Valiant-Vazirani theorem

Posov Ilya

Faculty of Mathematics and Mechanics Chair of software engineering (system programming)

Original paper

- L.G. Valiant and V.V. Vazirani, NP is as Easy as Detecting Unique Solutions. Theoretical Computer Science, 47(1986), 85-94.

Contents

- Statement of the theorem
- Words before the proof
- The $1^{\text {st }}$ proof
- The $2^{\text {nd }}$ proof
- Open questions

Leslie Valiant \& Vijay Vazirani

- Leslie G. Valiant http://people.deas.harvard.edu/~valiant/
- Ph.D., Warwick university in CS,1974
- T.Jefferson Coolidge Professor of Computer Science and Applied Mathematics in the Division of Engeneering and Applied Sciences, Harvard University
- Vijay V. Vazirani
http://www-static.cc.gatech.edu/~vazirani/
- Ph.D., University of California, Berkley, 1983
- Professor of CS at Georgia Tech and McKey Visiting Professor at the University of California, Berkley

Theorem statement

F in CNF
can be constructed in polynomial time (probabilistic construction)
$F_{1}, F_{2}, \ldots, F_{m}$ in CNF

- If F is unsatisfiable, then all F_{i} are unsatisfiable
- If F is satisfiable, then with probability greater than $1 / 2$ at least one of F_{i} is uniquely-satisfiable

Solving SAT

- Consider u-solver, an algorithm:
- u-solver $(F)=$ yes, if F has exactly one solution
$-u$-solver(F) $=n o$, if F has no solutions
- u-solver(F) = yes/no (unpredictable), otherwise
- Meaning of u-solver: tests for satisfiability assuming that given formula has at most one solution
- u-solver solves "promise problem" UNIQUE-SAT

Solving SAT (continue)

(a) F is unsatisfiable
$\downarrow \mathrm{V}$-V construction
$F_{1}, \quad F_{2}, \ldots, \quad F_{m}$

no no ... no
(b) F is satisfiable

$$
\begin{array}{cccc}
& & \downarrow & \vee \text {-v construction } \\
F_{1}, & F_{2}, & \ldots, & F_{m} \\
0 & 1 & & >1 \\
& \vdots & & \\
& \mathrm{u} \text { - } & \text { solver } & \\
\downarrow & \downarrow & & \downarrow \\
\text { no } & \text { yes } & \ldots & \text { yes/no }
\end{array}
$$

- So, if F is unsatisfiable, u-solver will say $n o$ for all F_{i}
- If F is satisfiable, with probability more than $1 / 2$ u-solver will say yes for some F_{i}

Result

- $S A T \in R P^{\text {UNIQUE-SAT }}$
- $\mathrm{NP} \subset \mathrm{RP}^{\text {UNiQUE-SAT }}$
- $\mathrm{NP} \subset \mathrm{BPP}^{\text {UNIQUE-SAT }}$

Thoughts

- To solve SAT u-solver can be replaced by
- Solver that tests whether the formula has exactly one satisfying assignment
- Solver that tests whether the formula has odd number of satisfying assignments

Proof of the Theorem

Hyperplanes η_{S}

- Let $S \subseteq\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- Hyperplane η_{S} is a boolean formula in CNF, stating that an even number of x_{i} in S is true
- Example: $n=4, S=\left\{x_{1}, x_{2}, x_{4}\right\}$

$$
\text { - } \overbrace{\left.y_{0}\right) \wedge\left(y_{1} \Leftrightarrow\left(y_{0} \oplus x_{1}\right)\right) \wedge\left(y_{2} \Leftrightarrow\left(y_{1} \oplus x_{2}\right)\right) \wedge\left(y_{3} \Leftrightarrow y_{2}\right) \wedge\left(y_{4} \Leftrightarrow\left(y_{3} \oplus x_{4}\right)\right) \wedge\left(y_{4}\right)}^{\left.y_{1}\right)} \underbrace{y_{2}}_{y_{3}} \quad x_{4} \quad y_{2} \quad y_{4}
$$

Notation

- F is a formula in CNF with variables $x_{1}, x_{2}, \ldots, x_{n}$
- T is a set of its satisfying assignments
- $D=|T|$ - number of its satisfying assignments
- S_{i} are randomly selected subsets of $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ $(i=1 \ldots n+1)$
- $F_{0}=F$
- $F_{1}=F \wedge \eta_{S_{1}}$
- $F_{2}=F \wedge \eta_{S_{1}} \wedge \eta_{S_{2}}$
- $F_{n+1}=F \wedge \eta_{S_{1}} \wedge \eta_{S_{2}} \ldots \wedge \eta_{S_{n+1}}$

