Circuits Complexity

Konstantin Ushakov

JASS’06, St. Petersburg, Russia
Boolean circuit

Boolean circuit C_n:
- finite acyclic directed graph
- each node is labeled as
 - input node (x_i, $1 \leq i \leq n$)
 - logical gate \{ \land, \lor, \neg \}
 - “\land” and “\lor” gates have indegree 2
 - “\neg” gates have indegree 1
 - at least one output gate
- $S(C_n)$: size of the circuit = number of edges
- $D(C_n)$: depth of the circuit = length of the longest path from input to output (not counting “not” gates)
Circuits properties

- **Circuits generation:**
 - circuit families must be generated by computer
 - such circuit families can be considered as a good computational model
 - Theorem: a language $L \subseteq \{0, 1\}^*$ has uniform polynomial circuits iff L lies in P
 - circuit families can be described in abstract way

- **Circuits properties**
 - any Boolean function can be implemented by a circuit
 - any language can be decided by a circuit family of size $O(n2^n)$
Circuits and computers

- OR, AND and NOT can be easily implemented in the chip
- in all computers all operations are implemented using circuits
- once invented the circuit can be placed in the hardware and used forever
- what if we invent a small circuit that solves SAT for input of size 1024?
Outline

- P/poly
- Circuits and SAT
- Size\([n^k]\)
- Circuit Complexity of PP
P/poly

- **L \supseteq P/poly** if there exists \(\{C_i\}_{i \in \mathbb{N}} \) and polynomial \(p \):
 - \(\forall i \ |C_i| \leq p(i) \)
 - \(x \supseteq L \iff C_{|x|}(x) = 1 \)
- **L \supseteq P/poly** \(\iff \) there exists a polynomial time computable relation \(R \):
 \[
 \exists \{y_i\}_{i \in \mathbb{N}} \forall x \ (x \in L \iff R(x, y_{|x|}) = 1)
 \]
- This two definitions are equivalent by the theorem from the first talk
P, NP and P/poly

- $P \subseteq P/poly$
- $P \neq P/poly$ (example in the lecture 1)
- $NP \subseteq P/poly$?
- Theorem (Karp-Lipton):
 if SAT has polynomial circuits, then the polynomial hierarchy collapses to the second level.
- Theorem (Karp-Lipton):
 if NP has polynomial circuits, then

\[
PH = \sum_2 P \cap \Pi_2 P
\]

- Theorem (Karp-Lipton):
 $NP \subseteq P/poly$ iff there exists a sparse NP-hard language in terms of Cook reduction
Polynomial Hierarchy:

- i=0: $\prod_0 P = \sum_0 P = \Delta_0 P = P$
- i>0:
 - $\Delta_{i+1} P = P \Sigma_i P$
 - $\sum_{i+1} P = NP \Sigma_i P$
 - $\prod_{i+1} P = coNP \Sigma_i P$

Cumulative polynomial hierarchy: $PH = \bigcup_{i \geq 0} \sum_i P$

We know:

$\sum_1 P = NP$, $\prod_1 P = coNP$
Proof plan

Proof.

- We show: $\sum_3 P = \sum_2 P$
- Take $L : \sum_3 P$-complete language

\[L = \{ x \mid \exists y \forall z (x, y, z) \in R \}, \]

where R is polynomially balanced relation decidable in NP

- Why L lies in $\sum_2 P$?
- We need to prove that

\[L = \{ x \mid \exists y \forall z (x, y, z) \in Q \}, \]

where Q is polynomially balanced relation decidable in P
Proof: our knowledge

- **L : \(\Sigma_3 \)** P-complete language:

 \[
 L = \{ x | \exists y \forall z (x, y, z) \in R \},
 \]

 where \(R \) is polynomially balanced relation decidable in NP

What we know:

- \(R \) lies in **NP** \(\rightarrow \) it can be reduced to SAT (**NP-complete**):
 - \(F \) is a reduction
 - \(R(x, y, z) \leftrightarrow F(x, y, z) \) is satisfiable
- **SAT** has a polynomial circuit
 - \(C = (C_0, \ldots) \) : polynomial circuits that solves SAT
 - \(C_n = (C_0, \ldots, C_n) \) : initial segment of length \(n \)
 - \(C_m \) is a correct initial segment iff \(C_m \) correctly decides SAT for formulas of size \(\leq m \)
Proof: correct initial segment

- Self-reducibility of SAT:
 for every formula G and for every variable x: $G = G[x := \text{true}]$ or $G[x := \text{false}]$

- w – Boolean formula:
 Test(C_n, w):
 - w has variable x:
 $C_{|w|}(w) = C_{|w[x:=\text{true}]|}(w[x := \text{true}])$ or $C_{|w[x:=\text{false}]|}(w[x := \text{false}])$
 - $C_{|w|}(\text{true}) = \text{true}$
 - $C_{|w|}(\text{false}) = \text{false}$

- C_n – correct initial segment if and only if
 $\forall w \ (|w| \leq n) \ \text{Test}(C_n, w)$
Proof: gathering ideas

We prove:

x is in L iff $\exists C_m \exists y \forall z$ (all of length at most m):

- $C_m(F(x, y, z)) = true$
- C_m is a correct initial segment of length m

What m should we take?

- $x : \exists p: \forall y \forall z(|F(x,y,z)| < p(|x|))$:
 - F is a reduction from R to SAT
 - R is polynomially balanced
 - F is a polynomial
 - $\rightarrow p$ is a polynomial
- $m = p(|x|)$
Proof ideas: finish

- We prove: x is in $L \iff \exists C_m \exists y : \forall z \forall w$ (all of length at most $p(|x|))$
 - C_m works correct on w
 - $C_m (F(x, y, z)) = \text{true}$

$x \in L$

\[\Rightarrow \exists y \forall z R(x, y, z) \]
\[\Rightarrow \exists y \forall z F(x, y, z) \in \text{SAT} \]
\[\Rightarrow \exists \{C_i\}_{i=1}^m \text{– correct initial segment} \]

- Reminder: if R is polynomially balanced, polynomial-time decidable, then

\[L = \{x \mid \exists y_1 \forall y_2 : (x, y_1, y_2) \in R\} \in \Sigma_2 P \]

\[\square \]
Second Theorem

- **Theorem (Karp-Lipton):**
 - If \textbf{SAT} has polynomial circuits, then the polynomial hierarchy collapses to the second level.

- **Corollary:**
 - If \textbf{NP} has polynomial circuits, then \(\text{PH} = \Sigma_2 P \cap \Pi_2 P \)
 - Proof: \(\text{PH} \) is closed under complement.
Theorem (Karp-Lipton):
if **SAT** has polynomial circuits, then the polynomial hierarchy collapses to the second level.

Theorem (Karp-Lipton):
if **NP** has polynomial circuits, then

\[
\text{PH} = \Sigma_2^P \cap \Pi_2^P
\]

Theorem (Karp-Lipton):
NP \subseteq **P/poly** iff there exists a sparse **NP-hard** language in terms of Cook reduction.
Size[n^k]

- **Size[$f(n)$]**: class of languages accepted by Boolean circuit families of size $O(f(n))$
- **Size[n^k]**: class of languages accepted by Boolean circuit families of size $O(n^k)$

Lemma: $\sum_4 P$ Size[n^k] for any k

Proof: later…

Corollary 1: PH Size[n^k]

NB: it does not follow that $\sum_4 P$ P/poly: Why?

Size[poly(n)] (the union of Size[n^k] over all k) equals P/poly
$\Sigma_2 \text{P} \cap \Pi_2 \text{P } \text{Size}[n^k]$

Reminder: PH $\text{Size}[n^k]$:

Theorem: $\Sigma_2 \text{P} \cap \Pi_2 \text{P } \text{Size}[n^k]$ for any k

Proof:

assume: $\Sigma_2 \text{P} \cap \Pi_2 \text{P } \subseteq \text{Size}[n^k]$ for some k

\rightarrow there exists a polynomial circuit that accepts NP

\rightarrow the polynomial hierarchy collapses on $\Sigma_2 \text{P} \cap \Pi_2 \text{P}$

\rightarrow PH $= \Sigma_2 \text{P} \cap \Pi_2 \text{P } \subseteq \text{Size}[n^k]$?!

