\#P

Complexity of the permanent An interactive proof for P\#P

Dmitry Itsykson

Saint-Petersburg State University

Plan

- \#P, reductions, complete instances
- The Permanent
- An Interactive proof for $\mathrm{P}^{\# P}$ with prover from $\mathrm{P}^{\# P}$
- Permanent is \#P-complete

\#P: computation that counts

- \#SAT: Given a boolean expression, compute the number of different assignments that satisfy it
- \#Hamilton Path: compute the number of Hamilton paths in given graph
- \#Clique: compute the number of cliques of size k or larger

\#P: definition

$Q \subseteq X \times Y$-binary relation

1) $\forall(x, y) \in Q|y|<|x|^{k}: Q$ is polynomially balanced
2) polynomial-time decidable

Counting problem associated with Q :
"Given x, how many $y:(x, y) \in Q$?"
\#P: class of all counting problems associated with polynomially balanced polynomial-time decidable relations

Reductions between counting problems

- Reduction from A to B :
$R: A \rightarrow B$ polynomial-time computable function
$S: A \times\{0,1,2 \ldots\} \rightarrow\{0,1,2, \ldots\}$ polynomial-time computable function

If x is instance of A and N is the answer for the instance $R(x)$ of B, then $S(x, N)$ is the answer for instance x of A.

\#SAT is \#P-complete

Theorem \#SAT, \#3-SAT are \#P-complete

Proof (sketch) Reduction from Cook's theorem preserves the number of solutions. I.e. function R is from Cook's theorem, function $S=I d$.

Bipartite graphs and perfect matching

$H=(V=(G, B), E)$ bipartite graph;
$G=\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$ girls
$B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ boys
$E \subseteq G \times B$ love edges

Perfect matching: girl-boy love pairs: each boy has exactly one girl in the pair. Each girl has exactly one boy in the pair.

Matching vs. permanent

- Consider the counting problem: compute number of perfect matching in bipartite graph.

$H=(V=(G, B), E) ; G=\left\{g_{1}, g_{2}, \ldots, g_{n}\right\} ; B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\} ; E \subseteq G \times B ;$
Ais adjacency matrix: $A_{i j}=1 \Leftrightarrow\left(g_{i}, b_{j}\right) \in E$
$\operatorname{det} A=\sum_{\pi \in S_{n}}(-1)^{\sigma(\pi)} \prod_{i=1}^{n} A_{i, \pi(i)}$ determinant
$\operatorname{perm} A=\sum_{\pi \in S_{n}} \prod_{i=1}^{n} A_{i, \pi(i)}$ permanent $=$ number of matching

$$
A=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1
\end{array}\right]
$$

Corollary: 0-1 Permanent is in \#P

Problem to the audience

I will prove, that to compute the permanent is at least NP-hard, therefore to compute the number of perfect matchings is hard problem.
Problem: how to compute the parity of the number of perfect matching in polynomial time?

Solution: just to compute the determinant mod 2.

Motivation

- We prove that permanent is \#P-complete later
- $\mathrm{P}^{\# P}=\mathrm{P}^{\text {Permanent }} \subseteq \mathrm{PSPACE}$. Shamir's theorem (IP=PSPACE) states, that every language from PSPACE has Interactive proof with prover from PSPACE.
- We will prove that every language from $P^{\# P}$ has Interactive proof with prover from P\#

Facts

- 0/1 Permanent is \#P-complete
- Integer Permanent modulo N is in \#P if N is bounded by polynomial on size of the matrix.

We prove this statements later.

An Interactive proof for P\#P

Theorem. There exists interactive proof for language $\mathbf{P}^{\# P}$ (with permanent as an oracle) with prover from P \#P.
Proof. Consider language L from $P^{\# P}$. M is polynomial time Turing Machine with permanent as an oracle, deciding L.
The verifier simulates M and uses
Interactive Protocol for permanent computing.

Interactive protocol for Permanent

- The Verifier asks to compute perm A of $0 / 1$ matrix A $\mathrm{n} \times \mathrm{n}$, prover's answer is b
- $p_{1}, p_{2}, \ldots, p_{n}$ are large enough different primes.
- $p_{i}<\operatorname{poly}(n)$.

$$
\begin{aligned}
& 0 \leq \text { perm } A, b<n!<p_{1} p_{2} \ldots p_{n} \\
& \text { The Verifier wants to verify: } \\
& \text { perm } A \equiv b\left(\bmod p_{1}\right) \\
& \text { perm } A \equiv b\left(\bmod p_{2}\right)
\end{aligned}
$$

perm $A \equiv b\left(\bmod p_{n}\right)$
$\operatorname{perm} A-b \vdots p_{1} p_{2} \ldots p_{n} \Rightarrow \operatorname{perm} A=b$