Proof continue

- $F_{0}=F$
- $F_{1}=F \wedge \eta_{S_{1}}$
- $F_{2}=F \wedge \eta_{S_{1}} \wedge \eta_{S_{2}}$
- $F_{n+1}=F \wedge \eta_{S_{1}} \wedge \eta_{S_{2}} \ldots \wedge \eta_{S_{n+1}}$
- Obviously, if F is unsatisfiable, all F_{i} are unsatisfiable
- We proof that if F is satisfiable, if $2^{k} \leq D \leq 2^{k+1}$ then F_{k+2} is uniquely-satisfiable with probability at least $1 / 8$

1/8 vs. 1/2

- $F_{1(1)}, F_{2(1)}, F_{3(1)}, \ldots, F_{n+1(1)}$
- $F_{1(6)}, F_{2(6)}, F_{3(6)}, \ldots, F_{n+1(6)}$
- Each set has no uniquely-satisfiable formula with probability at most $7 / 8$
- Sets constructed independently, so probability that there are no uniquely-satisfiable formulas at all is at $\operatorname{most}(7 / 8)^{6}<1 / 2$
- Probability, that there is at least one uniquelysatisfiable formula is at least $1 / 2$

Evaluations (1/3)

- $F_{k+2}=F \wedge \eta_{S_{1}} \wedge \eta_{S_{2}} \ldots \wedge \eta_{S_{k+2}} \quad P\left\{F_{k+2}\right.$ is uniquely-satisfiable $\}=$?
- take $t \in T$ some truth assignment of F
- ${\underset{S}{i}}_{P}^{P}\left\{t\right.$ is the only satisfying assignment of $\left.F_{k+2}\right\}=$ $\underset{S_{i}}{P}\left\{\forall i \eta_{S_{i}}(t)=\right.$ true $\left.\& \forall t^{\prime} \in T \backslash\{t\} \exists i \eta_{S_{i}}\left(t^{\prime}\right) \neq \eta_{S_{i}}(t)\right\}=$ $\underset{S_{i}}{P}\left\{\forall i \eta_{S_{i}}(t)=\operatorname{true}\right\} \cdot \underset{S_{i}}{P}\left\{\forall t^{\prime} \in T \backslash\{t\} \exists i \eta_{S_{i}}\left(t^{\prime}\right) \neq \eta_{S_{i}}(t)\right\}=$ $P_{1} \cdot P_{2}$

Evaluations (2/3)

- $F_{k+2}=F \wedge \eta_{S_{1}} \wedge \eta_{S_{2}} \ldots \wedge \eta_{S_{k+2}} \quad P\left\{F_{k+2}\right.$ is uniquely-satisfiable $\}=$?
- take $t \in T$ some truth assignment of F
- $P_{1}=\underset{S_{i}}{P}\left\{\forall i \eta_{S_{i}}(t)=t r u e\right\}=$
$t=0000000000$
$\left(P_{S}\left\{\eta_{S}(t)=\text { true }\right\}\right)^{k+2} \geq \frac{1}{2^{k+2}}$
Exactly one half of all subsets of variables have even number of true-variables

Evaluations (3/3)

$$
\begin{aligned}
& P_{2}=\underset{S_{i}}{P}\left\{\forall t^{\prime} \in T \backslash\{t\} \exists i \eta_{S_{i}}\left(t^{\prime}\right) \neq \eta_{S_{i}}(t)\right\}= \\
& 1-P_{S_{i}}^{P}\left\{\exists t^{\prime} \in T \backslash\{t\} \forall i \eta_{S_{i}}\left(t^{\prime}\right)=\eta_{S_{i}}(t)\right\}= \\
& 1-P_{S_{i}}\left\{\left(\forall i \eta_{S_{i}}\left(t_{1}\right)=\eta_{S_{i}}(t)\right) \vee \ldots \vee\left(\forall i \eta_{S_{i}}\left(t_{|T|-1}\right)=\eta_{S_{i}}(t)\right)\right\} \geq \\
& 1-(|T|-1) \underset{S_{i}}{P}\left\{\forall i \eta_{S_{i}}\left(t^{\prime}\right)=\eta_{S_{i}}(t)\right\}> \\
& t=0000000000 \\
& t^{\prime}=0000000000 \\
& 1-2^{k+1}\left(\underset{S}{P}\left\{\eta_{S}\left(t^{\prime}\right)=\eta_{S}(t)\right\}\right)^{k+2}= \\
& 1-2^{k+1} \cdot \frac{1}{2^{k+2}}=\frac{1}{2} \\
& \text { Exactly one half } \\
& \text { of all subsets (S) } \\
& \text { of variables are } \\
& \text { such that } \eta_{s}(t)= \\
& \eta_{s}\left(t^{\prime}\right)
\end{aligned}
$$

Ending of the proof...

