$

 $NEXP := \bigcup_k NTIME(2^{n^k})$

・ロト ・回ト ・ヨト ・ヨト

2

$$PSPACE := \bigcup_{k} SPACE(n^{k})$$
$$EXP := \bigcup_{k} TIME(2^{n^{k}})$$
$$2-EXP := \bigcup_{k} TIME(2^{2^{n^{k}}})$$

ELEMENTARY := $\bigcup_k k$ -EXP

Definitions: Important Complexity Classes: Relationships between Complexity Classes Function problems and Oracles

Relationships between Complexity Classes

Important relationships:

• Hierarchy in PSPACE

Definitions: Important Complexity Classes: Relationships between Complexity Classes Function problems and Oracles

Relationships between Complexity Classes

Important relationships:

Hierarchy in *PSPACE L* ⊂ *P*

・ロン ・回と ・ヨン・

Definitions: Important Complexity Classes: Relationships between Complexity Classes Function problems and Oracles

Relationships between Complexity Classes

Important relationships:

• Hierarchy in PSPACE

・ロン ・回と ・ヨン ・ヨン

Definitions: Important Complexity Classes: Relationships between Complexity Classes Function problems and Oracles

Relationships between Complexity Classes

Important relationships:

- Hierarchy in PSPACE
 - *L* ⊆ *P*
 - $NL \subseteq P$
 - $\bullet \ \Rightarrow L \subseteq \mathit{NL} \subseteq \mathit{P} \subseteq \mathit{NP} \subseteq \mathit{PSPACE}$

Definitions: Important Complexity Classes: Relationships between Complexity Classes Function problems and Oracles

Relationships between Complexity Classes

Important relationships:

- Hierarchy in PSPACE
 - *L* ⊆ *P*
 - $NL \subseteq P$
 - $\bullet \ \Rightarrow L \subseteq \mathsf{NL} \subseteq \mathsf{P} \subseteq \mathsf{NP} \subseteq \mathsf{PSPACE}$
 - $L \subset PSPACE$

Definitions: Important Complexity Classes: Relationships between Complexity Classes Function problems and Oracles

Relationships between Complexity Classes

Important relationships:

- Hierarchy in PSPACE
 - *L* ⊆ *P*
 - $NL \subseteq P$
 - $\bullet \ \Rightarrow L \subseteq \mathsf{NL} \subseteq \mathsf{P} \subseteq \mathsf{NP} \subseteq \mathsf{PSPACE}$
 - $L \subset PSPACE$
- Linear Speedup
 - $TIME(f(n)) = TIME(\epsilon f(n) + n + 2)$
 - $SPACE(f(n)) = SPACE(\epsilon f(n) + 2)$
 - same for nondeterministic classes

<ロ> (日) (日) (日) (日) (日)

Definitions: Important Complexity Classes: Relationships between Complexity Classes Function problems and Oracles

Relationships between Complexity Classes

Important relationships:

- Hierarchy in PSPACE
 - *L* ⊆ *P*
 - $NL \subseteq P$
 - $\bullet \ \Rightarrow L \subseteq \mathsf{NL} \subseteq \mathsf{P} \subseteq \mathsf{NP} \subseteq \mathsf{PSPACE}$
 - $L \subset PSPACE$
- Linear Speedup
 - $TIME(f(n)) = TIME(\epsilon f(n) + n + 2)$
 - $SPACE(f(n)) = SPACE(\epsilon f(n) + 2)$
 - same for nondeterministic classes
- Nondeterministic Space

Definitions: Important Complexity Classes: Relationships between Complexity Classes Function problems and Oracles

Relationships between Complexity Classes

Important relationships:

- Hierarchy in PSPACE
 - *L* ⊆ *P*
 - $NL \subseteq P$
 - $\bullet \ \Rightarrow L \subseteq \mathsf{NL} \subseteq \mathsf{P} \subseteq \mathsf{NP} \subseteq \mathsf{PSPACE}$
 - $L \subset PSPACE$
- Linear Speedup
 - $TIME(f(n)) = TIME(\epsilon f(n) + n + 2)$
 - $SPACE(f(n)) = SPACE(\epsilon f(n) + 2)$
 - same for nondeterministic classes
- Nondeterministic Space
 - coNSPACE = NSPACE

Definitions: Important Complexity Classes: Relationships between Complexity Classes Function problems and Oracles

Relationships between Complexity Classes

Important relationships:

- Hierarchy in PSPACE
 - *L* ⊆ *P*
 - $NL \subseteq P$
 - $\bullet \ \Rightarrow L \subseteq \mathsf{NL} \subseteq \mathsf{P} \subseteq \mathsf{NP} \subseteq \mathsf{PSPACE}$
 - $L \subset PSPACE$
- Linear Speedup
 - $TIME(f(n)) = TIME(\epsilon f(n) + n + 2)$
 - $SPACE(f(n)) = SPACE(\epsilon f(n) + 2)$
 - same for nondeterministic classes
- Nondeterministic Space
 - coNSPACE = NSPACE
 - $NSPACE(f(n)) \subseteq SPACE(f^2(n))$

Definitions: Important Complexity Classes: Relationships between Complexity Classes Function problems and Oracles

Relationships between Complexity Classes

Important relationships:

- Hierarchy in PSPACE
 - *L* ⊆ *P*
 - $NL \subseteq P$
 - $\bullet \ \Rightarrow L \subseteq \mathsf{NL} \subseteq \mathsf{P} \subseteq \mathsf{NP} \subseteq \mathsf{PSPACE}$
 - $L \subset PSPACE$
- Linear Speedup
 - $TIME(f(n)) = TIME(\epsilon f(n) + n + 2)$
 - $SPACE(f(n)) = SPACE(\epsilon f(n) + 2)$
 - same for nondeterministic classes
- Nondeterministic Space
 - coNSPACE = NSPACE
 - $NSPACE(f(n)) \subseteq SPACE(f^2(n))$
 - \Rightarrow PSPACE = NPSPACE = coNPSPACE

 Complexity Classes
 Definitions:

 Reductions
 Important Complexity Classes:

 Complexitess
 Relationships between Complexity Classes

 Polynomial Hierarchy
 Function problems and Oracles

Function problems

Definition (Function problems)

A function problem is abstracted by a binary relation $R \subseteq \Sigma^* \times \Sigma^*$. The task is: Given an input x, find an output y with $(x, y) \in R$.

・ロト ・回ト ・ヨト ・ヨト

 Complexity Classes
 Definitions:

 Reductions
 Important Complexity Classes:

 Completeness
 Relationships between Complexity Classes

 Polynomial Hierarchy
 Function problems and Oracles

Function problems

Definition (Function problems)

A function problem is abstracted by a binary relation $R \subseteq \Sigma^* \times \Sigma^*$. The task is: Given an input x, find an output y with $(x, y) \in R$.

FC is the class of all function problems computable by a TM in C

 Complexity Classes
 Definitions:

 Reductions
 Important Complexity Classes:

 Completeness
 Relationships between Complexity Classes

 Polynomial Hierarchy
 Function problems and Oracles

Function problems

Definition (Function problems)

A function problem is abstracted by a binary relation $R \subseteq \Sigma^* \times \Sigma^*$. The task is: Given an input x, find an output y with $(x, y) \in R$.

FC is the class of all function problems computable by a TM in C

Definition (Decision problems)

A decision problem is abstracted by a language $L \subseteq \Sigma^*$. The task is: Given an input *x*, decide whether $x \in L$.

 Complexity Classes
 Definitions:

 Reductions
 Important Complexity Classes:

 Complexeness
 Relationships between Complexity Classes

 Polynomial Hierarchy
 Function problems and Oracles

Function problems

Definition (Function problems)

A function problem is abstracted by a binary relation $R \subseteq \Sigma^* \times \Sigma^*$. The task is: Given an input x, find an output y with $(x, y) \in R$.

FC is the class of all function problems computable by a TM in C

Definition (Decision problems)

A decision problem is abstracted by a language $L \subseteq \Sigma^*$. The task is: Given an input *x*, decide whether $x \in L$.

 $L(R) := \{x \mid \exists y : (x, y) \in R\}$ is the decision problem related to the function problem R

・ロン ・回 と ・ ヨ と ・ ヨ と

Definitions: Important Complexity Classes: Relationships between Complexity Classes Function problems and Oracles

Oracles

Definition: (Oracle TM)

An oracle TM $M^{?}$ has 3 additional states $(q_{query}, q_{yes} \text{ and } q_{no})$ and one additional query-string qs. After being in state $q_{query} M^{?}$ continues in state q_{yes} / q_{no} depending on the answer of the oracle on input qs.

・ロン ・回 と ・ ヨ と ・ ヨ と

Definitions: Important Complexity Classes: Relationships between Complexity Classes Function problems and Oracles

Oracles

Definition: (Oracle TM)

An oracle TM $M^{?}$ has 3 additional states $(q_{query}, q_{yes} \text{ and } q_{no})$ and one additional query-string qs. After being in state $q_{query} M^{?}$ continues in state q_{yes} / q_{no} depending on the answer of the oracle on input qs.

Definition: (Oracle Complexity Class)

 $C^{O} =$ Languages decidable by an oracle TM $M^{?} \in C$ with oracle O

・ロト ・回ト ・ヨト ・ヨト

Definitions Hierarchy and Closure Transitivity

Reductions: Idea

Idea: If problem A reduces to B then B is at least as hard as A We write therefore $A \leq B$

Definitions Hierarchy and Closure Transitivity

Reductions: Definitions

Definition: (Reductions)

Let f, g, h be functions:

• Cook: $A \in P^B$

・ロト ・回ト ・ヨト ・ヨト

Definitions Hierarchy and Closure Transitivity

Reductions: Definitions

Definition: (Reductions)

Let f, g, h be functions:

- Cook: $A \in P^B$
- Karp: $\exists f \in FP : x \in A \iff f(x) \in B$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Definitions Hierarchy and Closure Transitivity

Reductions: Definitions

Definition: (Reductions)

Let f, g, h be functions:

- Cook: $A \in P^B$
- Karp: $\exists f \in FP : x \in A \iff f(x) \in B$
- Logspace: $\exists f \in FL : x \in A \iff f(x) \in B$

イロン イヨン イヨン イヨン

2

Definitions Hierarchy and Closure Transitivity

Reductions: Definitions

Definition: (Reductions)

Let f, g, h be functions:

- Cook: $A \in P^B$
- Karp: $\exists f \in FP : x \in A \iff f(x) \in B$
- Logspace: $\exists f \in FL : x \in A \iff f(x) \in B$
- Levin: $\exists f, g, h \in FP :$ $x \in L(R_1) \iff f(x) \in L(R_2)$ $\forall x, z : (f(x), z) \in R_2 \implies (x, g(x, z)) \in L(R_1)$ $\forall (x, y) \in R_1 : (f(x), h(x, y)) \in L(R_2)$

