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Abstract

The PCP Theorem provides a new classification of NP. Since the original proof
by [AS98], several new proofs occured. While the first proof used highly sophisticated
methods, the new approaches try to use simpler ones. In this paper the proof by [Din05]
is presented. It uses the equivalence of this problem to the NP-hardness of gap-3SAT,
i.e. it is this hardness that is shown. The satisfiability gap of a set of constraints is
the smallest fraction of unsatisfied constraints over all assignments for the variables.
Gap-3SAT is the problem of deciding whether this gap is 0 or greater than a positive
constant. In this paper therefore 3SAT is polynomially reduced to gap-3SAT via gap
amplification, i.e. the gap is blown up to a constant fraction.

1 Introduction

There are by now many structural different proofs of the famous PCP-Theorem. Most of
them are quite technical and use highly sophisticated methods. Originally it has been stated
via interactive proofs. In [FGL+96] a surprising connection has been found between this the-
orem and a formulation via gap-3SAT. That means they have shown, that the PCP-Theorem
is equivalent to stating that gap-3SAT is NP-hard. In other words, it is NP-hard to distin-
guish betweenUNSAT(C ) = 0 andUNSAT(C ) = α > 0 for a constraint systemC . This
is the basis of the proof by [Din05] that is presented in this paper. Naturally, if the constraint
system is not satisfiable, thenUNSAT(C ) ≥ 1

n
, wheren is the number of constraints inC .

Via a polynomial amplification algorithm this gap is blown up to a constantα which renders
this problem equivalent to gap-3SAT.

This paper is part of a talk at JASS’06. It is therefore not self-containing, but relies on
the preparative paper [Bul06] in which underlying structures and basic results are presented.
Only the existence of assignment tester is used without proof. The proofs of the other results
are mostly taken out of [Din05] and can be found here or in [Bul06].

2 Preprocessing

In order to apply the main amplification lemma, we need a ’nicely’ structured graph. In
this section is shown that any constraint graph can be polynomially transformed into such
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2 2 PREPROCESSING

a ’nice’ graph. By nicely structured is meant that the graph is regular, of constant-degree
and expanding. The transformation includes two steps which are formalized in the next two
propositions.

Proposition 2.1 (Constant degree)Any constraint graphG = 〈(V, E), Σ, C 〉 can be trans-
formed into a(d0 + 1)-regular graphG′ = 〈(V ′, E ′), Σ, C ′〉 such that|V ′| = 2|E| and

c · UNSAT(G) ≤ UNSAT(G′) ≤ UNSAT(G)

for some global constantsd0, c > 0.

Proof. Fix d0 and defined := d0 + 1. For eachn let Xn be ad0-regular expander onn
vertices withh(Xn) ≥ h0 as is guaranteed by [Bul06, Lemma 17]. Letdv be the degree of
v ∈ V . Replace eachv by Xdv and put equality constraints on these edges. Denote this with
[v]. Let [V ] := ∪v∈V [v] andE1 be the union of the edges. For every(v, w) ∈ E put an edge
between one of the vertices of[v] and [w], such that each such vertice only sees one such
external edge. The constraints on these edges are given by the constraints of the original
graph. Denote this set of edges byE2. That means we have constructed ad-regular graph
G′:

G′ := ([V ],E = E1 ∪ E2)

Let us now show that this graph meets the requirements. We start with the upper bound. Let
σ : V → Σ be an assignment ofG. Defineσ′ : [V ] → Σ by:

∀v ∈ V, x ∈ [v] : σ′(x) = σ(v)

Since the constraints of the additional edges ofE1 are met in this case, we see that the
fraction of unsatisfied edges decreases or stays constant. That means:

UNSAT(G′) ≤ UNSAT(G)

The other bound is more complex. Letσ′ : [V ] → Σ be a best assignment. Defineσ : V →
Σ by:

∀v ∈ V : σ(v) := maxarga∈Σ(Px∈[v](σ
′(x) = a))

That meansσ(v) is the most popular value of[v]. Let F ⊂ E be the set of edges that reject
σ, F ⊂ E be the set of edges that rejectσ′. LetS be the set of those vertices in[V ] that were
outvoted in the definition ofσ, i.e. S := ∪v∈V {x ∈ [v]; σ′(x) 6= σ(v)}. Every external edge
in E2 corresponding to an edge inF either rejectsσ′ or has at least one endpoint inS. This
gives us:

|F|+ |S| ≥ |F | = α · |E|,

whereα := |F |
|E| . First recall that|E| = d|E|. We now have two cases:

