Complexity Classes and Reductions JASS 2006 Course One: Proofs and Computers

Bernhard Häupler

Technische Universität München
April 2006

What this talk is about:

- Complexity classes and Problems

What this talk is about:

- Complexity classes and Problems
- Function Problems

What this talk is about:

- Complexity classes and Problems
- Function Problems
- Oracles

What this talk is about:

- Complexity classes and Problems
- Function Problems
- Oracles
- Reductions and Completeness

What this talk is about:

- Complexity classes and Problems
- Function Problems
- Oracles
- Reductions and Completeness
- Boolean Circuits

What this talk is about:

- Complexity classes and Problems
- Function Problems
- Oracles
- Reductions and Completeness
- Boolean Circuits
- $P, N P$ and PSPACE completeness results

What this talk is about:

- Complexity classes and Problems
- Function Problems
- Oracles
- Reductions and Completeness
- Boolean Circuits
- $P, N P$ and PSPACE completeness results
- Problems in FPNP

What this talk is about:

- Complexity classes and Problems
- Function Problems
- Oracles
- Reductions and Completeness
- Boolean Circuits
- $P, N P$ and PSPACE completeness results
- Problems in FPNP
- Polynomial Hierarchy

Definitions:

$\operatorname{TIME}(f(n)):=\quad$ Languages decidable in time $O(f(n))$ by a DTM
$\operatorname{NTIME}(f(n)):=$ Languages decidable in time $O(f(n))$ by a NTM
$\operatorname{SPACE}(f(n)):=$ Languages decidable in space $O(f(n))$ by a DTM (besides the (read only) input and the (write only) output)
$\operatorname{NSPACE}(f(n)):=$ Languages decidable in space $O(f(n))$ by a NTM

Complexity Classes
Reductions
Completeness
Polynomial Hierarchy

Important Complexity Classes

$$
\begin{aligned}
& L \quad:=\operatorname{SPACE}(\log n) \quad \text { NL }:=\operatorname{NSPACE}(\log n) \\
& P \quad:=\bigcup_{k} \operatorname{TIME}\left(n^{k}\right) \\
& N P:=\bigcup_{k} \operatorname{NTIME}\left(n^{k}\right) \\
& \operatorname{coNP}:=\mathrm{P}\left(\Sigma^{*}\right) \backslash N P \\
& \operatorname{PSPACE}:=\bigcup_{k} \operatorname{SPACE}\left(n^{k}\right) \\
& \operatorname{EXP} \quad:=\bigcup_{k} \operatorname{TIME}\left(2^{n^{k}}\right) \quad \operatorname{NEXP}:=\bigcup_{k} \operatorname{NTIME}\left(2^{n^{k}}\right) \\
& \text { 2-EXP } \quad:=\bigcup_{k} \operatorname{TIME}\left(2^{2^{n^{k}}}\right)
\end{aligned}
$$

ELEMENTARY $:=\bigcup_{k} k-E X P$

Complexity Classes
Reductions
Completeness
Polynomial Hierarchy

Relationships between Complexity Classes

Important relationships:

- Hierarchy in PSPACE

Complexity Classes
Reductions
Completeness
Polynomial Hierarchy

Relationships between Complexity Classes

Important relationships:

- Hierarchy in PSPACE
- $L \subseteq P$

Complexity Classes
Reductions
Completeness
Polynomial Hierarchy

Relationships between Complexity Classes

Important relationships:

- Hierarchy in PSPACE
- $L \subseteq P$
- $N L \subseteq P$

Complexity Classes
Reductions
Completeness Polynomial Hierarchy

Relationships between Complexity Classes

Important relationships:

- Hierarchy in PSPACE
- $L \subseteq P$
- $N L \subseteq P$
- $\Rightarrow L \subseteq N L \subseteq P \subseteq N P \subseteq P S P A C E$

Complexity Classes
Reductions
Completeness Polynomial Hierarchy

Relationships between Complexity Classes

Important relationships:

- Hierarchy in PSPACE
- $L \subseteq P$
- $N L \subseteq P$
- $\Rightarrow L \subseteq N L \subseteq P \subseteq N P \subseteq P S P A C E$
- L \subset PSPACE

Complexity Classes
Reductions
Completeness
Polynomial Hierarchy

Relationships between Complexity Classes

Important relationships:

- Hierarchy in PSPACE
- $L \subseteq P$
- $N L \subseteq P$
- $\Rightarrow L \subseteq N L \subseteq P \subseteq N P \subseteq P S P A C E$
- $L \subset$ PSPACE
- Linear Speedup
- $\operatorname{TIME}(f(n))=\operatorname{TIME}(\epsilon f(n)+n+2)$
- $\operatorname{SPACE}(f(n))=\operatorname{SPACE}(\epsilon f(n)+2)$
- same for nondeterministic classes

Complexity Classes
Reductions
Completeness Polynomial Hierarchy

Relationships between Complexity Classes

Important relationships:

- Hierarchy in PSPACE
- $L \subseteq P$
- $N L \subseteq P$
- $\Rightarrow L \subseteq N L \subseteq P \subseteq N P \subseteq P S P A C E$
- $L \subset$ PSPACE
- Linear Speedup
- $\operatorname{TIME}(f(n))=\operatorname{TIME}(\epsilon f(n)+n+2)$
- $\operatorname{SPACE}(f(n))=\operatorname{SPACE}(\epsilon f(n)+2)$
- same for nondeterministic classes
- Nondeterministic Space

Complexity Classes
Reductions
Completeness Polynomial Hierarchy

Relationships between Complexity Classes

Important relationships:

- Hierarchy in PSPACE
- $L \subseteq P$
- $N L \subseteq P$
- $\Rightarrow L \subseteq N L \subseteq P \subseteq N P \subseteq P S P A C E$
- $L \subset$ PSPACE
- Linear Speedup
- $\operatorname{TIME}(f(n))=\operatorname{TIME}(\epsilon f(n)+n+2)$
- $\operatorname{SPACE}(f(n))=\operatorname{SPACE}(\epsilon f(n)+2)$
- same for nondeterministic classes
- Nondeterministic Space
- coNSPACE = NSPACE

Complexity Classes
Reductions
Completeness Polynomial Hierarchy

Relationships between Complexity Classes

Important relationships:

- Hierarchy in PSPACE
- $L \subseteq P$
- $N L \subseteq P$
- $\Rightarrow L \subseteq N L \subseteq P \subseteq N P \subseteq P S P A C E$
- $L \subset$ PSPACE
- Linear Speedup
- $\operatorname{TIME}(f(n))=\operatorname{TIME}(\epsilon f(n)+n+2)$
- $\operatorname{SPACE}(f(n))=\operatorname{SPACE}(\epsilon f(n)+2)$
- same for nondeterministic classes
- Nondeterministic Space
- coNSPACE = NSPACE
- $\operatorname{NSPACE}(f(n)) \subseteq \operatorname{SPACE}\left(f^{2}(n)\right)$

Relationships between Complexity Classes

Important relationships:

- Hierarchy in PSPACE
- $L \subseteq P$
- $N L \subseteq P$
- $\Rightarrow L \subseteq N L \subseteq P \subseteq N P \subseteq P S P A C E$
- $L \subset$ PSPACE
- Linear Speedup
- $\operatorname{TIME}(f(n))=\operatorname{TIME}(\epsilon f(n)+n+2)$
- $\operatorname{SPACE}(f(n))=\operatorname{SPACE}(\epsilon f(n)+2)$
- same for nondeterministic classes
- Nondeterministic Space
- coNSPACE = NSPACE
- $\operatorname{NSPACE}(f(n)) \subseteq \operatorname{SPACE}\left(f^{2}(n)\right)$
- \Rightarrow PSPACE $=$ NPSPACE $=c o$ NPSPACE

Complexity Classes
Reductions
Completeness
Polynomial Hierarchy

Function problems

Definition (Function problems)

A function problem is abstracted by a binary relation $R \subseteq \Sigma^{*} \times \Sigma^{*}$. The task is: Given an input x, find an output y with $(x, y) \in R$.

Function problems

Definition (Function problems)

A function problem is abstracted by a binary relation $R \subseteq \Sigma^{*} \times \Sigma^{*}$. The task is: Given an input x, find an output y with $(x, y) \in R$.
$F C$ is the class of all function problems computable by a TM in C

Function problems

Definition (Function problems)

A function problem is abstracted by a binary relation $R \subseteq \Sigma^{*} \times \Sigma^{*}$. The task is: Given an input x, find an output y with $(x, y) \in R$.
$F C$ is the class of all function problems computable by a TM in C

Definition (Decision problems)

A decision problem is abstracted by a language $L \subseteq \Sigma^{*}$. The task is: Given an input x, decide whether $x \in L$.

Function problems

Definition (Function problems)

A function problem is abstracted by a binary relation $R \subseteq \Sigma^{*} \times \Sigma^{*}$. The task is: Given an input x, find an output y with $(x, y) \in R$.
$F C$ is the class of all function problems computable by a TM in C

Definition (Decision problems)

A decision problem is abstracted by a language $L \subseteq \Sigma^{*}$. The task is: Given an input x, decide whether $x \in L$.

$$
L(R):=\{x \mid \exists y:(x, y) \in R\}
$$

is the decision problem related to the function problem R

Complexity Classes
Reductions
Completeness
Polynomial Hierarchy

Oracles

Definition: (Oracle TM)

An oracle TM $M^{\text {? }}$ has 3 additional states $\left(q_{\text {query }}, q_{\text {yes }}\right.$ and $\left.q_{n o}\right)$ and one additional query-string qs.
After being in state $q_{q u e r y} M^{\text {? }}$ continues in state $q_{y e s} / q_{n o}$ depending on the answer of the oracle on input qs.

