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Preprocessing

In this step we want to transform a given constraint graph into a
’nice’ one. That means for the resulting graph G ′ should hold:

1. G ′ is of constant degree d , i.e. independent of the input graph
G ,

2. G ′ is d-regular with self-loops, and λ(G ′) ≤ λ < d ,

3. β1 ·UNSAT(G ) ≤ UNSAT(G ′) ≤ UNSAT(G ).
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Constant degree

Constant degree

Proposition 1 (Constant degree)

Any constraint graph G = 〈(V ,E ),Σ,C 〉 can be transformed into
a (d0 + 1)-regular graph G ′ = 〈(V ′,E ′),Σ,C ′〉 such that
|V ′| = 2|E | and

cUNSAT(G ) ≤ UNSAT(G ′) ≤ UNSAT(G )

for some global constants d0, c > 0.
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Constant degree

Construction of G ′

1. Let Xn be a d0-regular expander on n vertices with
h(X0) > h0.

2. Let dv be the degree of v . Replace v by Xdv , equipped with
equality constraints, denoted by [v ]. Let E1 be the set of such
edges.

3. For every (u, v) ∈ E put an edge between one vertice of [u]
and [v ], such that each vertice only sees one such ’external’
edge. Let E2 be the set of those edges.

4. Define G ′ := ([V ],E = E1 ∪ E2), where [V ] := ∪v∈V [v ].
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Constant degree

Properties: Upper bound

1. Let σ : V → Σ be a best assignment of G .

2. Define σ′ : [V ] → Σ by: ∀v ∈ V , x ∈ [v ] : σ′(x) = σ(v)

⇒ UNSAT(G ) = UNSATσ(G ) ≥ UNSATσ′(G
′) ≥ UNSAT(G ′)
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Constant degree

Properties: Lower bound

1. Let σ′ : [V ] → Σ be a best assignment.

2. Define σ : V → Σ by: σ(v) := maxarga∈Σ(Px∈[v ](σ
′(x) = a))

3. Let F ⊂ E ,F ⊂ E be the set of edges that reject σ, σ′.

4. Let S := ∪v∈V {x ∈ [v ];σ′(x) 6= σ(v)}.

⇒ |F|+ |S | ≥ |F | = α · |E |, where α :=
|F |
|E |

.
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Constant degree

Properties: Lower bound - Two cases
We have to distinguish between two cases:

1. |F| ≥ α
2 |E |

2. |F| < α
2 |E |

The first case is simple:

|F| ≥ α

2
|E | = α

2d
|E|

⇒ UNSAT(G ′) = UNSATσ′(G
′)

≥ 1

2d
UNSATσ(G )

≥ 1

2d
UNSAT(G ).
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Constant degree

Properties: Lower bound - Two cases

Second case: |F| < α
2 |E | ⇒ |S | ≥ α

2 |E |. Define the following:

1. Sv := [v ] ∩ S

2. Sv
a := {x ∈ Sv ;σ′(x) = a}

3. |Sv
a | ≤

|[v ]|
2 ⇒ |E (Sv

a , [v ] \ Sv
a )| ≥ h0 · |Sv

a |
4. |F| ≥

∑
v∈V

∑
a∈Σ h0|Sv

a | = h0|S | ≥ h0
α
2 |E | =

h0α
2d |E|

⇒ UNSAT(G ′) = UNSATσ′(G
′)

≥ h0

2d
UNSATσ(G )

≥ h0

2d
UNSAT(G ).