1. |F| ≥ α
2
|E| = α

2d
|E|: Therefore we have the desired lower bound:

UNSAT(G′) = UNSATσ′(G
′) ≥ 1

2d
UNSATσ(G) ≥ 1

2d
UNSAT(G).
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2. |F| < α
2
|E|: Then|S| ≥ α

2
|E|. Fix v ∈ V and define:

Sv := [v] ∩ S

Sv
a := {x ∈ Sv; σ′(x) = a}

Then we have|Sv
a | ≤

|[v]|
2

. Therefore the edge expansion property ofXdv yields:

|E(Sv
a , [v] \ Sv

a)| ≥ h0 · |Sv
a |.

All of those edges rejectσ′, because of their equality constraints. That means:

|F| ≥
∑
v∈V

∑
a∈Σ

h0|Sv
a | =

∑
v∈V

h0|Sv| = h0|S| ≥ h0
α

2
|E| = h0α

2d
|E|

And therefore the lower bound follows as above:UNSAT(G′) ≥ h0

2d
UNSAT(G)

Recalling thatd is independent ofG, the proposition follows withc := min( 1
2d

, h0

2d
). �

Proposition 2.2 (Expanderizing) Let d0, h0 > 0 be some global constants. Anyd-regular
constraint graphG can be transformed intoG′ such that

1. G′ is (d+d0 +1)-regular, has self-loops, andλ(G′) ≤ d+d0 +1− h2
0

d+d0+1
< deg(G′),

2. size(G′) = O(size(G)), and

3. d
d+d0+1

· UNSAT(G) ≤ UNSAT(G′) ≤ UNSAT(G).

Proof.This transformation will be done by adding edges with trivial constraints. LetEloop :=
{(v, v); v ∈ V } andX = (V, E ′) be ad0-regular expander on|V | vertices withh(X) ≥ h0

(again, the existence is guaranteed by [Bul06, Lemma 17]). Define:

G′ = (V, E ∪ E ′ ∪ Eloop)

This clearly is a(d + d0 + 1)-regular graph of the same size asG. We can now apply the
general result for expanders (see [Bul06, Lemma 19]) and get:

λ(G′) ≤ d + d0 + 1− h(G′)2

d(G′)
≤ d + d0 + 1− h2

0

d + d0 + 1
< d + d0 + 1

As the new edges are always satisfied and the number of edges is increased by a factor
d+d0+1

d
, the fraction of unsatisfied constraints drops at most by this factor. �

Now we can finally state the lemma that allows us to transform a given constraint graph
into a nicely-structured one.

Lemma 2.3 (Preprocessing)There exist constants0 < λ < d andβ1 > 0 such that any
constraint graphG can be transformed into a constraint graphG′, denotedG′ = prep(G),
such that

1. G′ is d-regular with self-loops, andλ(G′) ≤ λ < d.

2. G′ has the same alphabet asG, andsize(G′) = O(size(G)).

3. β1 · UNSAT(G) ≤ UNSAT(G′) ≤ UNSAT(G).

Proof.Apply Proposition 2.1 onG, then apply Proposition 2.2 on the result. The lemma is
proven withβ1 = c · d

d+d0+1
. �
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3 Powering

In this section we construct out of a given constraint graphG = 〈(V, E), Σ, C 〉 a new graph
Gt =

〈
(V,E), Σdt

, C t
〉

for everyt ∈ N as follows:

1. The vertices ofGt are the same as the vertices ofG

2. u andv are connected byk edges inE iff the number oft-step paths fromu to v in G
is exactlyk.

3. The alphabet ofGt is Σdt
, where every vertex specifies values for all its neighbours

reachable int steps.

4. The constraint associated with an edgee = (u, v) ∈ E is satisfied iff the assignments
for u andv are consistent with an assignment that satisfies all of the constraints of the
path, induced by thet neighbourhoods ofu andv. (In case this results in two different
values for a vertex, then the constraint is automatically not satisfied.)