Oracles

Definition: (Oracle TM)

An oracle TM $M^{\text {? }}$ has 3 additional states $\left(q_{q u e r y}, q_{y e s}\right.$ and $\left.q_{n o}\right)$ and one additional query-string qs.
After being in state $q_{\text {query }} M^{\text {? }}$ continues in state $q_{y e s} / q_{n o}$ depending on the answer of the oracle on input qs.

Definition: (Oracle Complexity Class)

$C^{O}=$ Languages decidable by an oracle TM $M^{?} \in C$ with oracle O

Reductions: Idea

Idea: If problem A reduces to B then B is at least as hard as A We write therefore $A \leq B$

Reductions: Definitions

Definition: (Reductions)

Let f, g, h be functions:

- Cook: $\quad A \in P^{B}$

Definitions

Hierarchy and Closure

Reductions: Definitions

Definition: (Reductions)

Let f, g, h be functions:

- Cook: $A \in P^{B}$
- Karp: $\quad \exists f \in F P: x \in A \Longleftrightarrow f(x) \in B$

Reductions: Definitions

Definition: (Reductions)

Let f, g, h be functions:

- Cook: $\quad A \in P^{B}$
- Karp: $\quad \exists f \in F P: x \in A \Longleftrightarrow f(x) \in B$
- Logspace: $\exists f \in F L: x \in A \Longleftrightarrow f(x) \in B$

Reductions: Definitions

Definition: (Reductions)

Let f, g, h be functions:

- Cook: $\quad A \in P^{B}$
- Karp: $\quad \exists f \in F P: x \in A \Longleftrightarrow f(x) \in B$
- Logspace: $\exists f \in F L: x \in A \Longleftrightarrow f(x) \in B$
- Levin: $\quad \exists f, g, h \in F P$:
$x \in L\left(R_{1}\right) \Longleftrightarrow f(x) \in L\left(R_{2}\right)$
$\forall x, z:(f(x), z) \in R_{2} \Longrightarrow(x, g(x, z)) \in L\left(R_{1}\right)$
$\forall(x, y) \in R_{1}:(f(x), h(x, y)) \in L\left(R_{2}\right)$

Reductions: Definitions

Definition: (Reductions)

Let f, g, h be functions:

- Cook: $\quad A \in P^{B}$
- Karp: $\quad \exists f \in F P: x \in A \Longleftrightarrow f(x) \in B$
- Logspace: $\exists f \in F L: x \in A \Longleftrightarrow f(x) \in B$
- Levin: $\quad \exists f, g, h \in F P$:

$$
x \in L\left(R_{1}\right) \Longleftrightarrow f(x) \in L\left(R_{2}\right)
$$

$$
\forall x, z:(f(x), z) \in R_{2} \Longrightarrow(x, g(x, z)) \in L\left(R_{1}\right)
$$

$$
\forall(x, y) \in R_{1}:(f(x), h(x, y)) \in L\left(R_{2}\right)
$$

- L-Reduction: like Karp but preserves approximability

Complexity Classes
Reductions

Definitions

Hierarchy and Closure

Reductions: Hierarchy and Closure

Lemma:
$A \leq_{\log } B \Longrightarrow A \leq_{k} B \Longrightarrow A \leq_{c} B$

Reductions: Hierarchy and Closure

Lemma:
$A \leq_{\log } B \Longrightarrow A \leq_{k} B \Longrightarrow A \leq_{c} B$
Proof:
(1) $L \subseteq P$
(2) compute $f(x)$ and ask oracle

Reductions: Hierarchy and Closure

Lemma:

$$
A \leq_{\log } B \Longrightarrow A \leq_{k} B \Longrightarrow A \leq_{c} B
$$

Proof:

(1) $L \subseteq P$
(2) compute $f(x)$ and ask oracle

Definition: (Closure under Reduction)
C is closed under reduction : $\Longleftrightarrow A \leq B \wedge B \in C \Longrightarrow A \in C$

Reductions: Hierarchy and Closure

Lemma:

$$
A \leq_{\log } B \Longrightarrow A \leq_{k} B \Longrightarrow A \leq_{c} B
$$

Proof:

(1) $L \subseteq P$
(2) compute $f(x)$ and ask oracle

Definition: (Closure under Reduction)

C is closed under reduction : $\Longleftrightarrow A \leq B \wedge B \in C \Longrightarrow A \in C$
L, NL, $P, N P$, coNP, PSPACE, EXP are closed under $\leq_{\log }$

Complexity Classes

Reductions: Transitivity

Lemma: (Transitivity)
$\leq_{C}, \leq_{K}, \leq_{\text {log }}$, and $\leq_{\text {Levin }}$ are transitive.

Reductions: Transitivity

Lemma: (Transitivity)
$\leq_{C}, \leq_{K}, \leq_{\text {log }}$, and $\leq_{\text {Levin }}$ are transitive.
Proof: $(A \leq B \wedge B \leq C \Longrightarrow A \leq C)$
(1) Cook: $A \in P^{B} \wedge B \in P^{C} \Longrightarrow A \in P^{C}$

Reductions: Transitivity

Lemma: (Transitivity)
$\leq_{C}, \leq_{K}, \leq_{\text {log }}$, and $\leq_{\text {Levin }}$ are transitive.
Proof: $(A \leq B \wedge B \leq C \Longrightarrow A \leq C)$
(1) Cook: $A \in P^{B} \wedge B \in P^{C} \Longrightarrow A \in P^{C}$

- run the P^{B} TM

Reductions: Transitivity

Lemma: (Transitivity)

$\leq_{C}, \leq_{K}, \leq_{\text {log }}$, and $\leq_{\text {Levin }}$ are transitive.
Proof: $(A \leq B \wedge B \leq C \Longrightarrow A \leq C)$
(1) Cook: $A \in P^{B} \wedge B \in P^{C} \Longrightarrow A \in P^{C}$

- run the P^{B} TM
- instead of asking the oracle compute answer with P^{C} TM

Reductions: Transitivity

Lemma: (Transitivity)

$\leq_{C}, \leq_{K}, \leq_{\text {log }}$, and $\leq_{\text {Levin }}$ are transitive.
Proof: $(A \leq B \wedge B \leq C \Longrightarrow A \leq C)$
(1) Cook: $A \in P^{B} \wedge B \in P^{C} \Longrightarrow A \in P^{C}$

- run the P^{B} TM
- instead of asking the oracle compute answer with P^{C} TM
- polynomial queries which take polynomial time can be computed in P

Reductions: Transitivity

Lemma: (Transitivity)

$\leq_{C}, \leq_{K}, \leq_{\text {log }}$, and $\leq_{\text {Levin }}$ are transitive.
Proof: $(A \leq B \wedge B \leq C \Longrightarrow A \leq C)$
(1) Cook: $A \in P^{B} \wedge B \in P^{C} \Longrightarrow A \in P^{C}$

- run the P^{B} TM
- instead of asking the oracle compute answer with P^{C} TM
- polynomial queries which take polynomial time can be computed in P
(2) Karp: $f_{A C}=f_{B C} \circ f_{A B}$

Reductions: Transitivity

Lemma: (Transitivity)

$\leq_{C}, \leq_{K}, \leq_{\text {log }}$, and $\leq_{\text {Levin }}$ are transitive.
Proof: $(A \leq B \wedge B \leq C \Longrightarrow A \leq C)$
(1) Cook: $A \in P^{B} \wedge B \in P^{C} \Longrightarrow A \in P^{C}$

- run the P^{B} TM
- instead of asking the oracle compute answer with P^{C} TM
- polynomial queries which take polynomial time can be computed in P
(2) Karp: $f_{A C}=f_{B C} \circ f_{A B}$
(3) Logspace:

Reductions: Transitivity

Lemma: (Transitivity)

$\leq_{C}, \leq_{K}, \leq_{\text {log }}$, and $\leq_{\text {Levin }}$ are transitive.
Proof: $(A \leq B \wedge B \leq C \Longrightarrow A \leq C)$
(1) Cook: $A \in P^{B} \wedge B \in P^{C} \Longrightarrow A \in P^{C}$

- run the P^{B} TM
- instead of asking the oracle compute answer with P^{C} TM
- polynomial queries which take polynomial time can be computed in P
(2) Karp: $f_{A C}=f_{B C} \circ f_{A B}$
(3) Logspace:
- like Karp

Reductions: Transitivity

Lemma: (Transitivity)

$\leq_{C}, \leq_{K}, \leq_{\text {log }}$, and $\leq_{\text {Levin }}$ are transitive.
Proof: $(A \leq B \wedge B \leq C \Longrightarrow A \leq C)$
(1) Cook: $A \in P^{B} \wedge B \in P^{C} \Longrightarrow A \in P^{C}$

- run the P^{B} TM
- instead of asking the oracle compute answer with P^{C} TM
- polynomial queries which take polynomial time can be computed in P
(2) Karp: $f_{A C}=f_{B C} \circ f_{A B}$
(3) Logspace:
- like Karp
- but $f_{A B}(x)$ could be polynomial long

Reductions: Transitivity

Lemma: (Transitivity)

$\leq_{C}, \leq_{K}, \leq_{\text {log }}$, and $\leq_{\text {Levin }}$ are transitive.
Proof: $(A \leq B \wedge B \leq C \Longrightarrow A \leq C)$
(1) Cook: $A \in P^{B} \wedge B \in P^{C} \Longrightarrow A \in P^{C}$

- run the P^{B} TM
- instead of asking the oracle compute answer with P^{C} TM
- polynomial queries which take polynomial time can be computed in P
(2) Karp: $f_{A C}=f_{B C} \circ f_{A B}$
(3) Logspace:
- like Karp
- but $f_{A B}(x)$ could be polynomial long
- \Rightarrow each time $f_{B C}$ needs input compute only this char with $f_{A B}$

Definition

Definition: (Completeness)

A is complete for $C: \Longleftrightarrow A \in C \wedge \forall L \in C: L \leq A r$ (maximal elements of the preorder given by \leq)

Complexity Classes

Boolean Circuits

P completeness
NP completeness
PSPACE completeness

Boolean Circuits

Complexity Classes

Boolean Circuits

Lemma:

For $n>2$ there is a n-ary boolean function which needs more than $m=\frac{2^{n}}{2 n}$ gates.