Bernhard Vesenmayer: PCP Theorem 9/ 33



Outline Preprocessing Powering Composition Main Theorem Proof of PCP Theorem
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Expanderizing

Proposition 2 (Expanderizing)

Let d0, h0 > 0 be some global constants. Any d-regular constraint
graph G can be transformed into G ′ such that

1. G ′ is (d + d0 + 1)-regular, has self-loops, and

λ(G ′) ≤ d + d0 + 1− h2
0

d+d0+1 < deg(G ′),

2. size(G ′) = O(size(G )), and

3. d
d+d0+1 ·UNSAT(G ) ≤ UNSAT(G ′) ≤ UNSAT(G ).
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Expanderizing

Construction of G ′

1. Let Eloop := {(v , v); v ∈ V }.

2. Let X = (V ,E ′) be a d0-regular expander on |V | vertices with
h(X ) ≥ h0.

3. Define G ′ = (V ,E ∪ E ′ ∪ Eloop) with trivial constraints on the
new edges.
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Expanderizing

Properties

1. G ′ is (d + d0 + 1)-regular and of the same size as G .

2. λ(G ′) ≤ d +d0 +1− h(G ′)2

d(G ′) ≤ d +d0 +1− h2
0

d+d0+1 < d +d0 +1

3. The fraction of unsatisfied edges drops at most by d
d+d0+1 . �

Bernhard Vesenmayer: PCP Theorem 12/ 33



Outline Preprocessing Powering Composition Main Theorem Proof of PCP Theorem

Preprocessing

Preprocessing

Lemma 1 (Preprocessing)

There exist constants 0 < λ < d and β1 > 0 such that any
constraint graph G can be transformed into a constraint graph G ′,
denoted G ′ = prep(G ), such that

1. G ′ is d-regular with self-loops, and λ(G ′) ≤ λ < d .

2. G ′ has the same alphabet as G, and size(G ′) = O(size(G )).

3. β1 ·UNSAT(G ) ≤ UNSAT(G ′) ≤ UNSAT(G ).

Proof. Consecutively apply the previous two propositions. �
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Powering

In this step we amplify the satisfiability gap. Let G be a given
constraint graph. Consider the graph G t which is defined as
follows:

1. The vertices of G t are the same as the vertices of G

2. u and v are connected by k edges in E iff the number of
t-step paths from u to v in G is exactly k.

3. The alphabet of G t is Σd t
, where every vertex specifies values

for all its neighbours reachable in t steps.

4. The constraint associated with an edge e = (u, v) ∈ E is
satisfied iff the assignments for u and v are consistent with an
assignment that satisfies all of the constraints induced by the
t neighbourhoods of u and v .
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Powering

Lemma 2 (Powering)

Let λ < d, and |Σ| be arbitrary constants. There exists a constant
β2 = β2(λ, d , |Σ|) > 0, such that for every t ∈ N and for every
d-regular constraint graph G = 〈(V ,E ),Σ,C 〉 with self-loops and
λ(G ) ≤ λ

UNSAT(G t) ≥ β2

√
t ·min

(
UNSAT (G ),

1

t

)
.

Bernhard Vesenmayer: PCP Theorem 15/ 33



Outline Preprocessing Powering Composition Main Theorem Proof of PCP Theorem

Assignments

Assignments

1. Let σ̃ be a best assignment for G t , i.e.
UNSATσ̃(G t) = UNSAT(G t).

2. Let σ̃(v)w denote the value that is specified for w by v .

3. For every 1 ≤ j ≤ t and v ∈ V let Xv ,j be a random variable
with distribution

P(Xv ,j = a) :=
# j-step from v to some w with σ̃(w)v = a

# j-step paths starting at v

4. Now define σ : V → Σ as follows:

σ(v) := maxarga∈Σ(P(Xv , t
2

= a))
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N(e)

N(e)

1. Let F ⊂ E be a subset of the edges that reject σ, such that
UNSAT(G ) = |F |

|E | .

2. Let Ir := { t
2 − r < i ≤ t

2 + r}.
3. For each e = (v0, . . . , vt) ∈ E define the following random

variable

Ni (e) :=


1 if (vi−1, vi ) ∈ F ∧ σ̃(v0)vi−1 = σ(vi−1)

∧σ̃(vt)vi = σ(vi )

0 otherwise

N(e) :=
∑
i∈Ir

Ni

Then UNSATσ̃(G t) ≥ P(N > 0) ≥ E2(N)
E(N2)

.
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N(e)

E (N)

1. By definition we have:
E (N) =

∑
i∈Ir

E (Ni )) =
∑

i∈Ir
P(Ni > 0).