In the sequele ∈ E is called edge ande ∈ E is called path. This construction yields the de-
sired amplification of the satisfiability-gap. It is based on the fact, that the number of edges
in Gt increases bydt−1, but each edge inG is possibly included intdt−1 paths. Therefore, if
a constraint corresponding to an edgee is not satisfied this yields to possiblytdt−1 rejections
of the corresponding assignment forGt.

First we start with a technical proposition:

Proposition 3.1 For everyp ∈ [0, 1] and c > 0 there exists some0 < τ ≤ 1 such that if
|l1 − l2| ≤ (

√
l1 ∧

√
l2), then

∀k, |k − pl1| ∨ |k − pl2| ≤ c(
√

l1 ∧
√

l2) : τ ≤ P (Bl1,p = k)

P (Bl2,p = k)
≤ 1

τ

Proof. The proposition is perfectly symmetric inl1 and l2. That means without loss of
generality we can assumel1 ≥ l2. Write thereforel1 = l2 + r for some0 ≤ r ≤

√
l1. We

have

P (Bl1,p = k) =

(
l2 + r

k

)
pk(1− p)l2+r−k

=
l2 + 1

l2 + 1− k
· l2 + 2

l2 + 2− k
· · · l2 + r

l2 + r − k

(
l2
k

)
· pk(1− p)l2−k(1− p)r

=
l2 + 1

l2 + 1− k
· l2 + 2

l2 + 2− k
· · · l2 + r

l2 + r − k
P (Bl2,p = k)

For alla ≤ r ≤
√

l1 we have withl2 − k ≤ l2 − p + c
√

l1 ≤ (1− p)l2 + c
√

l1:

l2 + a

l2 + a− k
≥ l2

(1− p)l2 + (c + 1)
√

l1
≥ 1

1− p

(
1− c + 1

(1− p)
√

l1

)
l2 + a

l2 + a− k
≤ l2 +

√
l1

(1− p)l2 − c
√

l1
≤ 1

1− p

(
1 +

4c

(1− p)
√

l1

)
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This yields the proposition withτ = e−
4c+1
1−p . �

Clearly we have that ifUNSAT(G) = 0, thenUNSAT(Gt) = 0. In the other case we
have the amplification of the satisfiability gap:

Lemma 3.2 (Powering) Letλ < d, and|Σ| be arbitrary constants. There exists a constant
β2 = β2(λ, d, |Σ|) > 0, such that for everyt ∈ N and for everyd-regular constraint graph
G = 〈(V, E), Σ, C 〉 with self-loops andλ(G) ≤ λ

UNSAT(Gt) ≥ β2

√
t ·min

(
UNSAT (G),

1

t

)
.

Proof.Let σ̃ be a best assignment forGt, i.e. UNSATσ̃(Gt) = UNSAT(Gt). By definition,
σ̃(v) specifies values for everyw in its t-neighbourhood. Let̃σ(v)w denote this value. For
every1 ≤ j ≤ t andv ∈ V let Xv,j be a random variable with distribution

∀a ∈ Σ : P (Xv,j = a) :=
# j-step paths starting fromv and ending atw with σ̃(w)v = a

# j-step paths starting fromv

That meansXv,j represents the value assigned tov by a random point withinj-distance.
With this define the corresponding assignmentσ for G as follows:

σ(v) := maxarga∈Σ(P (Xv, t
2

= a))

Let F ⊂ E be a subset of the edges that rejectσ, such thatUNSAT(G) = |F |
|E| , and

Ir := { t
2
− r < i ≤ t

2
+ r}. For eache ∈ E define the following random variable

Ni(e) :=

{
1 if e = (v0, . . . , vt) where(vi−1, vi) ∈ F ∧ σ̃(v0)vi−1

= σ(vi−1) ∧ σ̃(vt)vi
= σ(vi)

0 otherwise

N(e) :=
∑
i∈Ir

Ni

If N(e) > 0, then this path has got a rejecting edge "in the middle", i.e. it clearly rejects
σ̃. That meansP (N > 0) ≤ UNSATσ̃(Gt). In the sequel we will estimate this probability.
To this end we make use of [Bul06, Lemma 23], i.e.P (N > 0) ≥ E2(N)

E(N2)
. Therefore we

have to cope withE(N) andE(N2).