Boolean Circuits

Lemma:

For $n>2$ there is a n-ary boolean function which needs more than $m=\frac{2^{n}}{2 n}$ gates.
Proof: $\quad\left((n+5) m^{2}\right)^{m}=\left((n+5) \frac{2^{2 n}}{4 n^{2}}\right)^{\frac{2^{n}}{2 n}}<\left(2^{2 n}\right)^{\frac{2^{n}}{2 n}}=2^{2^{n}}$

Boolean Circuits

Lemma:

For $n>2$ there is a n-ary boolean function which needs more than $m=\frac{2^{n}}{2 n}$ gates.

Proof: $\quad\left((n+5) m^{2}\right)^{m}=\left((n+5) \frac{2^{2 n}}{4 n^{2}}\right)^{\frac{2^{n}}{2 n}}<\left(2^{2 n}\right)^{\frac{2^{n}}{2 n}}=2^{2^{n}}$

There is no natural family of boolean functions known, which needs more than linear number of gates.

Boolean Circuits

Lemma:

For $n>2$ there is a n-ary boolean function which needs more than $m=\frac{2^{n}}{2 n}$ gates.

Proof: $\quad\left((n+5) m^{2}\right)^{m}=\left((n+5) \frac{2^{2 n}}{4 n^{2}}\right)^{\frac{2^{n}}{2 n}}<\left(2^{2 n}\right)^{\frac{2^{n}}{2 n}}=2^{2^{n}}$

There is no natural family of boolean functions known, which needs more than linear number of gates.

Complexity Classes

Boolean Circuits

P completeness
NP completeness
PSPACE completeness

Boolean Circuits

Lemma:
 CIRCUIT_SAT $\leq_{\log }$ SAT

Boolean Circuits

Lemma:

CIRCUIT_SAT $\leq \log$ SAT

Proof:

Give each gate a variable and ,translate"

- variable gate: $g \Longleftrightarrow x$

Boolean Circuits

Lemma:

CIRCUIT_SAT $\leq \log$ SAT

Proof:

Give each gate a variable and „translate"

- variable gate: $g \Longleftrightarrow x$
- True gate: g
- False gate: $\neg g$

Boolean Circuits

Lemma:

CIRCUIT_SAT $\leq_{\log }$ SAT

Proof:

Give each gate a variable and „translate"

- variable gate: $g \Longleftrightarrow x$
- True gate: g
- False gate: $\neg g$
- not gate: $\quad g \Longleftrightarrow \neg h$
- and gate: $\quad g \Longleftrightarrow a \wedge b$
- or gate: $\quad g \Longleftrightarrow a \vee b$

Boolean Circuits

Lemma:

CIRCUIT_SAT $\leq_{\log }$ SAT

Proof:

Give each gate a variable and „translate"

- variable gate: $g \Longleftrightarrow x$
- True gate: g
- False gate: $\neg g$
- not gate: $\quad g \Longleftrightarrow \neg h$
- and gate: $\quad g \Longleftrightarrow a \wedge b$
- or gate: $\quad g \Longleftrightarrow a \vee b$
- output gate: g

Boolean Circuits

Lemma:

CIRCUIT_SAT $\leq_{\log }$ SAT

Proof:

Give each gate a variable and ,translate"

- variable gate: $g \Longleftrightarrow x$
- True gate: g
- False gate: $\neg g$
- not gate: $\quad g \Longleftrightarrow \neg h$
- and gate: $\quad g \Longleftrightarrow a \wedge b$
- or gate: $\quad g \Longleftrightarrow a \vee b$
- output gate: g

The conjunction of these clauses is equivalent to the circuit ${\underset{\underline{s}}{ }}$

Complexity Classes
Reductions
Completeness
Polynomial Hierarchy

Boolean Circuits
P completeness
NP completeness
PSPACE completeness

CIRCUIT_VALUE is P complete

Lemma:
CIRCUIT_VALUE is P complete

Proof:

CIRCUIT VALUE is P complete

Lemma:

CIRCUIT_VALUE is P complete

Proof:

- Having an arbitrary language $L \in P$ decided by a TM M in time n^{k} and an input x

CIRCUIT VALUE is P complete

Lemma:

CIRCUIT_VALUE is P complete

Proof:

- Having an arbitrary language $L \in P$ decided by a TM M in time n^{k} and an input x
- want to build a boolean circuit that is satisfiable $\Longleftrightarrow x \in L \Longleftrightarrow M$ accepts x

CIRCUIT VALUE is P complete

Lemma:

CIRCUIT_VALUE is P complete

Proof:

- Having an arbitrary language $L \in P$ decided by a TM M in time n^{k} and an input x
- want to build a boolean circuit that is satisfiable $\Longleftrightarrow x \in L \Longleftrightarrow M$ accepts x
- W.L.O.G. M has only one string

CIRCUIT VALUE is P complete

Lemma:

CIRCUIT_VALUE is P complete

Proof:

- Having an arbitrary language $L \in P$ decided by a TM M in time n^{k} and an input x
- want to build a boolean circuit that is satisfiable $\Longleftrightarrow x \in L \Longleftrightarrow M$ accepts x
- W.L.O.G. M has only one string
- interpret the computation on x as a $|x|^{k+1} \times|x|^{k+1}$ computation table with alphabet $\Sigma \cup \Sigma \times K$
- ...

Computation Table

\sqcup	\triangleright	$O_{q_{0}}$	T	t	O	\sqcup	
\sqcup	\triangleright	$@$	T_{O}	t	O	\sqcup	
\sqcup	\triangleright	$@$	T	t_{O}	O	\sqcup	
\sqcup	\triangleright	$@$	T	t	O_{O}	\sqcup	
\sqcup	\triangleright	$@$	T	t	O	\sqcup_{O}	\sqcup
\sqcup	\triangleright	$@$	T	t	$O_{O^{\prime}}$	\sqcup	
\sqcup	\triangleright	$@$	T	$t_{q_{r}}$	$@$	\sqcup	
\sqcup	\triangleright	$@$	$T_{q_{r}}$	t	$@$	\sqcup	
\sqcup	\triangleright	$@_{q_{r}}$	T	t	$@$	\sqcup	
\sqcup	\triangleright	$@$	$T_{q_{0}}$	t	$@$	\sqcup	
\sqcup	\triangleright	$@$	$@$	t_{T}	$@$	\sqcup	
\sqcup	\triangleright	$@$	$@$	t	$@$	\sqcup	
\sqcup	\triangleright	$@$	$@$	$t_{T^{\prime}}$	$@$	\sqcup	
\sqcup	\triangleright	$@$	$@$	$n o$	$@$	\sqcup	
\sqcup	\triangleright	$@$	$@$	$n o$	$@$	\sqcup	

Complexity Classes
Reductions
Completeness
Polynomial Hierarchy

Boolean Circuits
P completeness
NP completeness
PSPACE completeness

CIRCUIT_VALUE is P complete

Lemma:

CIRCUIT_VALUE is P complete

Proof:

- ...

CIRCUIT VALUE is P complete

Lemma:

CIRCUIT_VALUE is P complete

Proof:

- a char depends only on the 3 chars above it

CIRCUIT_VALUE is P complete

Lemma:

CIRCUIT_VALUE is P complete

Proof:

- a char depends only on the 3 chars above it
- translate it into binary and write a circuit C which computes one char

CIRCUIT VALUE is P complete

Lemma:

CIRCUIT_VALUE is P complete

Proof:

- a char depends only on the 3 chars above it
- translate it into binary and write a circuit C which computes one char
- with polynomial copies of C build a circuit G which computes the table

CIRCUIT VALUE is P complete

Lemma:

CIRCUIT_VALUE is P complete

Proof:

- a char depends only on the 3 chars above it
- translate it into binary and write a circuit C which computes one char
- with polynomial copies of C build a circuit G which computes the table
- add a circuit which tests for accepting states

CIRCUIT VALUE is P complete

Lemma:

CIRCUIT_VALUE is P complete

Proof:

- a char depends only on the 3 chars above it
- translate it into binary and write a circuit C which computes one char
- with polynomial copies of C build a circuit G which computes the table
- add a circuit which tests for accepting states
- the leftest and rightest columns are (set to) \sqcup and the input x is known

CIRCUIT VALUE is P complete

Lemma:

CIRCUIT_VALUE is P complete

Proof:

- a char depends only on the 3 chars above it
- translate it into binary and write a circuit C which computes one char
- with polynomial copies of C build a circuit G which computes the table
- add a circuit which tests for accepting states
- the leftest and rightest columns are (set to) \sqcup and the input x is known
- \Rightarrow no free variables occur

CIRCUIT VALUE is P complete

Lemma:

CIRCUIT_VALUE is P complete

Proof:

- a char depends only on the 3 chars above it
- translate it into binary and write a circuit C which computes one char
- with polynomial copies of C build a circuit G which computes the table
- add a circuit which tests for accepting states
- the leftest and rightest columns are (set to) \sqcup and the input x is known
- \Rightarrow no free variables occur
- the value of G is True $\Longleftrightarrow M$ accepts x.an \equiv 引人c

Complexity Classes

CIRCUIT_SAT is NP complete

Lemma:

CIRCUIT_SAT is NP complete

CIRCUIT_SAT is NP complete

Lemma:

CIRCUIT_SAT is NP complete

Proof:

- W.L.O.G. NTM M has single string and 2 nondeterministic choices $(0,1)$ at each step

CIRCUIT SAT is NP complete

Lemma:

CIRCUIT_SAT is NP complete

Proof:

- W.L.O.G. NTM M has single string and 2 nondeterministic choices $(0,1)$ at each step
- a char depends only on the 3 chars above it and the choice

CIRCUIT SAT is NP complete

Lemma:

CIRCUIT_SAT is NP complete

Proof:

- W.L.O.G. NTM M has single string and 2 nondeterministic choices $(0,1)$ at each step
- a char depends only on the 3 chars above it and the choice
- build a circuit for the whole computation table

CIRCUIT SAT is NP complete

Lemma:

CIRCUIT_SAT is NP complete

Proof:

- W.L.O.G. NTM M has single string and 2 nondeterministic choices $(0,1)$ at each step
- a char depends only on the 3 chars above it and the choice
- build a circuit for the whole computation table
- this circuit is satisfiable \Longleftrightarrow an choice assignment exists that leads to an accepting state $\Longleftrightarrow M$ accepts x

HAMILTON_PATH is NP complete

Lemma:

HAMILTON_PATH is NP complete

Proof:

HAMILTON_PATH $\in N P \wedge S A T \leq_{\log } 3 S A T \leq_{\log }$ HAMILTON_PATH

HAMILTON_PATH is NP complete

Lemma:

HAMILTON_PATH is NP complete

Proof:

HAMILTON_PATH $\in N P \wedge S A T \leq_{\log } 3 S A T \leq_{\log }$ HAMILTON_PATH
(1) guess and verify

HAMILTON_PATH is NP complete

Lemma:

HAMILTON_PATH is NP complete

Proof:

HAMILTON_PATH $\in N P \wedge S A T \leq_{\log } 3 S A T \leq_{\log }$ HAMILTON_PATH
(1) guess and verify
(2) without proof (simple logic)

HAMILTON_PATH is NP complete

Lemma:

HAMILTON_PATH is NP complete

Proof:

HAMILTON_PATH $\in N P \wedge S A T \leq_{\log } 3 S A T \leq_{\log }$ HAMILTON_PATH
(1) guess and verify
(2) without proof (simple logic)
(3) given a boolean expression Φ, construct a graph G : G has a Hamilton path $\Longleftrightarrow \Phi$ is satisfiable:

- each variable \mapsto choice gadget (allowing the true or false path to traverse)
- each clause \mapsto constraint gadget (forming a circle iff all variables are false)
- consistency guaranteed through xor-gadgets
(substitutes two edges so that only one can be traversed)

Complexity Classes
Reductions
Completeness
Polynomial Hierarchy

$T S P(D)$ is NP complete

Lemma:
$T S P(D)$ is NP complete

$T S P(D)$ is NP complete

Lemma:

$\operatorname{TSP}(D)$ is NP complete
Proof:
$T S P(D) \in N P \wedge$ HAMILTON_PATH $\leq \log T S P(D)$

$T S P(D)$ is NP complete

Lemma:

$T S P(D)$ is NP complete
Proof:
$T S P(D) \in N P \wedge$ HAMILTON_PATH $\leq \log T S P(D)$
(1) guess and verify

$T S P(D)$ is NP complete

Lemma:

$T S P(D)$ is NP complete

Proof:

$T S P(D) \in N P \wedge H A M I L T O N _P A T H \leq \log T S P(D)$
(1) guess and verify
(2) given graph G with n nodes, construct a complete weighted graph G^{\prime} with n nodes and a budget B :

$T S P(D)$ is NP complete

Lemma:

$\operatorname{TSP}(D)$ is NP complete

Proof:

$T S P(D) \in N P \wedge$ HAMILTON_PATH $\leq \log T S P(D)$
(1) guess and verify
(2) given graph G with n nodes, construct a complete weighted graph G^{\prime} with n nodes and a budget B:

- edges in G^{\prime} have weight 1 if they exist in G else 2

$T S P(D)$ is NP complete

Lemma:

$\operatorname{TSP}(D)$ is NP complete

Proof:

$T S P(D) \in N P \wedge$ HAMILTON_PATH $\leq \log T S P(D)$
(1) guess and verify
(2) given graph G with n nodes, construct a complete weighted graph G^{\prime} with n nodes and a budget B:

- edges in G^{\prime} have weight 1 if they exist in G else 2
- Budget $B=n+1$

$T S P(D)$ is NP complete

Lemma:

$\operatorname{TSP}(D)$ is NP complete

Proof:

$T S P(D) \in N P \wedge$ HAMILTON_PATH $\leq \log T S P(D)$
(1) guess and verify
(2) given graph G with n nodes, construct a complete weighted graph G^{\prime} with n nodes and a budget B:

- edges in G^{\prime} have weight 1 if they exist in G else 2
- Budget $B=n+1$
- G^{\prime} has a TSP-Tour with budged $B \Longleftrightarrow$ G has a Hamilton path

IN_PLACE ACCEPTANCE is PSPACE complete

IN_PLACE_ACCEPTANCE: Given a DTM M and an input x, does M accept x without ever leaving the $|x|+1$ first symbols of its string?

Boolean Circuits
P completeness
NP completeness
PSPACE completeness

IN_PLACE ACCEPTANCE is PSPACE complete

IN_PLACE_ACCEPTANCE: Given a DTM M and an input x, does M accept x without ever leaving the $|x|+1$ first symbols of its string?

Lemma:

IN_PLACE_ACCEPTANCE is PSPACE complete

IN_PLACE ACCEPTANCE is PSPACE complete

IN_PLACE_ACCEPTANCE: Given a DTM M and an input x, does M accept x without ever leaving the $|x|+1$ first symbols of its string?

Lemma:

IN_PLACE_ACCEPTANCE is PSPACE complete

Proof: IN_PLACE_ACCEPTANCE \in PSPACE \wedge $L \in P S P A C E \Longrightarrow L \leq \log I N _P L A C E _A C C E P T A N C E$
(1) simulate M on x, count steps and reject \Longleftrightarrow M rejects, leaves the place, or operates more than $|K||x||\Sigma|^{|x|}$ steps

IN_PLACE_ACCEPTANCE is PSPACE complete

IN_PLACE_ACCEPTANCE: Given a DTM M and an input x, does M accept x without ever leaving the $|x|+1$ first symbols of its string?

Lemma:

IN_PLACE_ACCEPTANCE is PSPACE complete

Proof: IN_PLACE_ACCEPTANCE \in PSPACE \wedge $L \in P S P A C E \Longrightarrow L \leq \log I N _P L A C E _A C C E P T A N C E$
(1) simulate M on x, count steps and reject \Longleftrightarrow M rejects, leaves the place, or operates more than $|K||x||\Sigma|^{|x|}$ steps
(2) DTM M decides L in n^{k} space:

$$
x \in L \Longleftrightarrow M \text { accepts } x \text { in }|x|^{k} \text { space }
$$

IN_PLACE_ACCEPTANCE is PSPACE complete

IN_PLACE_ACCEPTANCE: Given a DTM M and an input x, does M accept x without ever leaving the $|x|+1$ first symbols of its string?

Lemma:

IN_PLACE_ACCEPTANCE is PSPACE complete

Proof: IN_PLACE_ACCEPTANCE \in PSPACE \wedge $L \in P S P A C E \Longrightarrow L \leq \log I N _P L A C E _A C C E P T A N C E$
(1) simulate M on x, count steps and reject \Longleftrightarrow M rejects, leaves the place, or operates more than $|K||x||\Sigma|^{|x|}$ steps
(2) DTM M decides L in n^{k} space:

$$
\begin{aligned}
x \in L & \Longleftrightarrow M \text { accepts } x \text { in }|x|^{k} \text { space } \\
& \Longleftrightarrow M \text { accepts } x \sqcup^{|x|^{k}} \text { in place }
\end{aligned}
$$

IN_PLACE ACCEPTANCE is PSPACE complete

IN_PLACE_ACCEPTANCE: Given a DTM M and an input x, does M accept x without ever leaving the $|x|+1$ first symbols of its string?

Lemma:

IN_PLACE_ACCEPTANCE is PSPACE complete

Proof: IN_PLACE_ACCEPTANCE \in PSPACE \wedge $L \in P S P A C E \Longrightarrow L \leq_{\log }$ IN_PLACE_ACCEPTANCE
(1) simulate M on x, count steps and reject \Longleftrightarrow M rejects, leaves the place, or operates more than $|K||x||\Sigma|^{|x|}$ steps
(2) DTM M decides L in n^{k} space:

$$
\begin{aligned}
x \in L & \Longleftrightarrow M \text { accepts } x \text { in }|x|^{k} \text { space } \\
& \Longleftrightarrow M \text { accepts } x \sqcup^{|x|^{k}} \text { in place } \\
& \Longleftrightarrow\left(M, x \sqcup^{|x|^{k}}\right) \in I N_{-} \text {PLACE_ACCEPTANCE }
\end{aligned}
$$

Optimization Problems in $F P^{N P}$
Polynomial Hierarchy
Characterization of PH
PH collapses

Optimization Problems in FPNP

Lemma:

TSP is FP ${ }^{N P}$ complete
Proof: $T S P$ is $F P^{N P}$ hard $\wedge T S P \in F P^{N P}$
(1) without proof

Optimization Problems in FPNP

Lemma:

TSP is FP ${ }^{N P}$ complete
Proof: $T S P$ is $F P^{N P}$ hard $\wedge T S P \in F P^{N P}$
(1) without proof
(2) Construct TM $M^{\text {? }} \in F P$ which decides $T S P$ with $T S P(D)$ oracle

Optimization Problems in FPNP

Lemma:

TSP is FP ${ }^{N P}$ complete
Proof: $T S P$ is $F P^{N P}$ hard $\wedge T S P \in F P^{N P}$
(1) without proof
(2) Construct TM $M^{\text {? }} \in F P$ which decides $T S P$ with $T S P(D)$ oracle

Optimization Problems in FPNP

Lemma:

TSP is $F P^{N P}$ complete

Proof: $T S P$ is $F P^{N P}$ hard $\wedge T S P \in F P^{N P}$
(1) without proof
(2) Construct TM $M^{\text {? }} \in F P$ which decides $T S P$ with $T S P(D)$ oracle - optimum cost C is an integer between 0 and $2^{|x|}$

Optimization Problems in FPNP

Lemma:

TSP is FP ${ }^{N P}$ complete
Proof: $T S P$ is $F P^{N P}$ hard $\wedge T S P \in F P^{N P}$
(1) without proof
(2) Construct TM $M^{\text {? }} \in F P$ which decides $T S P$ with $T S P(D)$ oracle - optimum cost C is an integer between 0 and $2^{|x|}$

- \Rightarrow exact cost C can be computed by binary search asking $|x|$ queries
- test every edge:

Optimization Problems in FPNP

Lemma:

TSP is FP ${ }^{N P}$ complete
Proof: $T S P$ is $F P^{N P}$ hard $\wedge T S P \in F P^{N P}$
(1) without proof
(2) Construct TM $M^{\text {? }} \in F P$ which decides $T S P$ with $T S P(D)$ oracle - optimum cost C is an integer between 0 and $2^{|x|}$

- \Rightarrow exact cost C can be computed by binary search asking $|x|$ queries
- test every edge:
- set its cost to $C+1$

Optimization Problems in FP ${ }^{N P}$

Lemma:

TSP is FP ${ }^{N P}$ complete
Proof: $T S P$ is $F P^{N P}$ hard $\wedge T S P \in F P^{N P}$
(1) without proof
(2) Construct TM $M^{\text {? }} \in F P$ which decides $T S P$ with $T S P(D)$ oracle

- optimum cost C is an integer between 0 and $2^{|x|}$
- \Rightarrow exact cost C can be computed by binary search asking $|x|$ queries
- test every edge:
- set its cost to $C+1$
- ask $\operatorname{TSP}(D)$ oracle whether now an tour with budged C exists
- reset the cost only if the answer is „no"

Optimization Problems in FPNP

Lemma:

TSP is FP ${ }^{N P}$ complete
Proof: $T S P$ is $F P^{N P}$ hard $\wedge T S P \in F P^{N P}$
(1) without proof
(2) Construct $T M M^{\text {? }} \in F P$ which decides $T S P$ with $T S P(D)$ oracle

- optimum cost C is an integer between 0 and $2^{|x|}$
- \Rightarrow exact cost C can be computed by binary search asking $|x|$ queries
- test every edge:
- set its cost to $C+1$
- ask $\operatorname{TSP}(D)$ oracle whether now an tour with budged C exists
- reset the cost only if the answer is "no"
- all edges with cost $<C+1$ form an optimal tour

Optimization Problems in FPNP

Corollary:
MAXIMUM_WEIGHTED_SAT $\in F P^{N P}$
Proof: Construct TM $M^{?} \in F P$

Optimization Problems in FPNP

Corollary:
MAXIMUM_WEIGHTED_SAT $\in F P^{N P}$
Proof: Construct TM $M^{?} \in F P$

- compute the largest possible weight of satisfied clauses by binary search

Optimization Problems in FP N P

Corollary:
MAXIMUM_WEIGHTED_SAT $\in F P^{N P}$
Proof: Construct TM $M^{?} \in F P$

- compute the largest possible weight of satisfied clauses by binary search
- test each variable one-by-one

Optimization Problems in FP ${ }^{N P}$

Corollary:
MAXIMUM_WEIGHTED_SAT $\in F^{N P}$
Proof: Construct TM $M^{?} \in F P$

- compute the largest possible weight of satisfied clauses by binary search
- test each variable one-by-one

Corollary:

WEIGHTED_MAX_CUT $\in F P^{N P}$
$K N A P S A C K \in F P^{N P}$
WEIGHTED_BISECTION_WIDTH $\in F P^{N P}$

Complexity Classes

Optimization Problems in $F P^{N P}$
Polynomial Hierarchy
Characterization of PH
PH collapses

Polynomial Hierarchy

Definition: (Polynomial Hierarchy)

$\Delta_{0}^{P}=\Sigma_{0}^{P}=\Pi_{0}^{P}=P$

Complexity Classes

Polynomial Hierarchy

Definition: (Polynomial Hierarchy)
$\Delta_{0}^{P}=\Sigma_{0}^{P}=\Pi_{0}^{P}=P$
and for all $i \geq 0$:

- $\Delta_{i+1}^{P}=P^{\Sigma_{i}^{P}}$

Complexity Classes

Polynomial Hierarchy

Polynomial Hierarchy

Definition: (Polynomial Hierarchy)
$\Delta_{0}^{P}=\Sigma_{0}^{P}=\Pi_{0}^{P}=P$
and for all $i \geq 0$:

- $\Delta_{i+1}^{P}=P^{\Sigma_{i}^{P}}$
- $\Sigma_{i+1}^{P}=N P^{\Sigma_{i}^{P}}$

Complexity Classes

Polynomial Hierarchy

Definition: (Polynomial Hierarchy)
$\Delta_{0}^{P}=\Sigma_{0}^{P}=\Pi_{0}^{P}=P$
and for all $i \geq 0$:

- $\Delta_{i+1}^{P}=P^{\Sigma_{i}^{P}}$
- $\Sigma_{i+1}^{P}=N P^{\Sigma_{i}^{P}}$
- $\Pi_{i+1}^{P}=\operatorname{coN} P^{\Sigma_{i}^{P}}$

Polynomial Hierarchy

Definition: (Polynomial Hierarchy)

$\Delta_{0}^{P}=\Sigma_{0}^{P}=\Pi_{0}^{P}=P$
and for all $i \geq 0$:

- $\Delta_{i+1}^{P}=P^{\Sigma_{i}^{P}}$
- $\Sigma_{i+1}^{P}=N P^{\Sigma_{i}^{P}}$
- $\Pi_{i+1}^{P}=\operatorname{coN} P^{\Sigma_{i}^{P}}$
$P H=\bigcup_{i} \sum_{i}^{P}$ is called polynomial hierarchy

Polynomial Hierarchy

Definition: (Polynomial Hierarchy)

$\Delta_{0}^{P}=\Sigma_{0}^{P}=\Pi_{0}^{P}=P$ and for all $i \geq 0$:

- $\Delta_{i+1}^{P}=P^{\Sigma_{i}^{P}}$
- $\Sigma_{i+1}^{P}=N P^{\Sigma_{i}^{P}}$
- $\Pi_{i+1}^{P}=\operatorname{coN} P^{\Sigma_{i}^{P}}$
$P H=\bigcup_{i} \Sigma_{i}^{P}$ is called polynomial hierarchy

$$
\Delta_{1}^{P}=P^{P}=P \quad \Sigma_{1}^{P}=N P^{P}=N P \quad \Pi_{1}^{P}=c o N P^{P}=\operatorname{coN} P
$$

Polynomial Hierarchy

Definition: (Polynomial Hierarchy)

$\Delta_{0}^{P}=\Sigma_{0}^{P}=\Pi_{0}^{P}=P$ and for all $i \geq 0$:

- $\Delta_{i+1}^{P}=P^{\Sigma_{i}^{P}}$
- $\Sigma_{i+1}^{P}=N P^{\Sigma_{i}^{P}}$
- $\Pi_{i+1}^{P}=\operatorname{coN} P^{\Sigma_{i}^{P}}$
$P H=\bigcup_{i} \Sigma_{i}^{P}$ is called polynomial hierarchy
$\Delta_{1}^{P}=P^{P}=P$
$\Sigma_{1}^{P}=N P^{P}=N P$
$\Pi_{1}^{P}=\operatorname{coN} P^{P}=\operatorname{coN} P$
$\Delta_{2}^{P}=P^{N P}$
$\Sigma_{2}^{P}=N P^{N P}$
$\Pi_{2}^{P}=\operatorname{coN} P^{N P}$

Definitions

Definition (polynomial bounded relation)

A polynomial bounded relation is a relation $R \subseteq\left(\Sigma^{*}\right)^{1+1}$ with $\exists k \in \mathbf{N}: \forall\left(x, y_{1}, y_{2}, \ldots, y_{l}\right) \in R:\left|y_{i}\right| \leq|x|^{k}$.

Definitions

Definition (polynomial bounded relation)

A polynomial bounded relation is a relation $R \subseteq\left(\Sigma^{*}\right)^{1+1}$ with $\exists k \in \mathbf{N}: \forall\left(x, y_{1}, y_{2}, \ldots, y_{l}\right) \in R:\left|y_{i}\right| \leq|x|^{k}$.