2. We can gain the probability of P(Ni > 0) as follows:

P(Ni > 0) = P((u, v) ∈ F )P(Xu,i−1 = σ(u))P(Xv ,t−i = σ(v))

=
|F |
|E |

P(Xu,i−1 = σ(u))P(Xv ,t−i = σ(v))

3. For any l ∈ Ir we can decompose as follows (Bl ,p is binomially
distributed with p = 1− 1

d and X ′
u,k is defined like Xu,k but

without loops):

P(Xu,l = σ(u)) =
l∑

k=0

P(Bl ,p = k)P(X ′
u,k = σ(u)),

Bernhard Vesenmayer: PCP Theorem 18/ 33



Outline Preprocessing Powering Composition Main Theorem Proof of PCP Theorem

N(e)

E (N)
Now we need the following technical proposition, stating the
distribution of Bl1 and Bl2 are quite similar:

Proposition 3

For every p ∈ [0, 1] and c > 0 there exists some 0 < τ ≤ 1 such
that if |l1 − l2| ≤ (

√
l1 ∧

√
l2), then

τ ≤
P(Bl1,p = k)

P(Bl2,p = k)
≤ 1

τ
∀k, |k − pl1| ∨ |k − pl2| ≤ c(

√
l1 ∧

√
l2)

1. Define J := {k ∈ N; |k − pl | ∨ |k − p t
2 | ≤ c(

√
t
2 ∧

√
l)}.

2. Choose c such that P(B t
2
,p 6∈ J) ≤ 1

2|Σ| .
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N(e)

E (N)

1. By construction of σ we have P(Xu, t
2

= σ(u)) ≥ 1
|Σ| .

2. Apply the proposition with r := −3
2 + 1

2

√
1 + 2t (then the

condition |l1 − l2| ≤
√

l1 ∧
√

l2 is met) and with
l1 = t

2 , l2 = i − 1:

P(Xu,i−1 = σ(u)) ≥
∑
k∈J

P(Bi−1,p = k)P(X ′
u,k = σ(u))

≥ τ ·
∑
k∈J

P(B t
2
,p = k)P(X ′

u,k = σ(u))

≥ τ(P(Xu, t
2

= σ(u))− 1

2|Σ|
)

≥ τ

2|Σ|
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N(e)

E (N)

Therefore we finally have:

E (N) =
∑
i∈Ir

E (Ni ) =
∑
i∈Ir

P(Ni > 0)

=
∑
i∈Ir

|F |
|E |

P(Xu,i−1 = σ(u))P(Xv ,t−i = σ(v))

≥ |Ir |
τ2

4|Σ|2
|F |
|E |

≥ Ω(
√

t) · |F |
|E |
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N(e)

E (N2)
Define Zi (e) = 1 iff ei ∈ F , else Zi (e) = 0, Z (e) :=

∑
i∈Ir

Zi (e).

E (Z 2) =
∑
i∈Ir

E (Z 2
i ) + 2

∑
i<j ;i ,j∈Ir

E (ZiZj)

= |Ir |
|F |
|E |

+ 2
∑

i<j ;i ,j∈Ir

E (ZiZj)

E (ZiZj) = P(ZiZj > 0) = P(Zi > 0)P(Zj > 0|Zi > 0)

=
|F |
|E |

P(Zj > 0|Zi > 0)

P|e|=t( Zj (e) > 0|Zi (e) > 0)

= P|e′|=t−i+1(Zj−i+1(e
′) > 0|Z1(e

′) > 0) ≤ |F |
|E |

+

(
λ

d

)j−i
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N(e)

E (N2)

Having that λ < d , we know that
∑∞

i=0

(
λ
d

)i
= K < ∞. Gathering

all those results, we can estimate E (N2):

E (N2) ≤ E (Z 2) ≤ |Ir |
|F |
|E |

+ 2
|F |
|E |

∑
i<j ;i ,j∈Ir

(
|F |
|E |

+

(
λ

d

)j−i
)