1. E(N): From the definition we can gain the probability ofP (Ni > 0) as follows:

P (Ni > 0) = P ((u, v) ∈ F ) · P (Xu,i−1 = σ(u))P (Xv,t−i = σ(v))

=
|F |
|E|

· P (Xu,i−1 = σ(u))P (Xv,t−i = σ(v))

For anyl ∈ Ir we can decompose as follows. Distinguish between the loops in a
path and the rest. That means a path is determined by the number of loops and their
position and the rest of the path without loops. This considerations yield:

P (Xu,l = σ(u)) =
l∑

k=0

P (Bl,p = k)P (X ′
u,k = σ(u)),
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whereBl,p is binomially distributed withp = 1 − 1
d

andX ′
u,k is defined likeXu,k

but without loops. In the sequel we will use 3.1 to estimate that value. First set

r := −1
2

+ 1
2

√
1 + 2t (then| t

2
− l| ≤

√
t
2
∧
√

l) andM := max{t ∈ N; t+r
t
2
−r
}. Now

choosec > 0 such that the following is met:

p(1− p)

c2
M <

1

2|Σ|
.

SetJ := {k ∈ N; |k− pl| ∨ |k− p t
2
| ≤ c(

√
t
2
∧
√

l)}. Then we have with Chebyshev

P (B t
2
,p 6∈ J) ≤ P

(
|Bl,p − pl| > c(

√
t

2
∧
√

l)
)

+ P
(
|B t

2
,p − p

t

2
| > c(

√
t

2
∧
√

l)
)

≤ lp(1− p)

c2( t
2
∧ l)

+
t
2
p(1− p)

c2( t
2
∧ l)

≤ p(1− p)

c2

t + r
t
2
− r

≤ 1

2|Σ|

Remember, by construction ofσ we haveP (Xu, t
2

= σ(u)) ≥ 1
|Σ| . We can now apply

3.1 with l1 = t
2
, l2 = i− 1:

P (Xu,i−1 = σ(u)) ≥
∑
k∈J

P (Bi−1,p = k)P (X ′
u,k = σ(u))

≥ τ ·
∑
k∈J

P (B t
2
,p = k)P (X ′

u,k = σ(u))

≥ τ(P (Xu, t
2

= σ(u))− 1

2|Σ|
)

≥ τ

2|Σ|

The same holds forP (Xv,t−i = σ(v)). Therefore we finally have:

E(N) =
∑
i∈Ir

E(Ni) =
∑
i∈Ir

P (Ni > 0) =
∑
i∈Ir

|F |
|E|

P (Xu,i−1 = σ(u))P (Xv,t−i = σ(v))

≥ |Ir|
τ 2

4|Σ|2
|F |
|E|

≥ Ω(
√

t) · |F |
|E|

2. E(N2): To this end we define the following random variables:

Zi(e) :=

{
1 if ei ∈ F

0 otherwise

Z(e) :=
∑
i∈Ir

Zi(e)



7

Then we clearly haveN(e) ≤ Z(e) and we can start to calculate.

E(Z2) =
∑
i∈Ir

E(Z2
i ) + 2

∑
i<j;i,j∈Ir

E(ZiZj) = |Ir|
|F |
|E|

+ 2
∑

i<j;i,j∈Ir

E(ZiZj)

E(ZiZj) = P (ZiZj > 0) = P (Zi > 0)P (Zj > 0|Zi > 0) =
|F |
|E|

P (Zj > 0|Zi > 0)

P|e|=t( Zj (e) > 0|Zi(e) > 0) = P|e′|=t−i+1(Zj−i+1(e
′) > 0|Z1(e

′) > 0) ≤ |F |
|E|

+

(
λ

d

)j−i

The last inequality is the reason why the regularity condition onG had to be postu-
lated. There we used the result given in [Bul06, Theorem 21], stating thatP (Zs(e) >

0|Z1(e) > 0) ≤ |F |
|E| +

(
|λ(G)|

d

)s

, if G is d-regular. Having thatλ < d, we know that

K :=
∑∞

i=0

(
λ
d

)i
< ∞. Gathering all those results, we can estimateE(N2):

E(N2) ≤ E(Z2) ≤ |Ir|
|F |
|E|

+ 2
|F |
|E|

∑
i<j;i,j∈Ir

(
|F |
|E|

+

(
λ

d

)j−i
)

≤ O(
√

t)
|F |
|E|

+ 2

(
|Ir|2

(
|F |
|E|

)2

+ |Ir|
|F |
|E|

K

)

= O(
√

t)
|F |
|E|

+ O(t)

(
|F |
|E|

)2

.