- If we take arbitrary $t \in T$ truth assignment of F,
$P\left\{t\right.$ is the only satisfying assignment of $\left.F_{k+2}\right\}=P_{1} \cdot P_{2}>$
$\frac{1}{2^{k+2}} \cdot \frac{1}{2}=\frac{1}{2^{k+3}}$
- But $|T| \geq 2^{k}$, so
$P\left\{\exists t \in T: t\right.$ is the only satisfying assignment of $\left.F_{k+2}\right\}>\frac{2^{k}}{2^{k+3}}=\frac{1}{8}$

Second Proof

Construction of F_{i}

- i is a random number from [0...n]
- $b_{i}=4 \cdot 2^{i} n^{2}$
- p_{i} is a random number in [1... b_{i}]
- r_{i} is a random number in [1... b_{i}]
- x is a bit sequence $x_{1} x_{2} \ldots x_{n}(0=\mathrm{fal}$ se, $1=\mathrm{true})$
- new random formula : $F^{\prime}=F \wedge\left(x \bmod p_{i}=r_{i}\right)$
- Let's show that F^{\prime} is one-satisfiable with probability $\geq \frac{1}{32 n^{4}+32 n^{3}}$

Preliminaries (1/2)

- i is a random number in $[0 \ldots n]$
- $2^{i-1}<|T|=D \leq 2^{i}$ with probability $\frac{1}{n+1}$.

We will assume that this happened

$$
F^{\prime}=F \wedge\left(x \bmod p_{i}=r_{i}\right)
$$

Preliminaries (2/2)

- $b_{i}=4 \cdot 2^{i} n^{2}$
- Number of primes in the $\left[1 \ldots b_{i}\right]$ is at least:
$0.92129 b_{i} / \ln _{b_{i}}>b_{i} / \log _{2} b_{i}=4 \cdot 2^{i} n^{2} /\left(i+2+2 \log _{2} n\right)>$ $4 \cdot 2^{i} n^{2} / 2 n=2^{i+1} n$

Proof

- inner circles: number of primes $\leq n(D-1)<n 2^{i}$
- rest of primes $\geq n 2^{i+1}-n 2^{i}=n 2^{i}$

Proof

- $t^{(1)}$: at least $n 2^{i}$ pairs (p, r) that would make $t^{(1)}$ the only satisfying assignment
- $t^{(\mathrm{D})}$: at least $n 2^{i}$ pairs (p, r) that would make $t^{(\mathrm{D})}$ the only satisfying assignment
- overall number of such "lucky" pairs
$\geq n 2^{i} D>n 2^{i} 2^{i-1}=n 2^{2 i-1}$
- overall number of pairs $=b_{i} b_{i}=16 \cdot 2^{2 i} n^{4}$
- P to choose a "lucky" pair\}= $n 2^{2 i-1} / 16 \cdot 2^{2 i} n^{4}=1 / 32 n^{3}$

Ending of the proof

- $P\left\{F^{\prime}=F \wedge\left(x \bmod p_{i}=r_{i}\right)\right.$ is uniquely - satisfiable $\} \geq$ $\frac{1}{32 n^{3}} \frac{1}{n+1}=\frac{1}{32 n^{4}+32 n^{3}}$

$$
P\{A\} \geq P\{A \& B\}=P\{A \mid B\} \cdot P\{B\}
$$

- Probability of the converse (bad) situation $\leq 1-\frac{1}{32 n^{4}-32 n^{3}}$
- Repeat generation of $F^{\prime} \mathrm{O}\left(n^{4}\right)$ times, probability that one of the generated formulas is uniquely-satisfiable:

$$
\begin{aligned}
& \text { able: } \\
& \geq 1-\left(1-\frac{1}{32 n^{4}-32 n^{3}}\right)^{O\left(n^{4}\right)}=\text { const } \\
& \text { JAAsSO6 } \\
& \text { 4/5 April } 2006
\end{aligned}
$$

Open Questions

$3-C N F$

- $F \rightarrow\left\{F_{i}\right\}$
- F is in 3-CNF then F_{i} are not always in 3-CNF
- Translation to 3-CNF can significantly increase the number of variables in F_{i}
- Is there such a reduction to the set of formulas in 3-CNF that number of variables would increase only by $o(n)$?

Derandomization

- How to remove randomness from the algorithm?
- Maybe, working time of the algorithm would be poly $(|F|) \cdot c^{n}$ for some $c<2$

Thank you for attention

Questions?

4/5 April 2006