イロト イヨト イヨト イヨト

2

Definitions Hierarchy and Closure Transitivity

Reductions: Definitions

Definition: (Reductions)

Let f, g, h be functions:

- Cook: $A \in P^B$
- Karp: $\exists f \in FP : x \in A \iff f(x) \in B$
- Logspace: $\exists f \in FL : x \in A \iff f(x) \in B$
- Levin: $\exists f, g, h \in FP : \\ x \in L(R_1) \iff f(x) \in L(R_2) \\ \forall x, z : (f(x), z) \in R_2 \implies (x, g(x, z)) \in L(R_1) \\ \forall (x, y) \in R_1 : (f(x), h(x, y)) \in L(R_2)$

• L-Reduction: like Karp but preserves approximability

Definitions Hierarchy and Closure Transitivity

Reductions: Hierarchy and Closure

Lemma:

$$A \leq_{\mathsf{log}} B \implies A \leq_{\mathcal{K}} B \implies A \leq_{\mathcal{C}} B$$

・ロト ・回ト ・ヨト ・ヨト

Definitions Hierarchy and Closure Transitivity

Reductions: Hierarchy and Closure

Lemma:

$$A \leq_{\log} B \implies A \leq_{K} B \implies A \leq_{C} B$$

Proof:

$$\bullet L \subseteq P$$

2 compute f(x) and ask oracle

イロン イヨン イヨン イヨン

Definitions Hierarchy and Closure Transitivity

Reductions: Hierarchy and Closure

Lemma:

$$A \leq_{\log} B \implies A \leq_{K} B \implies A \leq_{C} B$$

Proof:

$$\bullet L \subseteq P$$

2 compute
$$f(x)$$
 and ask oracle

Definition: (Closure under Reduction)

C is closed under reduction : $\iff A \leq B \land B \in C \Longrightarrow A \in C$

・ロン ・回 と ・ 回 と ・ 回 と

3
Definitions Hierarchy and Closure Transitivity

Reductions: Hierarchy and Closure

Lemma:

$$A \leq_{\log} B \implies A \leq_{K} B \implies A \leq_{C} B$$

Proof:

$$\bullet L \subseteq P$$

2 compute
$$f(x)$$
 and ask oracle

Definition: (Closure under Reduction)

C is closed under reduction : $\iff A \leq B \land B \in C \Longrightarrow A \in C$

L, NL, P, NP, coNP, PSPACE, EXP are closed under \leq_{\log}

・ロト ・回ト ・ヨト ・ヨト

Definitions Hierarchy and Closure Transitivity

Reductions: Transitivity

Lemma: (Transitivity)

 \leq_{C} , \leq_{K} , \leq_{\log} , and \leq_{Levin} are transitive.

・ロト ・回ト ・ヨト ・ヨト

Definitions Hierarchy and Closure Transitivity

Reductions: Transitivity

Lemma: (Transitivity)

 \leq_{C} , \leq_{K} , \leq_{\log} , and \leq_{Levin} are transitive.

Proof: $(A \leq B \land B \leq C \Longrightarrow A \leq C)$

• Cook: $A \in P^B \land B \in P^C \Longrightarrow A \in P^C$

イロン イヨン イヨン イヨン

2

Definitions Hierarchy and Closure Transitivity

Reductions: Transitivity

Lemma: (Transitivity)

 \leq_{C} , \leq_{K} , \leq_{\log} , and \leq_{Levin} are transitive.

Proof: $(A \leq B \land B \leq C \Longrightarrow A \leq C)$

• Cook: $A \in P^B \land B \in P^C \Longrightarrow A \in P^C$

• run the P^B TM

イロト イヨト イヨト イヨト

2

Definitions Hierarchy and Closure Transitivity

Reductions: Transitivity

Lemma: (Transitivity)

 \leq_{C} , \leq_{K} , \leq_{\log} , and \leq_{Levin} are transitive.

Proof: $(A \leq B \land B \leq C \Longrightarrow A \leq C)$

- Cook: $A \in P^B \land B \in P^C \Longrightarrow A \in P^C$
 - run the P^B TM
 - instead of asking the oracle compute answer with P^C TM

Definitions Hierarchy and Closure Transitivity

Reductions: Transitivity

Lemma: (Transitivity)

 \leq_{C} , \leq_{K} , \leq_{\log} , and \leq_{Levin} are transitive.

Proof: $(A \leq B \land B \leq C \Longrightarrow A \leq C)$

3 Cook:
$$A \in P^B \land B \in P^C \Longrightarrow A \in P^C$$

- run the P^B TM
- instead of asking the oracle compute answer with P^C TM
- polynomial queries which take polynomial time can be computed in *P*

・ロン ・回と ・ヨン・

Definitions Hierarchy and Closure Transitivity

Reductions: Transitivity

Lemma: (Transitivity)

 \leq_{C} , \leq_{K} , \leq_{\log} , and \leq_{Levin} are transitive.

Proof: $(A \leq B \land B \leq C \Longrightarrow A \leq C)$

1 Cook:
$$A \in P^B \land B \in P^C \Longrightarrow A \in P^C$$

- run the P^B TM
- instead of asking the oracle compute answer with P^C TM
- polynomial queries which take polynomial time can be computed in *P*
- **2** Karp: $f_{AC} = f_{BC} \circ f_{AB}$

・ロン ・回と ・ヨン ・ヨン

Definitions Hierarchy and Closure Transitivity

Reductions: Transitivity

Lemma: (Transitivity)

 \leq_{C} , \leq_{K} , \leq_{\log} , and \leq_{Levin} are transitive.

Proof: $(A \leq B \land B \leq C \Longrightarrow A \leq C)$

1 Cook:
$$A \in P^B \land B \in P^C \Longrightarrow A \in P^C$$

- run the P^B TM
- instead of asking the oracle compute answer with P^C TM
- polynomial queries which take polynomial time can be computed in *P*
- **2** Karp: $f_{AC} = f_{BC} \circ f_{AB}$
- Iogspace:

Definitions Hierarchy and Closure Transitivity

Reductions: Transitivity

Lemma: (Transitivity)

 \leq_{C} , \leq_{K} , \leq_{\log} , and \leq_{Levin} are transitive.

Proof: $(A \leq B \land B \leq C \Longrightarrow A \leq C)$

3 Cook:
$$A \in P^B \land B \in P^C \Longrightarrow A \in P^C$$

- run the P^B TM
- instead of asking the oracle compute answer with P^C TM
- polynomial queries which take polynomial time can be computed in *P*
- **2** Karp: $f_{AC} = f_{BC} \circ f_{AB}$
- Our Construction Constructio
 - like Karp

・ロン ・回と ・ヨン ・ヨン

Definitions Hierarchy and Closure Transitivity

Reductions: Transitivity

Lemma: (Transitivity)

 \leq_{C} , \leq_{K} , \leq_{\log} , and \leq_{Levin} are transitive.

Proof: $(A \leq B \land B \leq C \Longrightarrow A \leq C)$

3 Cook:
$$A \in P^B \land B \in P^C \Longrightarrow A \in P^C$$

- run the P^B TM
- instead of asking the oracle compute answer with P^C TM
- polynomial queries which take polynomial time can be computed in *P*
- **2** Karp: $f_{AC} = f_{BC} \circ f_{AB}$
- Our Construction Constructio
 - like Karp
 - but $f_{AB}(x)$ could be polynomial long

Definitions Hierarchy and Closure Transitivity

Reductions: Transitivity

Lemma: (Transitivity)

 \leq_{C} , \leq_{K} , \leq_{\log} , and \leq_{Levin} are transitive.

Proof: $(A \leq B \land B \leq C \Longrightarrow A \leq C)$

3 Cook:
$$A \in P^B \land B \in P^C \Longrightarrow A \in P^C$$

- run the P^B TM
- instead of asking the oracle compute answer with P^C TM
- polynomial queries which take polynomial time can be computed in *P*
- **2** Karp: $f_{AC} = f_{BC} \circ f_{AB}$
- Iogspace:
 - like Karp
 - but $f_{AB}(x)$ could be polynomial long
 - \Rightarrow each time f_{BC} needs input compute only this char with f_{AB}

P completeness NP completeness **PSPACE** completeness

Definition

Definition: (Completeness)

A is complete for $C : \iff A \in C \land \forall L \in C : L \leq Ar$ (maximal elements of the preorder given by \leq)

Boolean Circuits P completeness NP completeness PSPACE completeness

Boolean Circuits

Bernhard Häupler Complexity Classes and Reductions

Boolean Circuits P completeness NP completeness PSPACE completeness

Boolean Circuits

Lemma:

For n > 2 there is a n-ary boolean function which needs more than $m = \frac{2^n}{2n}$ gates.

・ロン ・回と ・ヨン ・ヨン

Boolean Circuits P completeness NP completeness PSPACE completeness

Boolean Circuits

Lemma:

For n > 2 there is a n-ary boolean function which needs more than $m = \frac{2^n}{2n}$ gates.

Proof:
$$((n+5)m^2)^m = ((n+5)\frac{2^{2n}}{4n^2})^{\frac{2^n}{2n}} < (2^{2n})^{\frac{2^n}{2n}} = 2^{2^n}$$

・ロン ・回と ・ヨン ・ヨン

Boolean Circuits P completeness NP completeness PSPACE completeness

Boolean Circuits

Lemma:

For n > 2 there is a n-ary boolean function which needs more than $m = \frac{2^n}{2n}$ gates.

Proof:
$$((n+5)m^2)^m = \left((n+5)\frac{2^{2n}}{4n^2}\right)^{\frac{2^n}{2n}} < (2^{2n})^{\frac{2^n}{2n}} = 2^{2^n}$$

There is no natural family of boolean functions known, which needs more than linear number of gates.

Boolean Circuits P completeness NP completeness PSPACE completeness

Boolean Circuits

Lemma:

For n > 2 there is a n-ary boolean function which needs more than $m = \frac{2^n}{2n}$ gates.

Proof:
$$((n+5)m^2)^m = \left((n+5)\frac{2^{2n}}{4n^2}\right)^{\frac{2^n}{2n}} < (2^{2n})^{\frac{2^n}{2n}} = 2^{2^n}$$

There is no natural family of boolean functions known, which needs more than linear number of gates.

