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Plan

• #P, reductions, complete instances
• The Permanent
• An Interactive proof for P#P with prover 

from P#P

• Permanent is #P-complete
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#P: computation that counts

• #SAT: Given a boolean expression, 
compute the number of different 
assignments that satisfy it

• #Hamilton Path: compute the number of 
Hamilton paths in given graph

• #Clique: compute the number of cliques of 
size k or larger
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#P: definition
binary

polynomially

 relation

1)  ( , ) :  is  balanced
2) polynomial  decidabl-t eime

k

Q X Y

x y Q y x Q

⊆ × −

∀ ∈ <

associated with :
"Given , how many :  ( , ) ?"
Counting problem Q

x y x y Q∈

#P: class of all counting problems associated with 
polynomially balanced polynomial-time decidable 
relations 
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Reductions between counting 
problems

• Reduction from A to B:

{0,1, 2...}
: pol

{0,1
ynomial-ti

, 2,..
mecomputable function

: polynomial-timecomputable function.}
A
AS

BR →
→×

If x is instance of A and N is the answer for the 
instance R(x) of B, then S(x,N) is the answer 
for instance x of A.
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#SAT is #P-complete

Theorem #SAT, #3-SAT are #P-complete

Proof (sketch) Reduction from Cook’s 
theorem preserves the number of 
solutions. I.e. function R is from Cook’s 
theorem, function S=Id.
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Bipartite graphs and perfect 
matching
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Perfect matching: girl-boy love pairs: each boy has exactly one girl in the pair. 
Each girl has exactly one boy in the pair. 
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Matching vs. permanent
1 1

• Consider the counting problem: 
compute number of perfect 
matching in bipartite graph.
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Corollary: 0-1 Permanent is in #P
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Problem to the audience
I will prove, that to compute the permanent is at 

least NP-hard, therefore to compute the number 
of perfect matchings is hard problem. 

Problem: how to compute the parity of the 
number of perfect matching in polynomial time?

Solution: just to compute the determinant mod 2.
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Motivation

• We prove that permanent is #P-complete
later

• P#P=PPermanent⊆PSPACE. Shamir’s 
theorem (IP=PSPACE) states, that every 
language from PSPACE has Interactive 
proof with prover from PSPACE.

• We will prove that every language from 
P#P has Interactive proof with prover from 
P#P
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Facts

• 0/1 Permanent is #P-complete
• Integer Permanent modulo N is in #P if N 

is bounded by polynomial on size of the 
matrix.

We prove this statements later.
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An Interactive proof for P#P

Theorem. There exists interactive proof for 
language P#P (with permanent as an
oracle) with prover from P#P.

Proof. Consider language L from P#P. M is 
polynomial time Turing Machine with 
permanent as an oracle, deciding L.

The verifier simulates M and uses 
Interactive Protocol for permanent 
computing.



13

Interactive protocol for Permanent

• The Verifier asks to compute perm A of 0/1 matrix A 
n×n , prover’s answer is b

• p1, p2,…,pn are large enough different primes.
• pi<poly(n).
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Decomposition of the Permanent 
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Interactive protocol for Permanent

• p is enough big prime number. F=Zp is the 
finite field. All evaluations are in F.

• The Verifier asks to compute perm A1, 
perm A2 ,…, perm An; the Prover answer: 
b1,b2,…,bn.

• The Verifier verifies: 
b=a11b1+a12b2+…+a1nbn

If perm A ≠b, then exists i: perm Ai ≠bi
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Interactive protocol for Permanent

The Verifiers has to verify the following list S of 
pairs: S={(A1, b1), (A2, b2)…, (An, bn )}

• The Verifier takes (C,d) and (E,f) from S and 
asks Prover to compute polynomial: perm
(Cx+E(1-x)) (this polynomial is of degree n and 
Prover from P#P is able to compute its 
coefficients using interpolation);
The Prover answers the polynomial q(x).