Decomposition of the Permanent

$\operatorname{perm}\left(\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ \begin{array}{l}a_{21} \\ \ldots \\ \ldots \\ a_{n 1}\end{array} & a_{22} & \ldots & a_{2 n} \\ \ldots & \ldots & \ldots \\ a_{n 2} & \ldots & a_{n n}\end{array}\right)=a_{11} \times \operatorname{perm}\left(\begin{array}{ccc}a_{22} & \ldots & a_{2 n} \\ \ldots & \ldots & \ldots \\ a_{n 2} & \ldots & a_{n n}\end{array}\right)$
$+a_{12} \times \operatorname{perm}\left(\begin{array}{ccc}a_{21} & \ldots & a_{2 n} \\ \ldots & \ldots & \ldots \\ a_{n 1} & \ldots & a_{n n}\end{array}\right)+\ldots+a_{1 n} \times \operatorname{perm}\left(\begin{array}{ccc}a_{21} & \ldots & a_{2(n-1)} \\ \ldots & \ldots & \ldots \\ a_{n 1} & \ldots & a_{n(n-1)}\end{array}\right)$
$\operatorname{perm} A=a_{11} \times \operatorname{perm}_{1}+a_{12} \times \operatorname{perm}_{2}+\ldots+a_{1 n} \times \operatorname{perm}_{n}$

Interactive protocol for Permanent

- p is enough big prime number. $F=Z_{p}$ is the finite field. All evaluations are in F.
- The Verifier asks to compute perm A_{1}, perm A_{2}, \ldots, perm A_{n}; the Prover answer: $b_{1}, b_{2}, \ldots, b_{n}$.
- The Verifier verifies:

$$
b=a_{11} b_{1}+a_{12} b_{2}+\ldots+a_{1 n} b_{n}
$$

If perm $A \neq b$, then exists i : perm $A_{i} \neq b_{i}$

Interactive protocol for Permanent

The Verifiers has to verify the following list S of pairs: $S=\left\{\left(A_{1}, b_{1}\right),\left(A_{2}, b_{2}\right) \ldots,\left(A_{n}, b_{n}\right)\right\}$

- The Verifier takes (C, d) and (E, f) from S and asks Prover to compute polynomial: perm
$(C x+E(1-x))$ (this polynomial is of degree n and Prover from P\#P is able to compute its coefficients using interpolation);
The Prover answers the polynomial $q(x)$.
- The Verifier verifies that $d=q(1)$ and $f=q(0)$, (therefore incorrectness of pair (C,d)(or (E,f)) implies incorrectness $q(x)$)

Interactive protocol for Permanent

- Take y from F at random
- Replace (C, d) and (E,f) by (Cy+E(1-y),q(y))
- If perm $(C x+E(1-x))$ is not $q(x)$ then

$$
\operatorname{Pr}_{y}\{\text { perm }(C y+E(1-y))=q(y)\} \leq \frac{n}{|F|}
$$

- Repeat this (n-1) times and S will contain only one pair ($\left.A^{\prime}, b^{\prime}\right)$. A^{\prime} is $(n-1) \times(n-1)$ and (if initial permanent is incorrect):

$$
\operatorname{Pr}\left\{\text { perm } A^{\prime}=b^{\prime} \mid \operatorname{perm} A \neq b\right\} \leq \frac{n^{2}}{|\mathrm{~F}|}
$$

Interactive protocol for Permanent

- Repeat this procedure ($\mathrm{n}-1$) times:
A^{\prime} is matrix $(n-1) \times(n-1)$
$A^{\prime \prime}$ is matrix $(n-2) \times(n-2)$
$\mathrm{A}^{(\mathrm{n}-1)}$ is matrix 1×1

$$
\operatorname{Pr}\left\{\operatorname{perm} A^{(n-1)}=b^{(n-1)} \mid \operatorname{perm} A \neq b\right\} \leq \frac{n^{3}}{|\mathrm{~F}|}
$$

So we are to choose $p=|F|>n^{4}$

Last part of the talk: 0/1 Permanent is \#P-complete

Matrix-graph corespondence

(i,j) is edge iff $A_{i j}=1$

Cycle form of Permutations

$$
\left.\begin{array}{l}
\pi=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
3 & 4 & 7 & 2 & 1 & 6 & 5 & 8
\end{array}\right) \\
1 \xrightarrow[\pi]{\longrightarrow} 3 \xrightarrow[\pi]{\longrightarrow} 7 \xrightarrow[\pi]{\longrightarrow} 5 \xrightarrow[\pi]{\longrightarrow} 1 \\
2 \xrightarrow[\pi]{\longrightarrow} 2 \\
6 \xrightarrow[\pi]{\pi} 6
\end{array}\right] \begin{aligned}
& 8 \longrightarrow \pi \\
& \pi=(1,3,7,5)(2,4)(6)(8)
\end{aligned}
$$