\square
Proof of the lemma

Lemma: \(\sum_4 \mathbb{P} \text{ Size}[n^k] \) for any \(k \)

Proof:
- \(f \): function that depends only on the first \(c \cdot k \cdot \log(n) \) bits of input
 - such function can be encoded by polynomial number of bits
 - number of possible \(f \) functions is \(2^{2c^*k^*\log(n)} = 2^{n^{c^*k}} \)
- number of possible circuits of size \(n^k \) is at most \(2^{n^{k/2} + n} \)
- \(M = \{ f | \forall c \text{ (circuit of size } n^k) \exists x \text{ (input of length } n) : f(x) \neq c(x) \} \)
 - \((2^{n^{c^*k}} > 2^{n^{k/2} + n} \Rightarrow M \text{ is not empty}) \)
- let \(\leq \) be any order on \(M \) (for instance lexicographical order)
- \(f \) is the smallest function in \(M \)
- \(L = \{ x | f(x) = 1 \} \)
Proof of the lemma

- \(L = \{ x \mid f(x) = 1 \} \)

\[
y \in L \iff \begin{cases}
 f(y) = 1 \\
 \forall c \exists x : f(x) \neq c(x) \\
 \forall f' : (\forall c \exists x : (f'(x) \neq c(x)) \implies f \leq f')
\end{cases}
\]

- rewriting:

\[
y \in L \iff \exists f \forall c \forall f' \exists x \exists c' \forall x' : \\
 (f(x) \neq c(x) \land ((f \leq f') \lor f'(x') = c'(x'))) \land f(y) = 1
\]

- \(L \) is from \(\Sigma_4 P \) and it can’t be accepted by a circuit of size \(n^k \)
Proof's bugs

- What is wrong with the proof?
- Lemma: $\sum_4 \mathbf{P} \quad \text{Size}[n^k]$ for any k
- What we proved: L is from $\sum_4 \mathbf{P}$ and it can't be accepted by a circuit of size n^k
- Proof completion:
 - Take a circuit c of size $C*n^{k-1}$
 - $\exists \ n_0: C*n_0^{k-1} < n_0^k$.
 - $\exists \ x(|x|=n_0):$ on input x c works incorrect
 - $L \quad \text{Size}[n^{k-1}]$
MA protocol

- **MA protocols**: \(L \supseteq \text{MA} \) if there exist polynomials \(p \) and \(q \) and Turing machine \(M \), working polynomial time on all inputs, that for every \(x \):
 - \(x \) is from \(L \) \(\iff \) Merlin can think of a proof: Arthur will accept is with high probability
 - \(x \) is not from \(L \) \(\iff \) every proof created by Merlin will be rejected with high probability

Proof generation:
\[
\text{MERLIN} \\
\text{Proof generation:} \\
\{0,1\}^{p(|x|)}
\]

Proof verification:
\[
\text{ARTHUR} \\
\text{Proof verification:} \\
M(x, Proof, \{0,1\}^{p(|x|)}) = ?
\]
MA protocols: $L \supseteq \text{MA}$ if there exist polynomials p and q and Turing machine M, working polynomial time on all inputs, that for every x:

$$x \in L \Rightarrow \exists y \in \{0,1\}^{p(|x|)} : \Pr_{z \in \{0,1\}^{q(|x|)}} \{M(x, y, z) = 1\} > 3/4,$$

$$x \notin L \Rightarrow \forall y \in \{0,1\}^{p(|x|)} : \Pr_{z \in \{0,1\}^{q(|x|)}} \{M(x, y, z) = 1\} < 1/4.$$

Toda Theorem: $\text{PH} \subseteq \text{PPP}$

$\text{P}^\text{#P} = \{f : \Sigma^* \rightarrow \text{N} \cup \{0\} \mid \exists \text{ time polynomial NTM } M_f \text{ such that for every } x f(x) = \text{acc}_{M_f}(x)\}$, where $\text{acc}_{M_f}(x)$ is the number of ACCEPT paths of machine M_f.