• The Verifier verifies that d=q(1) and f=q(0),
(therefore incorrectness of pair (C,d)( or (E,f))
implies incorrectness q(x))
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Interactive protocol for Permanent

• Take y from F at random
• Replace (C,d) and (E,f) by (Cy+E(1-y),q(y))
• If perm (Cx+E(1-x)) is not q(x) then 

Pr {perm  ( (1- ))  ( )}
| F |y
nCy E y q y+ = ≤

• Repeat this (n-1) times and S will contain only 
one pair (A’,b’). A’ is (n-1) ×(n-1) and (if initial 
permanent  is incorrect):

2

Pr {perm  ' ' | perm  }
| F |
nA b A b= ≠ ≤
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Interactive protocol for Permanent

• Repeat this procedure (n-1) times:
A’ is matrix (n-1)×(n-1)
A’’ is matrix (n-2)×(n-2)
…
A(n-1) is matrix 1×1

3
( 1) ( 1)Pr {perm  | perm  }

| F |
n n nA b A b− −= ≠ ≤

So we are to choose p=|F|>n4
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Last part of the talk: 
0/1 Permanent is  

#P-complete
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Matrix-graph corespondence
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Cycle form of Permutations
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Cycle covering vs. permanent
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Weighted cycle covering
1 0 1 0

1 0 2 0
0 3 0 1
0 1 1 2
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Warm-up (example)
-1 -1

G’
-1 -1

-1

-1

G weight=-1

-1 -1

Total weight equals 0

-1

Permanent of graph G equals 0. weight=1
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Permanent is #P-complete

Theorem (Valiant’s Theorem) 0/1 Permanent is
#P-complete

Plan of the proof:
1) Reduction from #3-SAT to Weighted 

Cycle Covering (Permanent under 
integers)

2) Reduction from Weighted Cycle 
Covering to Cycle Covering (0/1 
Permanent)
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Part 1: #3-SAT to Weighted Cycle 
Covering

Proof: Given a boolean formula φ in 3-CNF witn n
variables and m clauses we construct a graph G
with weighted cycle covering (or integer matrix A
with permanent) 43m(# φ). # φ stands for the 
number of satisfying assignments of φ.

To construct G from φ, we use three kinds of 
gadgets: two syntax (variable-gadget and 
clause-gadget) and one semantic (xor-gadget). 
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The Variable-gadget
Variable x: False edges: one per clause, 

containing ┐x.

True edges: one per clause, 
containing x.

True-value cycle covering: False-value cycle covering:



28

The Clause-gadget
Clause 
(X∨Y∨Z)

X Y

Clause-gadget 
has no cycle 
covering 
traversing all 
external 
(brown) edges.

Z

Brown edges: external edges
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Clause-gadget cycle covering
X=1 Y=1

Z=1

X=0 Y=1

Z=1

X=0 Y=0

Z=1

X=0 Y=1

Z=0

X=1 Y=0

Z=1

X=1 Y=0

Z=0

X=1 Y=1

Z=0

Cycle covering corresponds to satisfying assignment 
of the clause.

The value of variable: “cycle covering doesn’t 
traverse my external edge”
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General construction

XOR-gadget: exact one of two edges is 
included in cycle covering 

Variable 
Gadget

X

Clause 
Gadget

(X∨Y∨Z)
XOR Gadget

x

Clause 
Gadget

(¬X∨U∨V)

¬ x

XOR Gadget
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The XOR-gadget
u u'

vv’

u u'

vv’

Fact (can be easily checked):

The following cycle covers have 
total weight of 0:

1) Those that do not enter or 
leave the gadget

2) Those that enter at u and 
leave at v’

3) Those that enter at v and 
leave at u’

Only cycle cover that have 
nonzero (weight=4) 
contribution:

a) enter at u and leave at u’

b) enter at v and leave at v’

-1

-1

-1

2

3
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Total:

Variable 
Gadget

Clause 
Gadget

XOR 
Gadget

We have some correspondence between truth 
assignments and nonzero cycle coverings.

Each nonzero cycle covering has the weight 43m: each 
XOR-gadget give weight 4 and we have 3m XOR gadgets 
(3 for each clause).
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Part 2: from weighted cycle 
covering to unweighted

• Positive weights simulating
• MOD N Permanent
• Weight -1 simulating
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Positive weights simulating

Weight 2 simulating Weight 3 simulating

Corollary: permanent mod N is in #P if N<poly(“size of 
matrix”) 
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MOD N Permanent

• All evaluations modulo N
• If N>perm A, then 

((perm A) mod N) = perm A
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Weight -1 simulating

Consider k: perm A<2k

(k=6m+n+1: 
26m+n+1>43m2n). 

N=2k+1 
Evaluations modulo N.
-1 mod N = 2k

Weight 2k simulating
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Conclusion

• We prove that the 0/1 permanent is #P-
complete

• We give Interactive protocol for the 
language from P#P with prover from P#P

Any questions?
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