Definition (C-verifiable relation)

A C-verifiable relation R is a polynomial bounded relation, which is decidable in $C: \quad\left\{x ; y_{1} ; y_{2} ; \ldots ; y_{l} \mid\left(x, y_{1}, y_{2}, \ldots, y_{l}\right) \in R\right\} \in C$

Complexity Classes

Polynomial Hierarchy

Optimization Problems in $F P^{N P}$
Polynomial Hierarchy
Characterization of PH
PH collapses

Characterization of NP

Lemma: (Characterization of NP)
$N P=\{\{x \mid \exists y:(x, y) \in R\} \mid R$ is P-verifiable $\}$

Characterization of NP

Lemma: (Characterization of NP)
$N P=\{\{x \mid \exists y:(x, y) \in R\} \mid R$ is P-verifiable $\}$

Proof:

$" \Leftarrow ": R$ is P-verifiable $\Longrightarrow\{x \mid \exists y:(x, y) \in R\} \in N P$

Characterization of NP

Lemma: (Characterization of NP)
$N P=\{\{x \mid \exists y:(x, y) \in R\} \mid R$ is P-verifiable $\}$

Proof:

$" \Leftarrow ": R$ is P-verifiable $\Longrightarrow\{x \mid \exists y:(x, y) \in R\} \in N P$

- construct NTM M^{\prime} which on input x
- guesses polynomial bounded y
- verify whether $(x, y) \in R$
- accept $x \Longleftrightarrow(x, y) \in R$

Characterization of NP

Lemma: (Characterization of NP)
$N P=\{\{x \mid \exists y:(x, y) \in R\} \mid R$ is P-verifiable $\}$

Proof:

$" \Leftarrow ": R$ is P-verifiable $\Longrightarrow\{x \mid \exists y:(x, y) \in R\} \in N P$

- construct NTM M^{\prime} which on input x
- guesses polynomial bounded y
- verify whether $(x, y) \in R$
- accept $x \Longleftrightarrow(x, y) \in R$
- $M^{\prime} \in N P$

Characterization of NP

Lemma: (Characterization of NP)
$N P=\{\{x \mid \exists y:(x, y) \in R\} \mid R$ is P-verifiable $\}$

Proof:

$" \Leftarrow ": R$ is P-verifiable $\Longrightarrow\{x \mid \exists y:(x, y) \in R\} \in N P$

- construct NTM M^{\prime} which on input x
- guesses polynomial bounded y
- verify whether $(x, y) \in R$
- accept $x \Longleftrightarrow(x, y) \in R$
- $M^{\prime} \in N P$
- M^{\prime} accepts $x \Longleftrightarrow \exists y:(x, y) \in R$

Characterization of NP

Lemma: (Characterization of NP)
$N P=\{\{x \mid \exists y:(x, y) \in R\} \mid R$ is P-verifiable $\}$

Proof:

" \Rightarrow ": $L \in N P \Longrightarrow \exists R P$-verifiable $: L=\{x \mid \exists y:(x, y) \in R\}$

Characterization of NP

Lemma: (Characterization of NP)
$N P=\{\{x \mid \exists y:(x, y) \in R\} \mid R$ is P-verifiable $\}$

Proof:

" \Rightarrow ": $L \in N P \Longrightarrow \exists R P$-verifiable $: L=\{x \mid \exists y:(x, y) \in R\}$

- have TM $M \in N P$ deciding L

Characterization of NP

Lemma: (Characterization of NP)
$N P=\{\{x \mid \exists y:(x, y) \in R\} \mid R$ is P-verifiable $\}$

Proof:

" \Rightarrow ": $L \in N P \Longrightarrow \exists R P$-verifiable $: L=\{x \mid \exists y:(x, y) \in R\}$

- have TM $M \in N P$ deciding L
- for input $x \in L$ encode the choices of an accepting path of M into a witness y

Characterization of NP

Lemma: (Characterization of NP)
$N P=\{\{x \mid \exists y:(x, y) \in R\} \mid R$ is P-verifiable $\}$

Proof:

" \Rightarrow ": $L \in N P \Longrightarrow \exists R P$-verifiable $: L=\{x \mid \exists y:(x, y) \in R\}$

- have TM $M \in N P$ deciding L
- for input $x \in L$ encode the choices of an accepting path of M into a witness y
- $R=\{(x, y) \mid y$ is witness for $x\}$ is the searched relation

Characterization of NP

Lemma: (Characterization of NP)
$N P=\{\{x \mid \exists y:(x, y) \in R\} \mid R$ is P-verifiable $\}$

Proof:

" \Rightarrow ": $L \in N P \Longrightarrow \exists R P$-verifiable $: L=\{x \mid \exists y:(x, y) \in R\}$

- have TM $M \in N P$ deciding L
- for input $x \in L$ encode the choices of an accepting path of M into a witness y
- $R=\{(x, y) \mid y$ is witness for $x\}$ is the searched relation
- polynomial bounded y (because of the polynomial running time of M)

Characterization of NP

Lemma: (Characterization of NP)
$N P=\{\{x \mid \exists y:(x, y) \in R\} \mid R$ is P-verifiable $\}$

Proof:

" \Rightarrow ": $L \in N P \Longrightarrow \exists R P$-verifiable $: L=\{x \mid \exists y:(x, y) \in R\}$

- have TM $M \in N P$ deciding L
- for input $x \in L$ encode the choices of an accepting path of M into a witness y
- $R=\{(x, y) \mid y$ is witness for $x\}$ is the searched relation
- polynomial bounded y (because of the polynomial running time of M)
- polynomial decidable (by DTM M' using y to determine the computation path of M)

Characterization of NP

Lemma: (Characterization of NP)
$N P=\{\{x \mid \exists y:(x, y) \in R\} \mid R$ is P-verifiable $\}$

Proof:

" \Rightarrow ": $L \in N P \Longrightarrow \exists R P$-verifiable $: L=\{x \mid \exists y:(x, y) \in R\}$

- have TM $M \in N P$ deciding L
- for input $x \in L$ encode the choices of an accepting path of M into a witness y
- $R=\{(x, y) \mid y$ is witness for $x\}$ is the searched relation
- polynomial bounded y (because of the polynomial running time of M)
- polynomial decidable (by DTM M' using y to determine the computation path of M)
- $\exists y:(x, y) \in R \Longleftrightarrow M$ accepts $x \Longleftrightarrow x \in L$

Complexity Classes
Reductions
Completeness
Polynomial Hierarchy

Optimization Problems in $F P^{N P}$ Polynomial Hierarchy
Characterization of PH
PH collapses

Characterization of \sum_{i}^{P}

$$
\begin{aligned}
& \text { Lemma: (Characterization of } \Sigma_{i}^{P} \text {) } \\
& \Sigma_{i}^{P}=\left\{\{x \mid \exists y:(x, y) \in R\} \mid R \text { is } \Pi_{i-1}^{P} \text {-verifiable }\right\}
\end{aligned}
$$

Characterization of \sum_{i}^{P}

Lemma: (Characterization of \sum_{i}^{P})
$\Sigma_{i}^{P}=\left\{\{x \mid \exists y:(x, y) \in R\} \mid R\right.$ is Π_{i-1}^{P}-verifiable $\}$
Proof: (by induction on i)
$i=1$: exactly the characterization of $N P$

Characterization of \sum_{i}^{P}

Lemma: (Characterization of \sum_{i}^{P})
$\Sigma_{i}^{P}=\left\{\{x \mid \exists y:(x, y) \in R\} \mid R\right.$ is Π_{i-1}^{P}-verifiable $\}$
Proof: (by induction on i)
$i=1$: exactly the characterization of $N P$
$(i-1) \rightarrow i$:
$" \Leftarrow^{\prime}: R$ is Π_{i-1}^{P}-verifiable $\Longrightarrow\{x \mid \exists y:(x, y) \in R\} \in \Sigma_{i}^{P}$

Characterization of \sum_{i}^{P}

Lemma: (Characterization of \sum_{i}^{P})
$\Sigma_{i}^{P}=\left\{\{x \mid \exists y:(x, y) \in R\} \mid R\right.$ is Π_{i-1}^{P}-verifiable $\}$
Proof: (by induction on i)
$i=1$: exactly the characterization of $N P$
$(i-1) \rightarrow i$:
$" \models^{\prime \prime}: R$ is Π_{i-1}^{P}-verifiable $\Longrightarrow\{x \mid \exists y:(x, y) \in R\} \in \Sigma_{i}^{P}$

- construct NTM $M^{?} \in N P$ which on input x
- guesses polynomial bounded y
- aks an oracle $K \in \sum_{i-1}^{P}$ whether $(x, y) \in R$
- accepts $x \Longleftrightarrow(x, y) \in R$

Characterization of \sum_{i}^{P}

Lemma: (Characterization of \sum_{i}^{P})
$\Sigma_{i}^{P}=\left\{\{x \mid \exists y:(x, y) \in R\} \mid R\right.$ is Π_{i-1}^{P}-verifiable $\}$
Proof: (by induction on i)
$i=1$: exactly the characterization of $N P$
$(i-1) \rightarrow i$:
$" \Leftarrow^{\prime \prime}: R$ is Π_{i-1}^{P}-verifiable $\Longrightarrow\{x \mid \exists y:(x, y) \in R\} \in \Sigma_{i}^{P}$

- construct NTM $M^{?} \in N P$ which on input x
- guesses polynomial bounded y
- aks an oracle $K \in \sum_{i-1}^{P}$ whether $(x, y) \in R$
- accepts $x \Longleftrightarrow(x, y) \in R$
- $M^{K} \in \Sigma_{i}^{P}\left(\right.$ since $\left.\Sigma_{i-1}^{P} \subseteq \Sigma_{i}^{P}\right)$

Characterization of \sum_{i}^{P}

Lemma: (Characterization of Σ_{i}^{P})
$\Sigma_{i}^{P}=\left\{\{x \mid \exists y:(x, y) \in R\} \mid R\right.$ is Π_{i-1}^{P}-verifiable $\}$
Proof: (by induction on i)
$i=1$: exactly the characterization of $N P$
$(i-1) \rightarrow i:$
$" \models^{\prime}: R$ is Π_{i-1}^{P}-verifiable $\Longrightarrow\{x \mid \exists y:(x, y) \in R\} \in \Sigma_{i}^{P}$