Finally we can show the gap amplification. Recall that|F |
|E| = UNSAT(G) and distinguish

between these two cases:

1. UNSAT(G) ≤ 1√
t
: In this case we have

E(N2) ≤ O(
√

t)
|F |
|E|

+ O(t)

(
|F |
|E|

)2

≤ O(
√

t)
|F |
|E|

.

This finally yields:

UNSAT(Gt) ≥ P (N > 0) ≥
Ω(
√

t)2 |F |2
|E|2

O(
√

t) |F ||E|

≥ Ω(
√

t)
|F |
|E|

≥ Ω(
√

t) min(UNSAT(G),
1

t
)

2. UNSAT(G) > 1√
t
: We know thatE(N2) ≤ O(t) |F ||E| . This yields the desired result in

this case, too:

UNSAT(Gt) ≥ P (N > 0) ≥
Ω(
√

t)2 |F |2
|E|2

O(t) |F ||E|

≥ Ω(1)
|F |
|E|

≥ Ω(1)
1√
t

= Ω(
√

t)
1

t
≥ Ω(

√
t) min(UNSAT(G),

1

t
)

Therefore the proposition follows. �
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4 Composition

The previous step amplified the satisfiability gap, but has blown up the alphabet. It remains
to reduce the size of the alphabet. This will be done making use ofcomposition. We will
take a constraint of the given constraint graph. This will be put into an ’assignment tester’
P, which produces a constraint graph on an alphabetΣ0 with |Σ0| = O(1). The set of all
such graphs that were produced this way is put together into the resulting graph.
Let for the sequelSAT(Φ) ⊂ {0, 1}n denote the set of assignments that satisfy a given
boolean circuitΦ.

Definition 4.1 [Assignment Tester] An Assignment Tester with alphabetΣ0 and rejection
probability ε > 0 is a polynomial-time transformationP whose input is a circuitΦ over
Boolean variablesX, and whose output is a constraint graphG = 〈(V, E), Σ0, C 〉 such that
X ⊂ V , and such that the following holds. LetV ′ = V \ X, and leta : X → {0, 1} be an
assignment.

1. If a ∈ SAT(Φ), there existsb : V ′ → Σ0 such thatUNSATa∪b(G) = 0.

2. If a 6∈ SAT(Φ) then for allb : V ′ → Σ0 holdsUNSATa∪b(G) ≥ ε · dist(a, SAT(Φ)).

Such an algorithm exists, see for example [Din05, 6.2]. Fixing such an assignment testerP
we can now formulate and prove the following lemma:

Lemma 4.2 (Composition) LetP an assignment tester with constant rejection probability
ε > 0, and alphabetΣ0, |Σ0| = O(1). There existsβ3 > 0 that depends only onP, such
that any constraint graphG = 〈(V, E), Σ, C 〉 can be transformed into a constraint graph
G′ = 〈(V ′, E ′), Σ0, C ′〉, denoted byG ◦P, such thatsize(G′) = M(|Σ|) · size(G), and

β3 · UNSAT(G) ≤ UNSAT(G′) ≤ UNSAT(G)

Proof.Assignment tester are only defined for constraints over Boolean variables. Therefore
we first prepare the graph with that respect. Lete : Σ → {0, 1}l be an encoding with relative
Hamming distance% > 0, l = O(log |Σ|). Replace eachv ∈ V by l Boolean variables[v].
Replace each constraintc over the two variablesv, w by c̃ over[v]∪[w], such that̃c is satisfied
iff the assignment for[v] ∪ [w] is a legal encoding viae of an assignment forv andw that
satisfiesc. Now runP on any such̃c and get constraint graphsGc = 〈(Vc, Ec), Σ0, Cc〉.
Without loss of generality we can assume|Ec| = |Ec′| for any constraintsc, c′ (otherwise
add edges with trivial constraints and setε′ := ε minc∈C |Ec|

maxc∈C |Ec| ). Now define the resulting graph
G′ as follows:

G′ = 〈(V ′, E ′), Σ0, C
′〉 ,

whereV ′ = ∪c∈C Vc, E
′ = ∪c∈C Ec, C ′ = ∪c∈C Cc.