$\text{PPP} = \text{P}^\text{#P}$: lemma in the proof of Toda’s theorem

$\text{P}^\text{#P}$ has interactive protocol with prover from $\text{P}^\text{#P}$
Lemma 1: if $\text{PP} \subseteq \text{P/poly}$ we have $\text{P}^{\text{PP}} \subseteq \text{MA}$.
Proof: later.

Lemma 2: $\text{MA} \subseteq \text{PP}$.
Proof: lection 7.

Theorem: $\text{PP} \quad \text{Size}[n^k]$ for every k.
Proof: \(\text{PP} \subseteq \text{Size}[n^k] \) for every \(k \)

REMEMBER:
- Toda Theorem: \(\text{PH} \subseteq \text{P}^{\text{PP}} \)
- Lemma 1: if \(\text{PP} \subseteq \text{P/poly} \) we have \(\text{P}^{\text{PP}} \subseteq \text{MA} \)
- Lemma 2: \(\text{MA} \subseteq \text{PP} \).

Proof:
- Assume \(k \): \(\text{PP} \subseteq \text{Size}[n^k] \) \(\Rightarrow \) \(\text{PP} \subseteq \text{P/poly} \)
- \(\text{PH} \subseteq \text{P}^{\text{PP}} \) (by Toda theorem)
 - \(\subseteq \text{MA} \) (Lemma 1)
 - \(\subseteq \text{PP} \) (Lemma 2)
- We know: \(\text{PH} \subseteq \text{Size}[n^k] \)
- \(\Rightarrow \text{PP} \subseteq \text{Size}[n^k] \)

\(\square \)
Lemma 1: \(\mathsf{PP} \subseteq \mathsf{P/poly} \rightarrow \mathsf{P}^{\mathsf{PP}} \subseteq \mathsf{MA} \).

Proof:
- Take \(M \) : polynomial time oracle Turing machine from \(\mathsf{P}^{\mathsf{PP}} \)
- \(M \) : asks questions to oracle from \(\mathsf{PP} \) of at most polynomial length
- \(\mathsf{P}^{\#\mathsf{P}} = \mathsf{P}^{\mathsf{PP}} \subseteq \mathsf{P/poly} \):
 - \(\mathsf{PP} \) has polynomial circuits
 - this circuits can be considered as a hint string for machine from \(\mathsf{P/poly} \)
- \(\mathsf{P}^{\#\mathsf{P}} \) has interactive protocol with prover from \(\mathsf{P}^{\#\mathsf{P}} \)
- we modify the protocol:
 - prover does not remember communication history
 - verifier sends communication history with every request to the prover
- now the prover acts as a simple \(\mathsf{P}^{\#\mathsf{P}} \) machine
$\text{PP} \subseteq \text{P/poly} \rightarrow \text{P}^{\text{PP}} \subseteq \text{MA}$.

$\text{P}^{\#P}$ has interactive protocol with prover from $\text{P}^{\#P}$
PP \subseteq P/poly \rightarrow P^{PP} \subseteq MA.
Lemma’s Proof

- We modified the prover → it acts like a simple P^{NP} machine
- We know: $P^{NP} = P^{PP} \subseteq P/poly$
- MA protocol modifications
 - Arthur simulates verifier
 - instead of calling the prover Arthur uses circuits sent by the prover in the beginning of the communications
- all requests of the verifier have length poly(n) → circuits are the valid replacement for the prover
- $P^{NP} \subseteq P/poly \rightarrow P^{PP} = P^{NP} \subseteq MA$

□
Conclusion

- P/poly & Size$[n^k]$
- P/poly as a computational model

- SAT has polynomial circuit \rightarrow PH collapses on the second level

- PP Size$[n^k]$ for every k.
Thanks for the Patience

QUESTIONS TIME