- construct NTM $M^{?} \in N P$ which on input x
- guesses polynomial bounded y
- aks an oracle $K \in \sum_{i-1}^{P}$ whether $(x, y) \in R$
- accepts $x \Longleftrightarrow(x, y) \in R$
- $M^{K} \in \Sigma_{i}^{P}\left(\right.$ since $\left.\Sigma_{i-1}^{P} \subseteq \Sigma_{i}^{P}\right)$
- M^{K} accepts $x \Longleftrightarrow \exists y:(x, y) \in R$

Characterization of \sum_{i}^{P}

Lemma: (Characterization of \sum_{i}^{P})
$\sum_{i}^{P}=\left\{\{x \mid \exists y:(x, y) \in R\} \mid R\right.$ is Π_{i-1}^{P}-verifiable $\}$

Proof:

" \Rightarrow ": $L \in \Sigma_{i}^{P} \Longrightarrow \exists R \Pi_{i-1}^{P}$-verifiable : $L=\{x \mid \exists y:(x, y) \in R\}$

Characterization of Σ_{i}^{P}

Lemma: (Characterization of \sum_{i}^{P})
$\Sigma_{i}^{P}=\left\{\{x \mid \exists y:(x, y) \in R\} \mid R\right.$ is Π_{i-1}^{P}-verifiable $\}$

Proof:

" \Rightarrow ": $L \in \Sigma_{i}^{P} \Longrightarrow \exists R \Pi_{i-1}^{P}$-verifiable : $L=\{x \mid \exists y:(x, y) \in R\}$

- have NTM $M^{\text {? }} \in N P^{\text {? }}$ deciding L with oracle $K \in \sum_{i-1}^{P}$

Characterization of \sum_{i}^{P}

Lemma: (Characterization of \sum_{i}^{P})
$\Sigma_{i}^{P}=\left\{\{x \mid \exists y:(x, y) \in R\} \mid R\right.$ is Π_{i-1}^{P}-verifiable $\}$

Proof:

" \Rightarrow ": $L \in \Sigma_{i}^{P} \Longrightarrow \exists R \Pi_{i-1}^{P}$-verifiable : $L=\{x \mid \exists y:(x, y) \in R\}$

- have NTM $M^{\text {? }} \in N P^{\text {? }}$ deciding L with oracle $K \in \sum_{i-1}^{P}$
- for input $x \in L$ encode all choices and queries of $M^{\text {? }}$ into a certificate y of $x \quad$ (example: $y=\left(c_{0}, c_{4}, q s_{1} \notin K, c_{1}, q s_{2} \in K+\right.$ cert, ...))
- define $R=\{(x, y) \mid y$ is certificate for $x\}$

Characterization of \sum_{i}^{P}

Lemma: (Characterization of Σ_{i}^{P})
$\sum_{i}^{P}=\left\{\{x \mid \exists y:(x, y) \in R\} \mid R\right.$ is Π_{i-1}^{P}-verifiable $\}$

Proof:

" \Rightarrow ": $L \in \Sigma_{i}^{P} \Longrightarrow \exists R \Pi_{i-1}^{P}$-verifiable : $L=\{x \mid \exists y:(x, y) \in R\}$

- have NTM $M^{\text {? }} \in N P^{\text {? }}$ deciding L with oracle $K \in \sum_{i-1}^{P}$
- for input $x \in L$ encode all choices and queries of $M^{\text {? }}$ into a certificate y of $x \quad$ (example: $y=\left(c_{0}, c_{4}, q s_{1} \notin K, c_{1}, q s_{2} \in K+\right.$ cert, ...))
- define $R=\{(x, y) \mid y$ is certificate for $x\}$
- R is polynomial bounded

Characterization of \sum_{i}^{P}

Lemma: (Characterization of Σ_{i}^{P})
$\sum_{i}^{P}=\left\{\{x \mid \exists y:(x, y) \in R\} \mid R\right.$ is Π_{i-1}^{P}-verifiable $\}$

Proof:

" \Rightarrow ": $L \in \Sigma_{i}^{P} \Longrightarrow \exists R \Pi_{i-1}^{P}$-verifiable : $L=\{x \mid \exists y:(x, y) \in R\}$

- have NTM $M^{\text {? }} \in N P^{\text {? }}$ deciding L with oracle $K \in \sum_{i-1}^{P}$
- for input $x \in L$ encode all choices and queries of $M^{\text {? }}$ into a certificate y of $x \quad$ (example: $y=\left(c_{0}, c_{4}, q s_{1} \notin K, c_{1}, q s_{2} \in K+\right.$ cert, ...))
- define $R=\{(x, y) \mid y$ is certificate for $x\}$
- R is polynomial bounded
- $x \notin K$ is Π_{i-1}^{P}-decidable

Characterization of \sum_{i}^{P}

Lemma: (Characterization of Σ_{i}^{P})
$\Sigma_{i}^{P}=\left\{\{x \mid \exists y:(x, y) \in R\} \mid R\right.$ is Π_{i-1}^{P}-verifiable $\}$

Proof:

" \Rightarrow ": $L \in \Sigma_{i}^{P} \Longrightarrow \exists R \Pi_{i-1}^{P}$-verifiable : $L=\{x \mid \exists y:(x, y) \in R\}$

- have NTM $M^{\text {? }} \in N P^{\text {? }}$ deciding L with oracle $K \in \sum_{i-1}^{P}$
- for input $x \in L$ encode all choices and queries of $M^{\text {? }}$ into a certificate y of $x \quad$ (example: $y=\left(c_{0}, c_{4}, q s_{1} \notin K, c_{1}, q s_{2} \in K+\right.$ cert, ...))
- define $R=\{(x, y) \mid y$ is certificate for $x\}$
- R is polynomial bounded
- $x \notin K$ is Π_{i-1}^{P}-decidable
- $x \in K$ is Π_{i-2}^{P}-verifiable (by induction)

Characterization of \sum_{i}^{P}

Lemma: (Characterization of \sum_{i}^{P})
$\Sigma_{i}^{P}=\left\{\{x \mid \exists y:(x, y) \in R\} \mid R\right.$ is Π_{i-1}^{P}-verifiable $\}$

Proof:

" \Rightarrow ": $L \in \Sigma_{i}^{P} \Longrightarrow \exists R \Pi_{i-1}^{P}$-verifiable : $L=\{x \mid \exists y:(x, y) \in R\}$

- have NTM $M^{\text {? }} \in N P^{\text {? }}$ deciding L with oracle $K \in \sum_{i-1}^{P}$
- for input $x \in L$ encode all choices and queries of $M^{\text {? }}$ into a certificate y of $x \quad$ (example: $y=\left(c_{0}, c_{4}, q s_{1} \notin K, c_{1}, q s_{2} \in K+\right.$ cert, ...))
- define $R=\{(x, y) \mid y$ is certificate for $x\}$
- R is polynomial bounded
- $x \notin K$ is Π_{i-1}^{P}-decidable
- $x \in K$ is Π_{i-2}^{P}-verifiable (by induction)
- $\Rightarrow R$ is Π_{i-1}^{P}-verifiable

Characterization of \sum_{i}^{P}

Lemma: (Characterization of \sum_{i}^{P})
$\Sigma_{i}^{P}=\left\{\{x \mid \exists y:(x, y) \in R\} \mid R\right.$ is Π_{i-1}^{P}-verifiable $\}$

Proof:

" \Rightarrow ": $L \in \Sigma_{i}^{P} \Longrightarrow \exists R \Pi_{i-1}^{P}$-verifiable : $L=\{x \mid \exists y:(x, y) \in R\}$

- have NTM $M^{\text {? }} \in N P^{\text {? }}$ deciding L with oracle $K \in \sum_{i-1}^{P}$
- for input $x \in L$ encode all choices and queries of $M^{\text {? }}$ into a certificate y of $x \quad$ (example: $y=\left(c_{0}, c_{4}, q s_{1} \notin K, c_{1}, q s_{2} \in K+\right.$ cert, ...))
- define $R=\{(x, y) \mid y$ is certificate for $x\}$
- R is polynomial bounded
- $x \notin K$ is Π_{i-1}^{P}-decidable
- $x \in K$ is Π_{i-2}^{P}-verifiable (by induction)
- $\Rightarrow R$ is Π_{i-1}^{P}-verifiable

Complexity Classes
Reductions
Polynomial Hierarchy

Optimization Problems in FPNP
Polynomial Hierarchy
Characterization of PH
PH collapses

Characterization of PH

Lemma: (Characterization of Σ_{i}^{P})

$$
\Sigma_{i}^{P}=\left\{\{x \mid \exists y:(x, y) \in R\} \mid R \text { is } \Pi_{i-1}^{P} \text {-verifiable }\right\}
$$

Corollary: (Characterization of Π_{i}^{P})
$\Pi_{i}^{P}=\left\{\left\{x\left|\forall y:|y|<|x|^{k} \Rightarrow(x, y) \in R\right\} \mid R\right.\right.$ is \sum_{i-1}^{P}-verifiable $\}$

Characterization of PH

Lemma: (Characterization of Σ_{i}^{P})

$\Sigma_{i}^{P}=\left\{\{x \mid \exists y:(x, y) \in R\} \mid R\right.$ is Π_{i-1}^{P}-verifiable $\}$

Corollary: (Characterization of Π_{i}^{P})
$\Pi_{i}^{P}=\left\{\left\{x\left|\forall y:|y|<|x|^{k} \Rightarrow(x, y) \in R\right\} \mid R\right.\right.$ is \sum_{i-1}^{P}-verifiable $\}$

Corollary:
$L \in \Sigma_{i}^{P} \Longleftrightarrow$
$\exists R: R$ is P-verifiable $\wedge L=\left\{x \mid \exists y_{1} \forall y_{2} \exists y_{3} \ldots:\left(x, y_{1}, y_{2}, \ldots, y_{i}\right) \in R\right\}$
$L \in \Pi_{i}^{P} \Longleftrightarrow$
$\exists R: R$ is P-verifiable $\wedge L=\left\{x \mid \forall y_{1} \exists y_{2} \forall y_{3} \ldots:\left(x, y_{1}, y_{2}, \ldots, y_{i}\right) \in R\right\}$

Problems in PH

MINIMUM_CIRCUIT : Given a Boolean circuit C, is it true that there is no circuit with fewer gates computing the same Boolean function?