≤ O(
√

t)
|F |
|E |

+ 2

(
|Ir |2

(
|F |
|E |

)2

+ |Ir |
|F |
|E |

K

)

= O(
√

t)
|F |
|E |

+ O(t)

(
|F |
|E |

)2
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Two Cases

Powering: Two Cases

Now we can show the amplification. However we have to
distinguish between two cases:

1. UNSAT(G) > 1√
t

2. UNSAT(G) ≤ 1√
t

The first case is simple:

UNSAT(G t) ≥ P(N > 0) ≥
Ω(
√

t)2 |F |
2

|E |2

O(t) |F ||E |

≥ Ω(1)
|F |
|E |

≥ Ω(1)
1√
t

= Ω(
√

t)
1

t
≥ Ω(

√
t) min(UNSAT(G ),

1

t
)
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Two Cases

Powering: Two Cases

Let UNSAT(G) ≤ 1√
t
, then we have:

E (N2) ≤ O(
√

t)
|F |
|E |

+ O(t)

(
|F |
|E |

)2

≤ O(
√

t)
|F |
|E |

⇒ UNSAT(G t) ≥ P(N > 0) ≥
Ω(
√

t)2 |F |
2

|E |2

O(
√

t) |F ||E |

≥ Ω(
√

t)
|F |
|E |

≥ Ω(
√

t) min(UNSAT(G ),
1

t
)
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Composition

Definition 4
[Assignment Tester] An Assignment Tester with alphabet Σ0

and rejection probability ε > 0 is a polynomial-time
transformation P whose input is a circuit Φ over Boolean
variables X , and whose output is a constraint graph
G = 〈(V ,E ),Σ0,C 〉 such that X ⊂ V , and such that the
following holds. Let V ′ = V \ X , and let a : X → {0, 1} be an
assignment.

1. If a ∈ SAT(Φ), there exists b : V ′ → Σ0 such that
UNSATa∪b(G ) = 0.

2. If a 6∈ SAT(Φ) then for all b : V ′ → Σ0 holds
UNSATa∪b(G ) ≥ ε · dist(a,SAT(Φ)).
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Composition

We this we can state the composition lemma:

Lemma 3 (Composition)

Let P an assignment tester with constant rejection probability
ε > 0, and alphabet Σ0, |Σ0| = O(1). There exists β3 > 0 that
depends only on P, such that any constraint graph
G = 〈(V ,E ),Σ,C 〉 can be transformed into a constraint graph
G ′ = 〈(V ′,E ′),Σ0,C ′〉, denoted by G ◦P, such that
size(G ′) = M(|Σ|) · size(G ), and

β3 ·UNSAT(G ) ≤ UNSAT(G ′) ≤ UNSAT(G )
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Preparation

Composition: Preparation

The assignment tester needs input constraints defined over
Boolean variables.

1. Let e : Σ → {0, 1}l be an encoding with relative Hamming
distance % > 0, l = O(log |Σ|).

2. Replace each v ∈ V by l Boolean variables [v ].

3. Replace each constraint c over the two variables v ,w by c̃
over [v ] ∪ [w ], such that c̃ is satisfied iff the assignment for
[v ] ∪ [w ] is a legal encoding via e of an assignment for v and
w that satisfies c .
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Composition

Composition: Composition

1. Run P on any such c̃ and get constraint graphs
Gc = 〈(Vc ,Ec),Σ0,Cc〉.

2. Without loss of generality we can assume |Ec | = |Ec ′ | for any
constraints c , c ′.

3. Define the resulting graph G ′ as follows:

G ′ =
〈
(V ′,E ′),Σ0,C

′〉 ,

where V ′ = ∪c∈C Vc ,E
′ = ∪c∈C Ec ,C ′ = ∪c∈C Cc .
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Properties

Composition: Properties

1. Any c is transformed into a constraint c̃ : {0, 1}2l → {T ,F}.
2. Set M as the maximal size of the output graph of P for an

input c̃ .
⇒ M only depends on |Σ| and P, and we have
size(G ′) ≤ M · size(G ).