Cycle covering vs. permanent

Consider 0-1 $n \times n$ matrix A. Define the directed graph $G(V=[1 . . n], E)$ based on $A:(i, j) \in E \Leftrightarrow A_{i j}=1$
Cycle covering: $\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ - set of disjoint cycles

$$
A=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1
\end{array}\right]
$$

perm $A=4$
$\forall v \in V \exists i: v \in C_{i}$
perm $A=\sum_{\pi \in S_{n}} \prod_{i=1}^{n} A_{i, \pi(i)}$ - number of cycle coverings
$\pi \in S_{n}, \pi=\left(i_{1}, i_{2}, \ldots, i_{k_{1}}\right)\left(i_{k_{1}+1}, i_{k_{1}+2}, \ldots, i_{k_{2}}\right) \ldots\left(i_{k_{l-1}+1}, i_{k_{l-1}+2}, \ldots, i_{n}\right)$.
$i_{1} \rightarrow i_{2} \rightarrow \ldots \rightarrow i_{k_{1}} \rightarrow i_{1}$ - a cycle

Weighted cycle covering

$$
A=\left[\begin{array}{cccc}
-1 & 0 & 1 & 0 \\
1 & 0 & 2 & 0 \\
0 & 3 & 0 & 1 \\
0 & 1 & 1 & 2
\end{array}\right]
$$

$$
\text { perm } A=-6
$$

weight=-12

weight=6

weight=-2

Warm-up (example)

Total weight equals 0

Permanent of graph G equals 0 .
weight=1

Permanent is \#P-complete

Theorem (Valiant's Theorem) 0/1 Permanent is \#P-complete
Plan of the proof:

1) Reduction from \#3-SAT to Weighted Cycle Covering (Permanent under integers)
2) Reduction from Weighted Cycle Covering to Cycle Covering (0/1 Permanent)

Part 1: \#3-SAT to Weighted Cycle Covering

Proof: Given a boolean formula φ in 3-CNF witn n variables and m clauses we construct a graph G with weighted cycle covering (or integer matrix A with permanent) $4^{3 m}(\# \varphi)$. \# φ stands for the number of satisfying assignments of φ.
To construct G from φ, we use three kinds of gadgets: two syntax (variable-gadget and clause-gadget) and one semantic (xor-gadget).

The Variable-gadget

Variable x:

False edges: one per clause, containing 7 x .

True edges: one per clause, containing x.

True-value cycle covering:

False-value cycle covering:

The Clause-gadget

Clause
 (XVYレZ)

Clause-gadget has no cycle covering traversing all external
(brown) edges.

Brown edges: external edges

Clause-gadget cycle covering

Cycle covering corresponds to satisfying assignment of the clause.

The value of variable: "cycle covering doesn't traverse my external edge"

General construction

XOR-gadget: exact one of two edges is included in cycle covering

The XOR-gadget

Fact (can be easily checked):

The following cycle covers have total weight of 0 :

1) Those that do not enter or leave the gadget
2) Those that enter at u and leave at v^{\prime}
3) Those that enter at v and leave at u'

Only cycle cover that have nonzero (weight=4) contribution:
a) enter at u and leave at u^{\prime}
b) enter at v and leave at $\mathrm{v}^{\text {' }}$

Total:

We have some correspondence between truth assignments and nonzero cycle coverings.
Each nonzero cycle covering has the weight $4^{3 m}$: each XOR-gadget give weight 4 and we have $3 m$ XOR gadgets (3 for each clause).

Part 2: from weighted cycle covering to unweighted

- Positive weights simulating
- MOD N Permanent
- Weight -1 simulating

Positive weights simulating

Weight 2 simulating

Weight 3 simulating

Corollary: permanent mod N is in \#P if $\mathrm{N}<$ poly("size of matrix")

MOD N Permanent

- All evaluations modulo N
- If $N>$ perm A, then
$((\operatorname{perm} A) \bmod N)=\operatorname{perm} A$

Weight -1 simulating

Consider k: perm A<2k
($k=6 m+n+1$:
$\left.2^{6 m+n+1}>4^{3 m} 2^{n}\right)$.
$N=2^{k}+1$
Evaluations modulo N.
$-1 \bmod N=2^{k}$

Weight 2^{k} simulating

Conclusion

- We prove that the $0 / 1$ permanent is \#Pcomplete
- We give Interactive protocol for the language from $\mathrm{P}^{\# P}$ with prover from $\mathrm{P}^{\# P}$

Any questions?

References

- C. Papadimitriou, Computational Complexity, Addison Wesley, 1994, chapter 18
- S. Arora, Computational Complexity: Modern Approach, Chapter 8
- E.A. Hirsch, Lecture notes.