Boolean Circuits P completeness NP completeness PSPACE completeness

Boolean Circuits

Lemma:

 $CIRCUIT_SAT \leq_{log} SAT$

イロン 不同と 不同と 不同と

Boolean Circuits P completeness NP completeness PSPACE completeness

Boolean Circuits

Lemma:

 $CIRCUIT_SAT \leq_{log} SAT$

Proof:

Give each gate a variable and "translate"

• variable gate: $g \iff x$

イロン イヨン イヨン イヨン

Boolean Circuits P completeness NP completeness PSPACE completeness

Boolean Circuits

Lemma:

 $CIRCUIT_SAT \leq_{log} SAT$

Proof:

Give each gate a variable and "translate"

- variable gate: $g \iff x$
- True gate: g
- False gate: ¬g

Boolean Circuits P completeness NP completeness PSPACE completeness

Boolean Circuits

Lemma:

 $CIRCUIT_SAT \leq_{log} SAT$

Proof:

Give each gate a variable and "translate"

- variable gate: $g \iff x$
- True gate: g
- False gate: ¬g
- not gate: $g \iff \neg h$
- and gate: $g \iff a \wedge b$
- or gate: $g \iff a \lor b$

Boolean Circuits P completeness NP completeness PSPACE completeness

Boolean Circuits

Lemma:

 $CIRCUIT_SAT \leq_{log} SAT$

Proof:

Give each gate a variable and "translate"

- variable gate: $g \iff x$
- True gate: g
- False gate: ¬g
- not gate: $g \iff \neg h$
- and gate: $g \iff a \wedge b$
- or gate: $g \iff a \lor b$
- output gate: g

Boolean Circuits P completeness NP completeness PSPACE completeness

Boolean Circuits

Lemma:

 $CIRCUIT_SAT \leq_{\mathsf{log}} SAT$

Proof:

Give each gate a variable and "translate"

- variable gate: $g \iff x$
- True gate: g
- False gate: ¬g
- not gate: $g \iff \neg h$
- and gate: $g \iff a \wedge b$
- or gate: $g \iff a \lor b$
- output gate: g

The conjunction of these clauses is equivalent to the circuit

P completeness NP completeness **PSPACE** completeness

CIRCUIT_VALUE is P complete

Lemma:

CIRCUIT_VALUE is P complete

Proof:

Bernhard Häupler **Complexity Classes and Reductions**

・ロン ・回と ・ヨン ・ヨン

CIRCUIT_VALUE is P complete

Lemma:

CIRCUIT_VALUE is P complete

Proof:

 Having an arbitrary language L ∈ P decided by a TM M in time n^k and an input x

CIRCUIT_VALUE is P complete

Lemma:

CIRCUIT_VALUE is P complete

Proof:

- Having an arbitrary language L ∈ P decided by a TM M in time n^k and an input x
- want to build a boolean circuit that is satisfiable $\iff x \in L \iff M$ accepts x

<ロ> (日) (日) (日) (日) (日)

CIRCUIT_VALUE is P complete

Lemma:

CIRCUIT_VALUE is P complete

Proof:

- Having an arbitrary language L ∈ P decided by a TM M in time n^k and an input x
- want to build a boolean circuit that is satisfiable $\iff x \in L \iff M$ accepts x
- W.L.O.G. *M* has only one string

CIRCUIT_VALUE is P complete

Lemma:

CIRCUIT_VALUE is P complete

Proof:

Ο ...

- Having an arbitrary language L ∈ P decided by a TM M in time n^k and an input x
- want to build a boolean circuit that is satisfiable $\iff x \in L \iff M$ accepts x
- W.L.O.G. *M* has only one string
- interpret the computation on x as a $|x|^{k+1} \times |x|^{k+1}$ computation table with alphabet $\Sigma \cup \Sigma \times K$

Boolean Circuits P completeness NP completeness PSPACE completeness

Computation Table

	⊳	O_{q_0}	Т	t	0		Ш	Ш	\Box	Ш			
	⊳	0	To	t	0			Ш	\Box	Ш		Ш	Ш
	⊳	0	Т	t _O	0		Ш			Ш	Ш	Ш	
	⊳	0	Т	t	00			Ш	\Box				Ш
	⊳	0	Т	t	0	Цo							Ш
	⊳	0	Т	t	<i>O_{O'}</i>					Ш			Ш
	⊳	0	Т	t _{qr}	0					Ш			
	⊳	0	T_{q_r}	t	0					Ш			
	⊳	\mathbb{Q}_{q_r}	Т	t	0			Ш		Ш			Ш
Ш	⊳	0	T_{q_0}	t	0			Ш		Ш			Ш
Ш	⊳	0	0	t _T	0			Ш		Ш			Ш
Ш	⊳	0	0	t	@ _T			Ш		Ш			Ш
	⊳	0	0	$t_{T'}$	0								
	⊳	0	0	no	0	\Box			\Box	\Box			Ш
	⊳	0	0	no	0	\Box			\Box	\Box			Ш

▲口 → ▲圖 → ▲ 国 → ▲ 国 → □

P completeness NP completeness **PSPACE** completeness

CIRCUIT_VALUE is P complete

Lemma:

CIRCUIT_VALUE is P complete

Proof:

...

・ロン ・回と ・ヨン ・ヨン

P completeness NP completeness **PSPACE** completeness

CIRCUIT_VALUE is P complete

Lemma:

CIRCUIT_VALUE is P complete

Proof:

- ...
- a char depends only on the 3 chars above it

・ロン ・回と ・ヨン ・ヨン

P completeness NP completeness **PSPACE** completeness

CIRCUIT_VALUE is P complete

Lemma:

CIRCUIT_VALUE is P complete

Proof:

- ...
- a char depends only on the 3 chars above it
- translate it into binary and write a circuit C which computes one char

P completeness NP completeness **PSPACE** completeness

CIRCUIT_VALUE is P complete

Lemma:

CIRCUIT_VALUE is P complete

Proof:

- ...
- a char depends only on the 3 chars above it
- translate it into binary and write a circuit C which computes one char
- with polynomial copies of C build a circuit G which computes the table

CIRCUIT_VALUE is P complete

Lemma:

CIRCUIT_VALUE is P complete

Proof:

- ...
- a char depends only on the 3 chars above it
- translate it into binary and write a circuit *C* which computes one char
- with polynomial copies of *C* build a circuit *G* which computes the table
- add a circuit which tests for accepting states

P completeness NP completeness **PSPACE** completeness

CIRCUIT_VALUE is P complete

Lemma:

CIRCUIT_VALUE is P complete

Proof:

- ...
- a char depends only on the 3 chars above it
- translate it into binary and write a circuit C which computes one char
- with polynomial copies of C build a circuit G which computes the table
- add a circuit which tests for accepting states
- the leftest and rightest columns are (set to) \Box and the input x is known

P completeness NP completeness **PSPACE** completeness

CIRCUIT_VALUE is P complete

Lemma:

CIRCUIT_VALUE is P complete

Proof:

- ...
- a char depends only on the 3 chars above it
- translate it into binary and write a circuit C which computes one char
- with polynomial copies of C build a circuit G which computes the table
- add a circuit which tests for accepting states
- the leftest and rightest columns are (set to) \Box and the input x is known
- \Rightarrow no free variables occur
Complexity Classes Boolean Circuits Reductions P completeness Completeness Polynomial Hierarchy PSPACE completeness

CIRCUIT_VALUE is P complete

Lemma:

CIRCUIT_VALUE is P complete

Proof:

- ...
- a char depends only on the 3 chars above it
- translate it into binary and write a circuit *C* which computes one char
- with polynomial copies of *C* build a circuit *G* which computes the table
- add a circuit which tests for accepting states
- the leftest and rightest columns are (set to) ⊔ and the input x is known
- \Rightarrow no free variables occur
- the value of *G* is True ↔ *M* accepts *x* → *G* → *G*

Boolean Circuits P completeness NP completeness PSPACE completeness

CIRCUIT_SAT is NP complete

Lemma:

CIRCUIT_SAT is NP complete

Bernhard Häupler Complexity Classes and Reductions

・ロン ・回と ・ヨン ・ヨン

Boolean Circuits P completeness NP completeness PSPACE completeness

CIRCUIT_SAT is NP complete

Lemma:

CIRCUIT_SAT is NP complete

Proof:

• W.L.O.G. NTM *M* has single string and 2 nondeterministic choices (0,1) at each step

イロト イヨト イヨト イヨト

Boolean Circuits P completeness NP completeness PSPACE completeness

CIRCUIT_SAT is NP complete

Lemma:

CIRCUIT_SAT is NP complete

Proof:

- W.L.O.G. NTM *M* has single string and 2 nondeterministic choices (0,1) at each step
- a char depends only on the 3 chars above it and the choice

Boolean Circuits P completeness NP completeness PSPACE completeness

CIRCUIT_SAT is NP complete

Lemma:

CIRCUIT_SAT is NP complete

Proof:

- W.L.O.G. NTM *M* has single string and 2 nondeterministic choices (0,1) at each step
- a char depends only on the 3 chars above it and the choice
- build a circuit for the whole computation table

Boolean Circuits P completeness NP completeness PSPACE completeness

CIRCUIT_SAT is NP complete

Lemma:

CIRCUIT_SAT is NP complete

Proof:

- W.L.O.G. NTM *M* has single string and 2 nondeterministic choices (0,1) at each step
- a char depends only on the 3 chars above it and the choice
- build a circuit for the whole computation table
- this circuit is satisfiable ⇐⇒ an choice assignment exists that leads to an accepting state ⇐⇒ M accepts x

Boolean Circuits P completeness NP completeness PSPACE completeness

HAMILTON_PATH is NP complete

Lemma:

HAMILTON_PATH is NP complete

Proof:

 $\textit{HAMILTON_PATH} \in \textit{NP} ~ \land ~ \textit{SAT} \leq_{\textsf{log}} \textit{3SAT} \leq_{\textsf{log}} \textit{HAMILTON_PATH}$

イロン イヨン イヨン イヨン

Complexity Classes Boolean Circuits Reductions Completeness Polynomial Hierarchy

P completeness NP completeness **PSPACE** completeness

HAMILTON_PATH is NP complete

Lemma:

HAMILTON_PATH is NP complete

Proof:

 $HAMILTON_PATH \in NP \land SAT \leq_{log} 3SAT \leq_{log} HAMILTON_PATH$

guess and verify

イロン イヨン イヨン イヨン

Complexity Classes Boolean Circuits Reductions Completeness Polynomial Hierarchy

P completeness NP completeness **PSPACE** completeness

HAMILTON_PATH is NP complete

Lemma:

HAMILTON_PATH is NP complete

Proof:

 $HAMILTON_PATH \in NP \land SAT \leq_{log} 3SAT \leq_{log} HAMILTON_PATH$

- guess and verify
- 2 without proof (simple logic)