Problems in PH

MINIMUM_CIRCUIT : Given a Boolean circuit C, is it true that there is no circuit with fewer gates computing the same Boolean function?

Lemma:

MINIMUM_CIRCUIT $\in \Pi_{2}^{P}$

Problems in PH

MINIMUM_CIRCUIT : Given a Boolean circuit C, is it true that there is no circuit with fewer gates computing the same Boolean function?

Lemma:

MINIMUM_CIRCUIT $\in \Pi_{2}^{P}$

Proof:

- C is accepted $\Longleftrightarrow \forall C^{\prime}:\left|C^{\prime}\right|<|C|: \exists$ input $x: C^{\prime}(x) \neq C(x)$
- and $C^{\prime}(x) \neq C(x)$ can be checked in polynomial time

Problems in PH

MINIMUM_CIRCUIT : Given a Boolean circuit C, is it true that there is no circuit with fewer gates computing the same Boolean function?

Lemma:

MINIMUM_CIRCUIT $\in \Pi_{2}^{P}$

Proof:

- C is accepted $\Longleftrightarrow \forall C^{\prime}:\left|C^{\prime}\right|<|C|: \exists$ input $x: C^{\prime}(x) \neq C(x)$
- and $C^{\prime}(x) \neq C(x)$ can be checked in polynomial time
$Q S A T_{i}$: Decide whether a quantified boolean expression with i alternations of quantifiers (beginning with an existential quantifier) is satisfiable

Lemma:

$Q S A T_{i}$ is \sum_{i}^{P} complete

Optimization Problems in $F P^{N P}$
Polynomial Hierarchy
Characterization of PH
PH collapses

PH collapses

Definition: (Collapse of PH)

PH collapses to the i th level means: $\forall j>i: \Sigma_{j}^{P}=\Pi_{j}^{P}=\Delta_{j}^{P}=\Sigma_{i}^{P}$

PH collapses

Definition: (Collapse of PH)

$P H$ collapses to the i th level means: $\forall j>i: \sum_{j}^{P}=\Pi_{j}^{P}=\Delta_{j}^{P}=\Sigma_{i}^{P}$

Lemma: (Collapse of PH)
If for some $i \leq 1 \Sigma_{i}^{P}=\Pi_{i}^{P}$ then PH collapses to the i th level.

PH collapses

Definition: (Collapse of PH)

PH collapses to the i th level means: $\forall j>i: \sum_{j}^{P}=\Pi_{j}^{P}=\Delta_{j}^{P}=\Sigma_{i}^{P}$

Lemma: (Collapse of PH)
If for some $i \leq 1 \Sigma_{i}^{P}=\Pi_{i}^{P}$ then PH collapses to the i th level.
Proof: $\quad \Sigma_{i}^{P}=\Pi_{i}^{P} \Longrightarrow \Sigma_{i+1}^{P}=\Sigma_{i}^{P}$

PH collapses

Definition: (Collapse of PH)

$P H$ collapses to the i th level means: $\forall j>i: \sum_{j}^{P}=\Pi_{j}^{P}=\Delta_{j}^{P}=\Sigma_{i}^{P}$

Lemma: (Collapse of PH)

If for some $i \leq 1 \Sigma_{i}^{P}=\Pi_{i}^{P}$ then PH collapses to the i th level.
Proof: $\quad \Sigma_{i}^{P}=\Pi_{i}^{P} \Longrightarrow \Sigma_{i+1}^{P}=\Sigma_{i}^{P}$
$L \in \sum_{i+1}^{P} \Longleftrightarrow L=\{x \mid \exists y:(x, y) \in R\}$ with R is Π_{i}^{P}-verifiable

PH collapses

Definition: (Collapse of PH)

PH collapses to the i th level means: $\forall j>i: \sum_{j}^{P}=\Pi_{j}^{P}=\Delta_{j}^{P}=\Sigma_{i}^{P}$

Lemma: (Collapse of PH)

If for some $i \leq 1 \Sigma_{i}^{P}=\Pi_{i}^{P}$ then PH collapses to the i th level.
Proof: $\quad \Sigma_{i}^{P}=\Pi_{i}^{P} \Longrightarrow \Sigma_{i+1}^{P}=\Sigma_{i}^{P}$
$L \in \Sigma_{i+1}^{P} \Longleftrightarrow L=\{x \mid \exists y:(x, y) \in R\}$ with R is Π_{i}^{P}-verifiable $\Longleftrightarrow L=\{x \mid \exists y:(x, y) \in R\}$ with R is \sum_{i}^{P}-verifiable

PH collapses

Definition: (Collapse of PH)

PH collapses to the i th level means: $\forall j>i: \Sigma_{j}^{P}=\Pi_{j}^{P}=\Delta_{j}^{P}=\Sigma_{i}^{P}$

Lemma: (Collapse of PH)

If for some $i \leq 1 \Sigma_{i}^{P}=\Pi_{i}^{P}$ then PH collapses to the i th level.
Proof: $\quad \Sigma_{i}^{P}=\Pi_{i}^{P} \Longrightarrow \Sigma_{i+1}^{P}=\Sigma_{i}^{P}$
$L \in \Sigma_{i+1}^{P} \Longleftrightarrow L=\{x \mid \exists y:(x, y) \in R\}$ with R is Π_{i}^{P}-verifiable $\Longleftrightarrow L=\{x \mid \exists y:(x, y) \in R\}$ with R is \sum_{i}^{P}-verifiable $\Longleftrightarrow L=\{x \mid \exists y:(x, y) \in R\}$ with $\left[(x, y) \in R \Longleftrightarrow \exists z:(x, y, z) \in S\right.$ with S is Π_{i-1}^{P}-verifiable $]$

PH collapses

Definition: (Collapse of PH)

$P H$ collapses to the i th level means: $\forall j>i: \sum_{j}^{P}=\Pi_{j}^{P}=\Delta_{j}^{P}=\Sigma_{i}^{P}$

Lemma: (Collapse of PH)

If for some $i \leq 1 \Sigma_{i}^{P}=\Pi_{i}^{P}$ then PH collapses to the i th level.
Proof: $\quad \Sigma_{i}^{P}=\Pi_{i}^{P} \Longrightarrow \Sigma_{i+1}^{P}=\Sigma_{i}^{P}$
$L \in \Sigma_{i+1}^{P} \Longleftrightarrow L=\{x \mid \exists y:(x, y) \in R\}$ with R is Π_{i}^{P}-verifiable $\Longleftrightarrow L=\{x \mid \exists y:(x, y) \in R\}$ with R is \sum_{i}^{P}-verifiable $\Longleftrightarrow L=\{x \mid \exists y:(x, y) \in R\}$ with
$\left[(x, y) \in R \Longleftrightarrow \exists z:(x, y, z) \in S\right.$ with S is Π_{i-1}^{P}-verifiable]
$\Longleftrightarrow L=\{x \mid \exists y, z:(x, y, z) \in S\}$ with S is Π_{i-1}^{P}-verifiable

PH collapses

Definition: (Collapse of PH)

$P H$ collapses to the i th level means: $\forall j>i: \sum_{j}^{P}=\Pi_{j}^{P}=\Delta_{j}^{P}=\Sigma_{i}^{P}$

Lemma: (Collapse of PH)

If for some $i \leq 1 \Sigma_{i}^{P}=\Pi_{i}^{P}$ then PH collapses to the i th level.
Proof: $\quad \Sigma_{i}^{P}=\Pi_{i}^{P} \Longrightarrow \Sigma_{i+1}^{P}=\Sigma_{i}^{P}$
$L \in \Sigma_{i+1}^{P} \Longleftrightarrow L=\{x \mid \exists y:(x, y) \in R\}$ with R is Π_{i}^{P}-verifiable $\Longleftrightarrow L=\{x \mid \exists y:(x, y) \in R\}$ with R is \sum_{i}^{P}-verifiable $\Longleftrightarrow L=\{x \mid \exists y:(x, y) \in R\}$ with
$\left[(x, y) \in R \Longleftrightarrow \exists z:(x, y, z) \in S\right.$ with S is Π_{i-1}^{P}-verifiable]
$\Longleftrightarrow L=\{x \mid \exists y, z:(x, y, z) \in S\}$ with S is Π_{i-1}^{P}-verifiable $\Longleftrightarrow L \in \Sigma_{i}^{P}$

PH collapses

Corollary: (PH complete Problems)

If PH has complete problems, then it collapses to some finite level.

PH collapses

Corollary: (PH complete Problems)

If PH has complete problems, then it collapses to some finite level.

Corollary: (PH and PSPACE)
 $P H \subseteq P S P A C E$ and $P H=P S P A C E \Longrightarrow P H$ collapses

PH collapses

Corollary: (PH complete Problems)

If PH has complete problems, then it collapses to some finite level.

Corollary: (PH and PSPACE)

$P H \subseteq P S P A C E$ and $P H=P S P A C E \Longrightarrow P H$ collapses

Proof:

(1) trivial
(2) PSPACE has complete problems

References

O. Goldreich:

Introduction to Complexity Theory
Lecture Notes, 1999.

Markus Bläser:
Complexity Theory
Lecture Notes, 2005.
目 Clay Mathematics Institute, Cambridge, Massachusetts:
P vs NP Problem
http://www.claymath.org/millennium/P_vs_NP/.
© Christos H. Papadimitriou:
Computational Complexity.
Addison Wesley, 1994.

THANK YOU