Let us now check, ifG′ has got the desired properties. We know that anyc is transformed
into a constraint̃c : {0, 1}2l → {T, F}. There are only finitely many such constraints
possible. SetM as the maximal size of the output graph ofP for an inputc̃. ThenM only
depends on|Σ| andP, and we havesize(G′) ≤ M · size(G). Let σ′ : V ′ → Σ0 be a best
assignment forG′. Defineσ : V → Σ by:

σ(v) := minarga∈Σ(dist(e(a), σ′([v]))).
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That meansσ(v) is the value whose encoding viae is closest toσ′([v]). Let c be a constraint
over the variablesu, v that rejectsσ. Now the property of the error correcting code comes
in: At least a fraction of%

2
of the bits ofσ′([u]) or of σ′([v]) (or of both of them) has to be

changed in order to lead to a satisfying value. That meansdist(σ′|[u]∪[v], SAT(c̃)) ≥ %
4
. Since

P is an assignment tester with rejection probability ofε, we have that at least a fraction of
ε · %

4
of the constraints inCc rejectσ′. The assumption|Ec| = |Ec′| for any constraintsc, c′

and|E ′| =
∑

c∈C |Ec| therefore guarantees:UNSAT(G′) ≥ ε%
4
· UNSAT(G). �

5 Main theorem

Now we have everything at hand to finally state our main theorem.

Theorem 5.1 (Main) For anyΣ, |Σ| = O(1), there exist constantsC > 0 and0 < α < 1,
such that given a constraint graphG = 〈(V, E), Σ, C 〉 one can construct, in polynomial
time, a constraint graphG′ = 〈(V ′, E ′), Σ0, C ′〉 such that

1. size(G′) ≤ C · size(G) and|Σ0| = O(1).

2. If UNSAT(G) = 0 thenUNSAT(G′) = 0

3. UNSAT(G′) ≥ min(2 · UNSAT(G), α).

Proof.We constructG′ using the lemmas of the previous sections:

G′ = (prep(G))t ◦P

First we notice that each lemma only incurs a linear blowup of the size. More precisely, the
number of edges increases by a constant factor during Preprocessing and Powering. In the
Composition step the size grows by a factor that depends only on|Σdt| and onP which do
not depend onG. Let β1, β2, β3 be the constants in the Lemmas 2.3,3.2,4.2. Now choose

t =
⌈(

2
β1β2β3

)2 ⌉
andα = β3β2√

t
. Then we have altogether:

UNSAT(G′)
4.2

≥ β3 · UNSAT((prep(G))t)
3.2

≥ β3 · β2

√
t ·min(UNSAT(prep(G)),

1

t
)

2.3

≥ β3 · β2

√
t ·min(β1UNSAT(G),

1

t
)

≥ min(2 · UNSAT(G), α).

This proves the theorem. �

At last we can now prove the PCP Theorem. [Bul06, Lemma 9] has already shown that
the PCP Theorem is equivalent to showing that Gap-3SAT is NP-hard.

Corollary 5.2 Gap-3SAT is NP-hard.
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Proof. According to [Bul06, Theorem 14], it is NP-hard to decide ifUNSAT(G) = 0 or
not for a given constraint graphG with |Σ| = 7. Let G0 be such an instance andGi be the
outcome of applying the main theorem onGi−1. Setk := dlog(α|E0|)e = O(log n). This
way we have for alli ≤ k : size(Gi) ≤ Ci · size(G0) = poly(n). If UNSAT(G0) = 0 then
UNSAT(Gi) = 0. If not, then we have by induction:

UNSAT(Gi) ≥ min(2iUNSAT(G0), α).

If UNSAT(G0) > 0, thenUNSAT(G0) ≥ 1
|E0| , so surely we have2kUNSAT(G0) > α and

thereforeUNSAT(Gk) ≥ α. Now a local gadget reduction takesGk to 3SAT form, while
maintaining the satisfiability gap up to some constant. This proves the corollary. �
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