イロン イヨン イヨン イヨン

Complexity Classes Boolean Circuits Reductions Completeness Polynomial Hierarchy

P completeness NP completeness **PSPACE** completeness

HAMILTON_PATH is NP complete

Lemma:

HAMILTON_PATH is NP complete

Proof:

 $HAMILTON_PATH \in NP \land SAT \leq_{log} 3SAT \leq_{log} HAMILTON_PATH$

- guess and verify
- 2 without proof (simple logic)
- **3** given a boolean expression Φ , construct a graph G:
 - *G* has a Hamilton path $\iff \Phi$ is satisfiable:
 - each variable \mapsto choice gadget (allowing the true or false path to traverse)
 - each clause \mapsto constraint gadget (forming a circle iff all variables are false)
 - consistency guaranteed through xor-gadgets (substitutes two edges so that only one can be traversed)

Boolean Circuits P completeness NP completeness PSPACE completeness

TSP(D) is NP complete

Lemma:

TSP(D) is NP complete

・ロト ・回ト ・ヨト ・ヨト

Э

Boolean Circuits P completeness NP completeness PSPACE completeness

TSP(D) is NP complete

Lemma:

TSP(D) is NP complete

Proof: $TSP(D) \in NP \land HAMILTON_PATH \leq_{log} TSP(D)$

・ロン ・回 と ・ 回 と ・ 回 と

Boolean Circuits P completeness NP completeness PSPACE completeness

TSP(D) is NP complete

Lemma:

TSP(D) is NP complete

Proof:

 $TSP(D) \in NP \land HAMILTON_PATH \leq_{log} TSP(D)$

guess and verify

・ロン ・回 と ・ ヨ と ・ ヨ と

Boolean Circuits P completeness NP completeness PSPACE completeness

TSP(D) is NP complete

Lemma:

TSP(D) is NP complete

Proof:

 $TSP(D) \in NP \land HAMILTON_PATH \leq_{log} TSP(D)$

- guess and verify
- given graph G with n nodes, construct a complete weighted graph G' with n nodes and a budget B:

イロン イヨン イヨン イヨン

Boolean Circuits P completeness NP completeness PSPACE completeness

TSP(D) is NP complete

Lemma:

TSP(D) is NP complete

Proof:

 $TSP(D) \in NP \land HAMILTON_PATH \leq_{log} TSP(D)$

- guess and verify
- given graph G with n nodes, construct a complete weighted graph G' with n nodes and a budget B:

• edges in G' have weight 1 if they exist in G else 2

Boolean Circuits P completeness NP completeness PSPACE completeness

TSP(D) is NP complete

Lemma:

TSP(D) is NP complete

Proof:

```
TSP(D) \in NP \land HAMILTON\_PATH \leq_{log} TSP(D)
```

- guess and verify
- given graph G with n nodes, construct a complete weighted graph G' with n nodes and a budget B:
 - edges in G' have weight 1 if they exist in G else 2
 - Budget B = n + 1

Boolean Circuits P completeness NP completeness PSPACE completeness

TSP(D) is NP complete

Lemma:

TSP(D) is NP complete

Proof:

```
TSP(D) \in NP \land HAMILTON\_PATH \leq_{log} TSP(D)
```

- guess and verify
- given graph G with n nodes, construct a complete weighted graph G' with n nodes and a budget B:
 - edges in G' have weight 1 if they exist in G else 2
 - Budget B = n + 1
 - G' has a TSP-Tour with budged B ↔
 G has a Hamilton path

Boolean Circuits P completeness NP completeness PSPACE completeness

IN_PLACE_ACCEPTANCE is PSPACE complete

 $IN_PLACE_ACCEPTANCE$: Given a DTM *M* and an input *x*, does *M* accept *x* without ever leaving the |x| + 1 first symbols of its string?

イロン イヨン イヨン イヨン

Boolean Circuits P completeness NP completeness PSPACE completeness

IN_PLACE_ACCEPTANCE is *PSPACE* complete

 $IN_PLACE_ACCEPTANCE$: Given a DTM *M* and an input *x*, does *M* accept *x* without ever leaving the |x| + 1 first symbols of its string?

Lemma:

IN_PLACE_ACCEPTANCE is PSPACE complete

Boolean Circuits P completeness NP completeness PSPACE completeness

IN_PLACE_ACCEPTANCE is *PSPACE* complete

 $IN_PLACE_ACCEPTANCE$: Given a DTM M and an input x, does M accept x without ever leaving the |x| + 1 first symbols of its string?

Lemma:

IN_PLACE_ACCEPTANCE is PSPACE complete

- **Proof:** $IN_PLACE_ACCEPTANCE \in PSPACE \land$ $L \in PSPACE \implies L \leq_{log} IN_PLACE_ACCEPTANCE$
 - Simulate *M* on *x*, count steps and reject ⇐⇒ *M* rejects, leaves the place, or operates more than |*K*||*x*||Σ|^{|x|} steps

Boolean Circuits P completeness NP completeness PSPACE completeness

IN_PLACE_ACCEPTANCE is *PSPACE* complete

 $IN_PLACE_ACCEPTANCE$: Given a DTM M and an input x, does M accept x without ever leaving the |x| + 1 first symbols of its string?

Lemma:

IN_PLACE_ACCEPTANCE is PSPACE complete

- **Proof:** $IN_PLACE_ACCEPTANCE \in PSPACE \land$ $L \in PSPACE \implies L \leq_{log} IN_PLACE_ACCEPTANCE$
 - simulate M on x, count steps and reject \iff M rejects, leaves the place, or operates more than $|K||x||\Sigma|^{|x|}$ steps
 - **3** DTM *M* decides *L* in n^k space: $x \in L \iff M$ accepts x in $|x|^k$ space

Boolean Circuits P completeness NP completeness PSPACE completeness

IN_PLACE_ACCEPTANCE is *PSPACE* complete

 $IN_PLACE_ACCEPTANCE$: Given a DTM M and an input x, does M accept x without ever leaving the |x| + 1 first symbols of its string?

Lemma:

IN_PLACE_ACCEPTANCE is PSPACE complete

- **Proof:** $IN_PLACE_ACCEPTANCE \in PSPACE \land$ $L \in PSPACE \implies L \leq_{log} IN_PLACE_ACCEPTANCE$
 - simulate M on x, count steps and reject \iff M rejects, leaves the place, or operates more than $|K||x||\Sigma|^{|x|}$ steps

2 DTM *M* decides *L* in *n^k* space:

$$x \in L \iff M$$
 accepts x in $|x|^k$ space
 $\iff M$ accepts $x \sqcup^{|x|^k}$ in place

Boolean Circuits P completeness NP completeness PSPACE completeness

IN_PLACE_ACCEPTANCE is *PSPACE* complete

 $IN_PLACE_ACCEPTANCE$: Given a DTM M and an input x, does M accept x without ever leaving the |x| + 1 first symbols of its string?

Lemma:

IN_PLACE_ACCEPTANCE is PSPACE complete

- **Proof:** $IN_PLACE_ACCEPTANCE \in PSPACE \land$ $L \in PSPACE \implies L \leq_{log} IN_PLACE_ACCEPTANCE$
 - simulate M on x, count steps and reject \iff M rejects, leaves the place, or operates more than $|K||x||\Sigma|^{|x|}$ steps

2 DTM *M* decides *L* in
$$n^k$$
 space:
 $x \in L \iff M$ accepts x in $|x|^k$ space
 $\iff M$ accepts $x \sqcup^{|x|^k}$ in place
 $\iff (M, x \sqcup^{|x|^k}) \in IN_PLACE_ACCEPTANCE$

Optimization Problems in *FP^{NP}* Polynomial Hierarchy Characterization of PH PH collapses

Optimization Problems in FP^{NP}

Lemma:

TSP is FP^{NP} complete

Proof: TSP is FP^{NP} hard \land TSP \in FP^{NP}

without proof

・ロン ・回 と ・ ヨ と ・ ヨ と

Optimization Problems in *FP^{NP}* Polynomial Hierarchy Characterization of PH PH collapses

Optimization Problems in FPNP

Lemma:

TSP is FP^{NP} complete

Proof: TSP is FP^{NP} hard \land TSP \in FP^{NP}

- without proof
- **2** Construct TM $M^? \in FP$ which decides TSP with TSP(D) oracle

・ロン ・回 と ・ ヨ と ・ ヨ と

Optimization Problems in *FP^{NP}* Polynomial Hierarchy Characterization of PH PH collapses

Optimization Problems in FPNP

Lemma:

TSP is FP^{NP} complete

Proof: TSP is FP^{NP} hard \land TSP \in FP^{NP}

- without proof
- **2** Construct TM $M^? \in FP$ which decides TSP with TSP(D) oracle

・ロン ・回 と ・ ヨ と ・ ヨ と

Optimization Problems in *FP^{NP}* Polynomial Hierarchy Characterization of PH PH collapses

Optimization Problems in FPNP

Lemma:

TSP is FP^{NP} complete

Proof: *TSP* is *FP*^{*NP*} hard \land *TSP* \in *FP*^{*NP*}

- without proof
- **2** Construct TM $M^? \in FP$ which decides TSP with TSP(D) oracle
 - optimum cost C is an integer between 0 and $2^{|x|}$

Optimization Problems in FP^{NP} Polynomial Hierarchy Characterization of PH PH collapses

Optimization Problems in FP^{NP}

Lemma:

TSP is FP^{NP} complete

Proof: TSP is FP^{NP} hard \land TSP \in FP^{NP}

without proof

2 Construct TM $M^? \in FP$ which decides TSP with TSP(D) oracle

- optimum cost C is an integer between 0 and $2^{|x|}$
- \Rightarrow exact cost *C* can be computed by binary search asking |x| queries
- test every edge:

Optimization Problems in FP^{NP} Polynomial Hierarchy Characterization of PH PH collapses

Optimization Problems in FPNP

Lemma:

TSP is FP^{NP} complete

Proof: TSP is FP^{NP} hard \land TSP \in FP^{NP}

without proof

2 Construct TM $M^? \in FP$ which decides TSP with TSP(D) oracle

- optimum cost C is an integer between 0 and $2^{|x|}$
- \Rightarrow exact cost *C* can be computed by binary search asking |x| queries
- test every edge:
 - $\bullet\,$ set its cost to ${\cal C}+1$

Optimization Problems in *FP^{NP}* Polynomial Hierarchy Characterization of PH PH collapses

Optimization Problems in FP^{NP}

Lemma:

TSP is FP^{NP} complete

Proof: TSP is FP^{NP} hard \land TSP \in FP^{NP}

- without proof
- **2** Construct TM $M^? \in FP$ which decides TSP with TSP(D) oracle
 - optimum cost C is an integer between 0 and $2^{|x|}$
 - \Rightarrow exact cost *C* can be computed by binary search asking |x| queries
 - test every edge:
 - $\bullet\,$ set its cost to ${\cal C}+1$
 - ask TSP(D) oracle whether now an tour with budged C exists
 - reset the cost only if the answer is "no"

・ロト ・回ト ・ヨト ・ヨト

Optimization Problems in *FP^{NP}* Polynomial Hierarchy Characterization of PH PH collapses

Optimization Problems in FP^{NP}

Lemma:

TSP is FP^{NP} complete

Proof: TSP is FP^{NP} hard \land TSP \in FP^{NP}

without proof

2 Construct TM $M^? \in FP$ which decides TSP with TSP(D) oracle

- optimum cost C is an integer between 0 and $2^{|x|}$
- \Rightarrow exact cost *C* can be computed by binary search asking |x| queries
- test every edge:
 - ${\ensuremath{\, \bullet }}$ set its cost to C+1
 - ask TSP(D) oracle whether now an tour with budged C exists

・ロン ・回 と ・ 回 と ・ 回 と

- reset the cost only if the answer is "no"
- ${\ensuremath{\, \circ }}$ all edges with cost $< {\ensuremath{C}} + 1$ form an optimal tour

Optimization Problems in *FP^{NP*} Polynomial Hierarchy Characterization of PH PH collapses

Optimization Problems in FPNP

Corollary:

 $MAXIMUM_WEIGHTED_SAT \in FP^{NP}$

Proof: Construct TM $M^? \in FP$

・ロト ・回ト ・ヨト ・ヨト

Optimization Problems in FP^{NP} Polynomial Hierarchy Characterization of PH PH collapses

Optimization Problems in FPNP

Corollary:

 $MAXIMUM_WEIGHTED_SAT \in FP^{NP}$

- **Proof:** Construct TM $M^? \in FP$
 - compute the largest possible weight of satisfied clauses by binary search

・ロト ・回ト ・ヨト ・ヨト

Optimization Problems in FP^{NP} Polynomial Hierarchy Characterization of PH PH collapses

Optimization Problems in FPNP

Corollary:

 $MAXIMUM_WEIGHTED_SAT \in FP^{NP}$

- **Proof:** Construct TM $M^? \in FP$
 - compute the largest possible weight of satisfied clauses by binary search
 - test each variable one-by-one

・ロン ・回と ・ヨン ・ヨン

Optimization Problems in FP^{NP} Polynomial Hierarchy Characterization of PH PH collapses

Optimization Problems in FP^{NP}

Corollary:

 $MAXIMUM_WEIGHTED_SAT \in FP^{NP}$

- **Proof:** Construct TM $M^? \in FP$
 - compute the largest possible weight of satisfied clauses by binary search
 - test each variable one-by-one

Corollary:

```
WEIGHTED_MAX_CUT \in FP^{NP}
KNAPSACK \in FP^{NP}
WEIGHTED_BISECTION_WIDTH \in FP^{NP}
```

Complexity Classes Optimization Problems in FH Reductions **Polynomial Hierarchy** Polynomial Hierarchy PH collapses

Polynomial Hierarchy

Definition: (Polynomial Hierarchy)

 $\Delta_0^P = \Sigma_0^P = \Pi_0^P = P$

・ロン ・回と ・ヨン ・ヨン
Polynomial Hierarchy

Definition: (Polynomial Hierarchy)

$$\Delta_0^P = \Sigma_0^P = \Pi_0^P = P$$

and for all $i \ge 0$:

•
$$\Delta_{i+1}^P = P^{\Sigma_i^P}$$

イロン イヨン イヨン イヨン

Complexity Classes Optimization Problems in FPNP Reductions Polynomial Hierarchy Polynomial Hierarchy PH collapses

Polynomial Hierarchy

Definition: (Polynomial Hierarchy)

$$\Delta_0^P = \Sigma_0^P = \Pi_0^P = P$$

and for all $i \ge 0$:

•
$$\Delta_{i+1}^P = P^{\Sigma_i^P}$$

• $\Sigma_{i+1}^P = NP^{\Sigma_i^F}$

イロン イヨン イヨン イヨン

Complexity Classes Optimization Problems in FP^{NP} Reductions **Polynomial Hierarchy** Completeness Polynomial Hierarchy PH collapses

Polynomial Hierarchy

Definition: (Polynomial Hierarchy)

$$\Delta_0^P = \Sigma_0^P = \Pi_0^P = P$$

and for all $i \ge 0$:

•
$$\Delta_{i+1}^P = P^{\Sigma_i^P}$$

• $\Sigma_{i+1}^P = NP^{\Sigma_i^P}$

•
$$\Pi_{i+1}^P = coNP^{\Sigma_i^R}$$

イロン イヨン イヨン イヨン

 Complexity Classes
 Optimization Problems in FP^{NP}

 Reductions
 Polynomial Hierarchy

 Completeness
 Characterization of PH

 Polynomial Hierarchy
 PH collapses

Polynomial Hierarchy

Definition: (Polynomial Hierarchy)

 $\Delta_0^P = \Sigma_0^P = \Pi_0^P = P$

and for all $i \ge 0$:

• $\Delta_{i+1}^P = P^{\Sigma_i^P}$ • $\Sigma_{i+1}^P = NP^{\Sigma_i^P}$

•
$$\Pi_{i+1}^P = coNP^{\Sigma_i^P}$$

 $PH = \bigcup_i \Sigma_i^P$ is called polynomial hierarchy

 Complexity Classes
 Optimization Problems in FPNP

 Reductions
 Polynomial Hierarchy

 Completeness
 Characterization of PH

 Polynomial Hierarchy
 PH collapses

Polynomial Hierarchy

Definition: (Polynomial Hierarchy)

 $\Delta_0^P = \Sigma_0^P = \Pi_0^P = P$

and for all $i \ge 0$:

• $\Delta_{i+1}^P = P^{\Sigma_i^P}$ • $\Sigma_{i+1}^P = NP^{\Sigma_i^P}$ • $\Pi_{i+1}^P = coNP^{\Sigma_i^P}$

 $PH = \bigcup_i \Sigma_i^P$ is called polynomial hierarchy

$$\Delta_1^P = P^P = P$$
 $\Sigma_1^P = NP^P = NP$ $\Pi_1^P = coNP^P = coNP$

 Complexity Classes
 Optimization Problems in FPNP

 Reductions
 Polynomial Hierarchy

 Completeness
 Characterization of PH

 Polynomial Hierarchy
 PH collapses

Polynomial Hierarchy

Definition: (Polynomial Hierarchy)

 $\Delta_0^P = \Sigma_0^P = \Pi_0^P = P$

and for all $i \ge 0$:

. . .

• $\Delta_{i+1}^P = P^{\Sigma_i^P}$ • $\Sigma_{i+1}^P = NP^{\Sigma_i^P}$ • $\Pi_{i+1}^P = coNP^{\Sigma_i^P}$

 $PH = \bigcup_i \Sigma_i^P$ is called polynomial hierarchy

. . .

$$\begin{aligned} \Delta_1^P &= P^P = P \\ \Delta_2^P &= P^{NP} \end{aligned} \quad \begin{array}{l} \Sigma_1^P &= NP^P = NP \\ \Sigma_2^P &= NP^{NP} \end{aligned} \quad \begin{array}{l} \Pi_1^P &= coNP^P = coNP \\ \Pi_2^P &= coNP^{NP} \end{aligned}$$

Complexity Classes Optimization Problems in *FPNP* Reductions Polynomial Hierarchy Polynomial Hierarchy PH collapses

Definitions

Definition (polynomial bounded relation)

A polynomial bounded relation is a relation $R \subseteq (\Sigma^*)^{l+1}$ with $\exists k \in \mathbf{N} : \forall (x, y_1, y_2, ..., y_l) \in R : |y_i| \leq |x|^k$.

・ロット (日本) (日本) (日本)

3

Definitions

Definition (polynomial bounded relation)

A polynomial bounded relation is a relation $R \subseteq (\Sigma^*)^{l+1}$ with $\exists k \in \mathbf{N} : \forall (x, y_1, y_2, ..., y_l) \in R : |y_i| \leq |x|^k$.

Definition (*C*-verifiable relation)

A *C*-verifiable relation *R* is a polynomial bounded relation, which is decidable in *C*: $\{x; y_1; y_2; ...; y_l \mid (x, y_1, y_2, ..., y_l) \in R\} \in C$

Complexity Classes Reductions Completeness Polynomial Hierarchy

Optimization Problems in *FP^N* Polynomial Hierarchy **Characterization of PH** PH collapses

Characterization of NP

Lemma: (Characterization of NP)

$NP = \{ \{x \mid \exists y : (x, y) \in R\} \mid R \text{ is } P \text{-verifiable} \}$

Bernhard Häupler Complexity Classes and Reductions

・ロン ・回 と ・ 回 と ・ 回 と

3

Complexity Classes Reductions Completeness Polynomial Hierarchy Phynomial Hierarchy Phynomial Hierarchy Phynomial Hierarchy

Characterization of <u>NP</u>

Lemma: (Characterization of NP)

 $NP = \{ \{x \mid \exists y : (x, y) \in R\} \mid R \text{ is } P \text{-verifiable} \}$

Proof:

"⇐": *R* is *P*-verifiable
$$\implies$$
 { $x \mid \exists y : (x, y) \in R$ } $\in NP$

・ロン ・回 と ・ 回 と ・ 回 と

3

Complexity Classes Optimization Reductions Polynomial Hierarchy PH collapses

Optimization Problems in FF Polynomial Hierarchy Characterization of PH PH collapses

Characterization of NP

Lemma: (Characterization of NP)

 $NP = \{ \{x \mid \exists y : (x, y) \in R\} \mid R \text{ is } P \text{-verifiable} \}$

Proof:

"⇐": *R* is *P*-verifiable \implies { $x \mid \exists y : (x, y) \in R$ } $\in NP$

• construct NTM M' which on input x

- guesses polynomial bounded y
- verify whether $(x, y) \in R$
- accept $x \iff (x,y) \in R$

・ロト ・回ト ・ヨト ・ヨト

Complexity Classes Optimization Reductions Polynomial F Completeness Polynomial Hierarchy PH collapses

Optimization Problems in FF Polynomial Hierarchy Characterization of PH PH collapses

Characterization of NP

Lemma: (Characterization of NP)

 $NP = \{ \{x \mid \exists y : (x, y) \in R\} \mid R \text{ is } P \text{-verifiable} \}$

Proof:

"⇐": *R* is *P*-verifiable \implies { $x | \exists y : (x, y) \in R$ } $\in NP$

• construct NTM M' which on input x

- guesses polynomial bounded y
- verify whether $(x, y) \in R$
- accept $x \iff (x,y) \in R$

M′ ∈ *NP*

・ロン ・回 と ・ 回 と ・ 回 と

Complexity Classes Optimization Reductions Polynomial Hierarchy PH collapses

Optimization Problems in FP Polynomial Hierarchy Characterization of PH PH collapses

Characterization of NP

Lemma: (Characterization of NP)

 $NP = \{ \{x \mid \exists y : (x, y) \in R\} \mid R \text{ is } P \text{-verifiable} \}$

Proof:

"⇐": *R* is *P*-verifiable \implies { $x | \exists y : (x, y) \in R$ } $\in NP$

• construct NTM M' which on input x

- guesses polynomial bounded y
- verify whether $(x, y) \in R$
- accept $x \iff (x,y) \in R$
- *M*′ ∈ *NP*
- M' accepts $x \iff \exists y : (x, y) \in R$

イロト イヨト イヨト イヨト

Characterization of NP

Lemma: (Characterization of NP)

 $NP = \{ \{x \mid \exists y : (x, y) \in R\} \mid R \text{ is } P \text{-verifiable} \}$

Proof:

"⇒*"*: *L* ∈ *NP* \implies $\exists R$ *P*-verifiable : *L* = {*x* | $\exists y : (x, y) \in R$ }

Complexity Classes Optimization Problems in FP^{NP} Reductions Polynomial Hierarchy Completeness Polynomial Hierarchy PH collapses

Characterization of NP

Lemma: (Characterization of NP)

 $NP = \{ \{x \mid \exists y : (x, y) \in R\} \mid R \text{ is } P \text{-verifiable} \}$

Proof:

"⇒": *L* ∈ *NP*
$$\implies$$
 $\exists R$ *P*-verifiable : *L* = {*x* | $\exists y : (x, y) \in R$ }

• have TM $M \in NP$ deciding L

・ロト ・回ト ・ヨト ・ヨト

2

Characterization of NP

Lemma: (Characterization of NP)

 $NP = \{ \{x \mid \exists y : (x, y) \in R\} \mid R \text{ is } P \text{-verifiable} \}$

Proof:

"⇒*"*: *L* ∈ *NP*
$$\implies$$
 $\exists R$ *P*-verifiable : *L* = {*x* | $\exists y : (x, y) \in R$ }

- have TM $M \in NP$ deciding L
- for input x ∈ L encode the choices of an accepting path of M into a witness y

Characterization of NP

Lemma: (Characterization of NP)

 $NP = \{ \{x \mid \exists y : (x, y) \in R\} \mid R \text{ is } P \text{-verifiable} \}$

Proof:

"⇒*"*: *L* ∈ *NP*
$$\implies$$
 $\exists R$ *P*-verifiable : *L* = {*x* | $\exists y : (x, y) \in R$ }

- have TM $M \in NP$ deciding L
- for input x ∈ L encode the choices of an accepting path of M into a witness y
- $R = \{(x, y) | y \text{ is witness for } x\}$ is the searched relation

Complexity Classes Optimization Problems in FP^{NP} Reductions Polynomial Hierarchy Completeness Polynomial Hierarchy PH collapses

Characterization of NP

Lemma: (Characterization of NP)

 $NP = \{ \{x \mid \exists y : (x, y) \in R\} \mid R \text{ is } P \text{-verifiable} \}$

Proof:

"⇒*"*: *L* ∈ *NP*
$$\implies$$
 $\exists R$ *P*-verifiable : *L* = {*x* | $\exists y : (x, y) \in R$ }

- have TM $M \in NP$ deciding L
- for input x ∈ L encode the choices of an accepting path of M into a witness y
- R = {(x, y)| y is witness for x} is the searched relation
 polynomial bounded y (because of the polynomial running time of M)

・ロト ・回ト ・ヨト ・ヨト

Characterization of NP

Lemma: (Characterization of NP)

 $NP = \{ \{x \mid \exists y : (x, y) \in R\} \mid R \text{ is } P \text{-verifiable} \}$

Proof:

"⇒*"*: *L* ∈ *NP*
$$\implies$$
 $\exists R$ *P*-verifiable : *L* = {*x* | $\exists y : (x, y) \in R$ }

- have TM $M \in NP$ deciding L
- for input x ∈ L encode the choices of an accepting path of M into a witness y
- $R = \{(x, y) | y \text{ is witness for } x\}$ is the searched relation
 - polynomial bounded y (because of the polynomial running time of M)
 - polynomial decidable (by DTM *M*' using *y* to determine the computation path of *M*)

・ロン ・回 と ・ 回 と ・ 回 と

Characterization of NP

Lemma: (Characterization of NP)

 $NP = \{ \{x \mid \exists y : (x, y) \in R\} \mid R \text{ is } P \text{-verifiable} \}$

Proof:

"⇒*"*: *L* ∈ *NP*
$$\implies$$
 $\exists R$ *P*-verifiable : *L* = {*x* | $\exists y : (x, y) \in R$ }

- have TM $M \in NP$ deciding L
- for input x ∈ L encode the choices of an accepting path of M into a witness y
- $R = \{(x, y) | y \text{ is witness for } x\}$ is the searched relation
 - polynomial bounded y (because of the polynomial running time of M)
 - polynomial decidable (by DTM *M*' using *y* to determine the computation path of *M*)
 - $\exists y : (x, y) \in R \iff M$ accepts $x \iff x \in L$

Characterization of Σ_i^P

Lemma: (Characterization of Σ_i^P)

$$\Sigma_i^P = \{ \{x \mid \exists y : (x, y) \in R\} \mid R \text{ is } \prod_{i=1}^P \text{-verifiable} \}$$

イロン イヨン イヨン イヨン

Complexity Classes Optimization Problems in FPNP Reductions Polynomial Hierarchy Polynomial Hierarchy PH collapses

Characterization of Σ_i^{P}

Lemma: (Characterization of Σ_i^P)

$$\Sigma_i^P = \{ \{x \mid \exists y : (x, y) \in R\} \mid R \text{ is } \prod_{i=1}^P \text{-verifiable} \}$$

Proof: (by induction on *i*)

i = 1: exactly the characterization of NP

Complexity Classes Optimization Problems in FP^{NP} Reductions Polynomial Hierarchy Completeness Polynomial Hierarchy PH collapses

Characterization of Σ_i^P

Lemma: (Characterization of Σ_i^P)

$$\Sigma_i^P = \{ \{x \mid \exists y : (x, y) \in R\} \mid R \text{ is } \prod_{i=1}^P \text{-verifiable} \}$$

Proof: (by induction on *i*) i = 1: exactly the characterization of *NP* $(i-1) \rightarrow i$: $_{i} \leftarrow ": R \text{ is } \prod_{i=1}^{P} \text{-verifiable} \Longrightarrow \{x \mid \exists y : (x, y) \in R\} \in \Sigma_{i}^{P}$

・ロト ・回ト ・ヨト ・ヨト

Complexity Classes Optimization Problems in FP^{NP} Reductions Polynomial Hierarchy Completeness Polynomial Hierarchy PH collapses

Characterization of $\Sigma_i^{P^{\dagger}}$

Lemma: (Characterization of Σ_i^P)

$$\Sigma_i^P = \{ \{x \mid \exists y : (x, y) \in R\} \mid R \text{ is } \prod_{i=1}^P \text{-verifiable} \}$$

Proof: (by induction on *i*) i = 1: exactly the characterization of *NP* $(i-1) \rightarrow i$: $_{i} \leftarrow$ ": *R* is $\prod_{i=1}^{P}$ -verifiable $\Longrightarrow \{x \mid \exists y : (x, y) \in R\} \in \Sigma_{i}^{P}$ • construct NTM $M^{?} \in NP$ which on input *x*

- guesses polynomial bounded y
- aks an oracle $K \in \Sigma_{i-1}^P$ whether $(x, y) \in R$
- accepts $x \iff (x, y) \in R$

< 日 > < 回 > < 回 > < 回 > < 回 > <

Complexity Classes Optimization Problems in FPNP Reductions Polynomial Hierarchy Polynomial Hierarchy PH collapses

Characterization of Σ_i^P

Lemma: (Characterization of Σ_i^P)

 $\Sigma_i^P = \{ \{x \mid \exists y : (x, y) \in R\} \mid R \text{ is } \prod_{i=1}^P \text{-verifiable} \}$

Proof: (by induction on *i*) i = 1: exactly the characterization of *NP* $(i-1) \rightarrow i$: $_{i} \leftarrow ": R \text{ is } \prod_{i=1}^{P} \text{-verifiable} \Longrightarrow \{x \mid \exists y : (x, y) \in R\} \in \Sigma_{i}^{P}$ • construct NTM $M^{?} \in NP$ which on input x• guesses polynomial bounded y• aks an oracle $K \in \Sigma_{i=1}^{P}$ whether $(x, y) \in R$

- accepts $x \iff (x, y) \in R$
- $M^{K} \in \Sigma_{i}^{P}$ (since $\Sigma_{i-1}^{P} \subseteq \Sigma_{i}^{P}$)

Complexity Classes Optimization Problems in FPNP Reductions Polynomial Hierarchy Polynomial Hierarchy PH collapses

Characterization of Σ_i^P

Lemma: (Characterization of Σ_i^P)

$$\Sigma_i^P = \{ \{x \mid \exists y : (x, y) \in R\} \mid R \text{ is } \prod_{i=1}^P \text{-verifiable} \}$$

Proof: (by induction on *i*) i = 1: exactly the characterization of NP $(i-1) \rightarrow i$: "⇐": *R* is $\Pi_{i=1}^{P}$ -verifiable $\implies \{x \mid \exists y : (x, y) \in R\} \in \Sigma_{i}^{P}$ • construct NTM $M^? \in NP$ which on input x guesses polynomial bounded y • aks an oracle $K \in \sum_{i=1}^{P}$ whether $(x, y) \in R$ • accepts $x \iff (x, y) \in R$ • $M^K \in \Sigma_i^P$ (since $\Sigma_{i=1}^P \subseteq \Sigma_i^P$) • M^K accepts $x \iff \exists y : (x, y) \in R$ ・ロト ・回ト ・ヨト ・ヨト

Characterization of Σ_i^P

Lemma: (Characterization of Σ_i^P)

$$\Sigma_i^P = \{ \{x \mid \exists y : (x, y) \in R\} \mid R \text{ is } \prod_{i=1}^P \text{-verifiable} \}$$

Proof:

"⇒":
$$L \in \Sigma_i^P \Longrightarrow \exists R \ \Pi_{i-1}^P$$
-verifiable : $L = \{x \mid \exists y : (x, y) \in R\}$

・ロン ・回と ・ヨン ・ヨン

Characterization of $\Sigma_i^{P_i}$

Lemma: (Characterization of Σ_i^P)

$$\Sigma_i^P = \{ \{x \mid \exists y : (x, y) \in R\} \mid R \text{ is } \prod_{i=1}^P \text{-verifiable} \}$$

Proof:

"⇒":
$$L \in \Sigma_i^P \implies \exists R \ \Pi_{i-1}^P$$
-verifiable : $L = \{x \mid \exists y : (x, y) \in R\}$

• have NTM $M^? \in NP^?$ deciding L with oracle $K \in \Sigma_{i-1}^P$

・ロン ・回と ・ヨン・

Characterization of Σ_i^P

Lemma: (Characterization of Σ_i^P)

$$\Sigma_i^P = \{ \{x \mid \exists y : (x, y) \in R\} \mid R \text{ is } \prod_{i=1}^P \text{-verifiable} \}$$

Proof:

$$\textbf{,} \Rightarrow \textbf{``:} \ L \in \Sigma_i^P \Longrightarrow \exists R \ \Pi_{i-1}^P \text{-verifiable} : \ L = \{x \mid \exists y : (x, y) \in R\}$$

• have NTM $M^? \in NP^?$ deciding L with oracle $K \in \Sigma_{i-1}^P$

for input x ∈ L encode all choices and queries of M? into a certificate y of x (example: y = (c₀, c₄, qs₁ ∉ K, c₁, qs₂ ∈ K + cert, ...))

• define
$$R = \{(x, y) | y \text{ is certificate for } x\}$$

Characterization of Σ_i^P

Lemma: (Characterization of Σ_i^P)

$$\Sigma_i^P = \{ \{x \mid \exists y : (x, y) \in R\} \mid R \text{ is } \prod_{i=1}^P \text{-verifiable} \}$$

Proof:

$$\textbf{,} \Rightarrow \textbf{``:} \ L \in \Sigma_i^P \Longrightarrow \exists R \ \Pi_{i-1}^P \text{-verifiable} : \ L = \{x \mid \exists y : (x, y) \in R\}$$

• have NTM $M^? \in NP^?$ deciding L with oracle $K \in \Sigma_{i-1}^P$

- for input x ∈ L encode all choices and queries of M? into a certificate y of x (example: y = (c₀, c₄, qs₁ ∉ K, c₁, qs₂ ∈ K + cert, ...))
- define $R = \{(x, y) | y \text{ is certificate for } x\}$
 - R is polynomial bounded

Characterization of $\Sigma_i^{P^{\dagger}}$

Lemma: (Characterization of Σ_i^P)

$$\Sigma_i^P = \{ \{x \mid \exists y : (x, y) \in R\} \mid R \text{ is } \prod_{i=1}^P \text{-verifiable} \}$$

Proof:

$$\textbf{,} \Rightarrow \textbf{``:} \ L \in \Sigma_i^P \Longrightarrow \exists R \ \Pi_{i-1}^P \text{-verifiable} : \ L = \{x \mid \exists y : (x, y) \in R\}$$

• have NTM $M^? \in NP^?$ deciding L with oracle $K \in \Sigma_{i-1}^P$

- for input x ∈ L encode all choices and queries of M? into a certificate y of x (example: y = (c₀, c₄, qs₁ ∉ K, c₁, qs₂ ∈ K + cert, ...))
- define $R = \{(x, y) | y \text{ is certificate for } x\}$
 - R is polynomial bounded
 - $x \notin K$ is $\prod_{i=1}^{P}$ -decidable

Characterization of $\Sigma_i^{P^{l}}$

Lemma: (Characterization of Σ_i^P)

$$\Sigma_i^P = \{ \{x \mid \exists y : (x, y) \in R\} \mid R \text{ is } \prod_{i=1}^P \text{-verifiable} \}$$

Proof:

$$\textbf{,} \Rightarrow \textbf{``:} \ L \in \Sigma_i^P \Longrightarrow \exists R \ \Pi_{i-1}^P \text{-verifiable} : \ L = \{x \mid \exists y : (x, y) \in R\}$$

• have NTM $M^? \in NP^?$ deciding L with oracle $K \in \Sigma_{i-1}^P$

- for input x ∈ L encode all choices and queries of M? into a certificate y of x (example: y = (c₀, c₄, qs₁ ∉ K, c₁, qs₂ ∈ K + cert, ...))
- define $R = \{(x, y) | y \text{ is certificate for } x\}$
 - R is polynomial bounded
 - $x \notin K$ is $\prod_{i=1}^{P}$ -decidable
 - $x \in K$ is $\prod_{i=2}^{P}$ -verifiable (by induction)

Characterization of $\Sigma_i^{P^{l}}$

Lemma: (Characterization of Σ_i^P)

$$\Sigma_i^P = \{ \{x \mid \exists y : (x, y) \in R\} \mid R \text{ is } \prod_{i=1}^P \text{-verifiable} \}$$

Proof:

$$\textbf{,} \Rightarrow \textbf{``:} \ L \in \Sigma_i^P \Longrightarrow \exists R \ \Pi_{i-1}^P \text{-verifiable} : \ L = \{x \mid \exists y : (x, y) \in R\}$$

• have NTM $M^? \in NP^?$ deciding L with oracle $K \in \Sigma_{i-1}^P$

- for input x ∈ L encode all choices and queries of M? into a certificate y of x (example: y = (c₀, c₄, qs₁ ∉ K, c₁, qs₂ ∈ K + cert, ...))
- define $R = \{(x, y) | y \text{ is certificate for } x\}$
 - R is polynomial bounded
 - $x \notin K$ is $\prod_{i=1}^{P}$ -decidable
 - $x \in K$ is $\prod_{i=2}^{P}$ -verifiable (by induction)

•
$$\Rightarrow R$$
 is $\prod_{i=1}^{P}$ -verifiable

Characterization of $\Sigma_i^{P^{l}}$

Lemma: (Characterization of Σ_i^P)

$$\Sigma_i^P = \{ \{x \mid \exists y : (x, y) \in R\} \mid R \text{ is } \prod_{i=1}^P \text{-verifiable} \}$$

Proof:

$$\textbf{,} \Rightarrow \textbf{``:} \ L \in \Sigma_i^P \Longrightarrow \exists R \ \Pi_{i-1}^P \text{-verifiable} : \ L = \{x \mid \exists y : (x, y) \in R\}$$

• have NTM $M^? \in NP^?$ deciding L with oracle $K \in \Sigma_{i-1}^P$

- for input x ∈ L encode all choices and queries of M? into a certificate y of x (example: y = (c₀, c₄, qs₁ ∉ K, c₁, qs₂ ∈ K + cert, ...))
- define $R = \{(x, y) | y \text{ is certificate for } x\}$
 - R is polynomial bounded
 - $x \notin K$ is $\prod_{i=1}^{P}$ -decidable
 - $x \in K$ is $\prod_{i=2}^{P}$ -verifiable (by induction)

•
$$\Rightarrow R$$
 is $\prod_{i=1}^{P}$ -verifiable

Complexity Classes Optimization Problems in Fi Reductions Polynomial Hierarchy Polynomial Hierarchy PH collapses

Characterization of PH

Lemma: (Characterization of Σ_i^P)

$$\Sigma_i^P = \{ \{x \mid \exists y : (x, y) \in R\} \mid R \text{ is } \prod_{i=1}^P \text{-verifiable} \}$$

Corollary: (Characterization of Π_i^P)

$$\Pi^{\mathcal{P}}_i = \{ \ \{x \ | \ \forall y: \ |y| < |x|^k \Rightarrow (x,y) \in R \ \} \ | \ R \text{ is } \Sigma^{\mathcal{P}}_{i-1} \text{-verifiable} \}$$

・ロト ・回ト ・ヨト ・ヨト

Characterization of PH

Lemma: (Characterization of Σ_i^P)

$$\Sigma_i^P = \{ \{x \mid \exists y : (x, y) \in R\} \mid R \text{ is } \prod_{i=1}^P \text{-verifiable} \}$$

Corollary: (Characterization of Π_i^P)

$$\Pi^{\mathcal{P}}_i = \{ \ \{x \ | \ \forall y: \ |y| < |x|^k \Rightarrow (x,y) \in R \ \} \ | \ R \text{ is } \Sigma^{\mathcal{P}}_{i-1} \text{-verifiable} \}$$

Corollary:

$$L \in \Sigma_i^P \iff \exists R : R \text{ is } P \text{-verifiable } \land L = \{x \mid \exists y_1 \forall y_2 \exists y_3 \dots : (x, y_1, y_2, \dots, y_i) \in R\}$$
$$L \in \Pi_i^P \iff \exists R : R \text{ is } P \text{-verifiable } \land L = \{x \mid \forall y_1 \exists y_2 \forall y_3 \dots : (x, y_1, y_2, \dots, y_i) \in R\}$$

・ロン ・回と ・ヨン・

Э
Complexity Classes
 Optimization Problems in FP^{NP}

 Reductions
 Polynomial Hierarchy

 Completeness
 Characterization of PH

 Polynomial Hierarchy
 PH collapses

Problems in PH

 $MINIMUM_{-}CIRCUIT$: Given a Boolean circuit *C*, is it true that there is no circuit with fewer gates computing the same Boolean function?

・ロン ・回と ・ヨン・

æ

Complexity Classes Optimization Problems in *FP^{NP}* Reductions Polynomial Hierarchy Polynomial Hierarchy PH collapses

Problems in PH

 $MINIMUM_{-}CIRCUIT$: Given a Boolean circuit *C*, is it true that there is no circuit with fewer gates computing the same Boolean function?

Lemma:

 $MINIMUM_CIRCUIT \in \Pi_2^P$

イロン イヨン イヨン イヨン

Complexity Classes Optimization Problems in FPNP Reductions Polynomial Hierarchy Polynomial Hierarchy PH collapses

Problems in PH

 $MINIMUM_{-}CIRCUIT$: Given a Boolean circuit *C*, is it true that there is no circuit with fewer gates computing the same Boolean function?

Lemma:

 $MINIMUM_CIRCUIT \in \Pi_2^P$

Proof:

- C is accepted $\iff \forall C': |C'| < |C|: \exists \text{ input } x: C'(x) \neq C(x)$
- and $C'(x) \neq C(x)$ can be checked in polynomial time

イロン イヨン イヨン イヨン

Complexity Classes Optimization Problems in FPNP Reductions Polynomial Hierarchy Polynomial Hierarchy PH collapses

Problems in PH

 $MINIMUM_{-}CIRCUIT$: Given a Boolean circuit C, is it true that there is no circuit with fewer gates computing the same Boolean function?

Lemma:

 $MINIMUM_CIRCUIT \in \Pi_2^P$

Proof:

- C is accepted $\iff \forall C': |C'| < |C|: \exists \text{ input } x: C'(x) \neq C(x)$
- and $C'(x) \neq C(x)$ can be checked in polynomial time

 $QSAT_i$: Decide whether a quantified boolean expression with *i* alternations of quantifiers (beginning with an existential quantifier) is satisfiable

Lemma:

 $QSAT_i$ is Σ_i^P complete

Complexity Classes	Optimization Problems in <i>FP</i> ^{NP}
Reductions	Polynomial Hierarchy
Completeness	Characterization of PH
Polynomial Hierarchy	PH collapses

Definition: (Collapse of PH)

PH collapses to the *i*th level means: $\forall j > i$: $\sum_{j=1}^{P} \prod_{j=1}^{P} \Delta_{j}^{P} = \sum_{i=1}^{P} \sum_{j=1}^{P} \sum_{j=1}^{P}$

< □ > < @ > < 注 > < 注 > ... 注

Complexity Classes	Optimization Problems in <i>FP</i> ^{NP}
Reductions	Polynomial Hierarchy
Completeness	Characterization of PH
Polynomial Hierarchy	PH collapses

Definition: (Collapse of PH)

PH collapses to the *i*th level means: $\forall j > i$: $\sum_{j=1}^{P} \prod_{j=1}^{P} \Delta_{j}^{P} = \sum_{i=1}^{P} \sum_{j=1}^{P} \sum_{j=1}^{P}$

Lemma: (Collapse of PH)

If for some $i \leq 1 \Sigma_i^P = \prod_i^P$ then PH collapses to the *i*th level.

Complexity Classes	Optimization Problems in <i>FP</i> ^{NP}
Reductions	Polynomial Hierarchy
Completeness	Characterization of PH
Polynomial Hierarchy	PH collapses

Definition: (Collapse of PH)

PH collapses to the *i*th level means: $\forall j > i$: $\sum_{j=1}^{P} \prod_{j=1}^{P} \Delta_{j}^{P} = \sum_{i=1}^{P} \sum_{j=1}^{P} \sum_{j=1}^{P}$

Lemma: (Collapse of PH)

If for some $i \leq 1$ $\Sigma_i^P = \prod_i^P$ then PH collapses to the *i*th level.

Proof: $\Sigma_i^P = \prod_i^P \Longrightarrow \Sigma_{i+1}^P = \Sigma_i^P$

Complexity Classes	Optimization Problems in FP ^{NP}
Reductions	Polynomial Hierarchy
Completeness	Characterization of PH
Polynomial Hierarchy	PH collapses

Definition: (Collapse of PH)

PH collapses to the *i*th level means: $\forall j > i$: $\Sigma_j^P = \prod_j^P = \Delta_j^P = \Sigma_i^P$

Lemma: (Collapse of PH)

If for some $i \leq 1$ $\Sigma_i^P = \prod_i^P$ then PH collapses to the *i*th level.

Proof: $\Sigma_i^P = \prod_i^P \Longrightarrow \Sigma_{i+1}^P = \Sigma_i^P$ $L \in \Sigma_{i+1}^P \iff L = \{x \mid \exists y : (x, y) \in R\}$ with *R* is \prod_i^P -verifiable

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Complexity Classes	Optimization Problems in FP ^{NP}
Reductions	Polynomial Hierarchy
Completeness	Characterization of PH
Polynomial Hierarchy	PH collapses

Definition: (Collapse of PH)

PH collapses to the *i*th level means: $\forall j > i$: $\Sigma_j^P = \prod_j^P = \Delta_j^P = \Sigma_i^P$

Lemma: (Collapse of PH)

If for some $i \leq 1$ $\Sigma_i^P = \prod_i^P$ then PH collapses to the *i*th level.

Proof: $\Sigma_i^P = \prod_i^P \Longrightarrow \Sigma_{i+1}^P = \Sigma_i^P$

 $\begin{array}{ll} L \in \Sigma_{i+1}^{P} & \Longleftrightarrow & L = \{x \mid \exists y : \ (x,y) \in R\} \text{ with } R \text{ is } \Pi_{i}^{P} \text{-verifiable} \\ & \Longleftrightarrow & L = \{x \mid \exists y : \ (x,y) \in R\} \text{ with } R \text{ is } \Sigma_{i}^{P} \text{-verifiable} \end{array}$

Complexity Classes	Optimization Problems in FP ^{NP}
Reductions	Polynomial Hierarchy
Completeness	Characterization of PH
Polynomial Hierarchy	PH collapses

Definition: (Collapse of PH)

PH collapses to the *i*th level means: $\forall j > i$: $\Sigma_j^P = \prod_j^P = \Delta_j^P = \Sigma_i^P$

Lemma: (Collapse of PH)

If for some $i \leq 1 \Sigma_i^P = \prod_i^P$ then PH collapses to the *i*th level.

Proof:
$$\Sigma_i^P = \prod_i^P \Longrightarrow \Sigma_{i+1}^P = \Sigma_i^P$$

 $L \in \Sigma_{i+1}^P \iff L = \{x \mid \exists y : (x, y) \in R\}$ with *R* is \prod_i^P -verifiable
 $\iff L = \{x \mid \exists y : (x, y) \in R\}$ with *R* is Σ_i^P -verifiable
 $\iff L = \{x \mid \exists y : (x, y) \in R\}$ with
 $[(x, y) \in R \iff \exists z : (x, y, z) \in S$ with *S* is $\prod_{i=1}^P$ -verifiable]

Complexity Classes	Optimization Problems in FP ^{NP}
Reductions	Polynomial Hierarchy
Completeness	Characterization of PH
Polynomial Hierarchy	PH collapses

Definition: (Collapse of PH)

PH collapses to the *i*th level means: $\forall j > i$: $\Sigma_j^P = \prod_j^P = \Delta_j^P = \Sigma_i^P$

Lemma: (Collapse of PH)

If for some $i \leq 1 \Sigma_i^P = \prod_i^P$ then PH collapses to the *i*th level.

Proof:
$$\Sigma_{i}^{P} = \prod_{i}^{P} \Longrightarrow \Sigma_{i+1}^{P} = \Sigma_{i}^{P}$$

 $L \in \Sigma_{i+1}^{P} \iff L = \{x \mid \exists y : (x, y) \in R\}$ with R is \prod_{i}^{P} -verifiable
 $\iff L = \{x \mid \exists y : (x, y) \in R\}$ with R is Σ_{i}^{P} -verifiable
 $\iff L = \{x \mid \exists y : (x, y) \in R\}$ with
 $[(x, y) \in R \iff \exists z : (x, y, z) \in S \text{ with } S \text{ is } \prod_{i=1}^{P}$ -verifiable]
 $\iff L = \{x \mid \exists y, z : (x, y, z) \in S\}$ with S is $\prod_{i=1}^{P}$ -verifiable

< □ > < @ > < 注 > < 注 > ... 注

Complexity Classes	Optimization Problems in FP ^{NP}
Reductions	Polynomial Hierarchy
Completeness	Characterization of PH
Polynomial Hierarchy	PH collapses

Definition: (Collapse of PH)

PH collapses to the *i*th level means: $\forall j > i$: $\Sigma_j^P = \prod_j^P = \Delta_j^P = \Sigma_i^P$

Lemma: (Collapse of PH)

If for some $i \leq 1 \Sigma_i^P = \prod_i^P$ then PH collapses to the *i*th level.

Proof:
$$\Sigma_i^P = \prod_i^P \Longrightarrow \Sigma_{i+1}^P = \Sigma_i^P$$

 $L \in \Sigma_{i+1}^P \iff L = \{x \mid \exists y : (x, y) \in R\}$ with R is \prod_i^P -verifiable
 $\iff L = \{x \mid \exists y : (x, y) \in R\}$ with R is Σ_i^P -verifiable
 $\iff L = \{x \mid \exists y : (x, y) \in R\}$ with
 $[(x, y) \in R \iff \exists z : (x, y, z) \in S \text{ with } S \text{ is } \prod_{i=1}^P$ -verifiable]
 $\iff L = \{x \mid \exists y, z : (x, y, z) \in S\}$ with S is $\prod_{i=1}^P$ -verifiable
 $\iff L \in \Sigma_i^P$

Complexity Classes	Optimization Problems in FP ^{NP}
Reductions	Polynomial Hierarchy
Completeness	Characterization of PH
Polynomial Hierarchy	PH collapses

Corollary: (*PH* complete Problems)

If PH has complete problems, then it collapses to some finite level.

・ロン ・回と ・ヨン ・ヨン

Complexity Classes	Optimization Problems in FP ^{NP}
Reductions	Polynomial Hierarchy
Completeness	Characterization of PH
Polynomial Hierarchy	PH collapses

Corollary: (*PH* complete Problems)

If PH has complete problems, then it collapses to some finite level.

Corollary: (*PH* and *PSPACE*)

$PH \subseteq PSPACE$ and $PH = PSPACE \Longrightarrow PH$ collapses

イロン イ部ン イヨン イヨン 三日

Complexity Classes	Optimization Problems in FP ^{NP}
Reductions	Polynomial Hierarchy
Completeness	Characterization of PH
Polynomial Hierarchy	PH collapses

Corollary: (*PH* complete Problems)

If PH has complete problems, then it collapses to some finite level.

Corollary: (*PH* and *PSPACE*)

 $PH \subseteq PSPACE$ and $PH = PSPACE \Longrightarrow PH$ collapses

Proof:

- trivial
- **2** *PSPACE* has complete problems

▲圖▶ ▲屋▶ ▲屋▶

Complexity Classes	Optimization Problems in FP ^{NP}
Reductions	Polynomial Hierarchy
Completeness	Characterization of PH
Polynomial Hierarchy	PH collapses

References

O. Goldreich:

Introduction to Complexity Theory Lecture Notes, 1999.

Markus Bläser: Complexity The

Complexity Theory Lecture Notes, 2005.

Clay Mathematics Institute, Cambridge, Massachusetts: P vs NP Problem http://www.claymath.org/millennium/P_vs_NP/.

Christos H. Papadimitriou: Computational Complexity. Addison Wesley, 1994.

A (10) > (10)

Complexity Classes	Optimization Problems in FP ^{NP}
Reductions	Polynomial Hierarchy
Completeness	Characterization of PH
Polynomial Hierarchy	PH collapses

THANK YOU

・ロン ・回 と ・ ヨン ・ ヨン

Э