3. Let σ′ : V ′ → Σ0 be a best assignment for G ′.

4. Define σ : V → Σ by:σ(v) := minarga∈Σ(dist(e(a), σ′([v ]))).

5. Let c be a constraint over the variables u, v that rejects σ.

6. That means dist(σ′|[u]∪[v ],SAT(c̃)) ≥ %
4 .

7. By definition at least a fraction of ε · %
4 of the constraints in

Cc reject σ′.

⇒ UNSAT(G ′) ≥ ε%

4
·UNSAT(G ).

�
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Main Theorem

Finally we can state the main amplification theorem:

Theorem 4 (Main)

For any Σ, |Σ| = O(1), there exist constants C > 0 and
0 < α < 1, such that given a constraint graph G = 〈(V ,E ),Σ,C 〉
one can construct, in polynomial time, a constraint graph
G ′ = 〈(V ′,E ′),Σ0,C ′〉 such that

1. size(G ′) ≤ C · size(G ) and |Σ0| = O(1).

2. If UNSAT(G ) = 0 then UNSAT(G ′) = 0

3. UNSAT(G ′) ≥ min(2 ·UNSAT(G ), α).
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Proof of the Main Theorem

Proof of the Main Theorem

1. Define G ′ = (prep(G ))t ◦P using the previous lemmata.

2. Each lemma only incurs a linear blowup of the size.

3. Choose t =
⌈(

2
β1β2β3

)2 ⌉
and α = β3β2√

t
:

UNSAT(G ′) ≥ β3 ·UNSAT((prep(G ))t)

≥ β3 · β2

√
t ·min(UNSAT(prep(G )),

1

t
)

≥ β3 · β2

√
t ·min(β1UNSAT(G ),

1

t
)

≥ min(2 ·UNSAT(G ), α).
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Proof of the Main Theorem

1. It is NP-hard to decide if UNSAT(G ) = 0 or not for a given
constraint graph G with |Σ| = 7.

2. Let G0 be such an instance and Gi be the the outcome after
applying the main theorem on Gi−1.

3. Set k := dlog(α|E0|)e = O(log n) :⇒ ∀i ≤ k : size(Gi ) ≤
C i · size(G0) = poly(n).

4. If UNSAT(G0) = 0 then UNSAT(Gi ) = 0.

5. If not, then we have by
induction:UNSAT(Gi ) ≥ min(2iUNSAT(G0), α).

6. Therefore 2kUNSAT(G0) ≥ α and therefore
UNSAT(Gk) ≥ α.

7. Now a local gadget reduction takes Gk to 3SAT form, while
maintaining the satisfiability gap up to some constant.

Bernhard Vesenmayer: PCP Theorem 33/ 33



Outline Preprocessing Powering Composition Main Theorem Proof of PCP Theorem

Proof of the Main Theorem

1. It is NP-hard to decide if UNSAT(G ) = 0 or not for a given
constraint graph G with |Σ| = 7.

2. Let G0 be such an instance and Gi be the the outcome after
applying the main theorem on Gi−1.

3. Set k := dlog(α|E0|)e = O(log n) :⇒ ∀i ≤ k : size(Gi ) ≤
C i · size(G0) = poly(n).

4. If UNSAT(G0) = 0 then UNSAT(Gi ) = 0.

5. If not, then we have by
induction:UNSAT(Gi ) ≥ min(2iUNSAT(G0), α).

6. Therefore 2kUNSAT(G0) ≥ α and therefore
UNSAT(Gk) ≥ α.

7. Now a local gadget reduction takes Gk to 3SAT form, while
maintaining the satisfiability gap up to some constant.

Bernhard Vesenmayer: PCP Theorem 33/ 33



Outline Preprocessing Powering Composition Main Theorem Proof of PCP Theorem

Proof of the Main Theorem

1. It is NP-hard to decide if UNSAT(G ) = 0 or not for a given
constraint graph G with |Σ| = 7.

2. Let G0 be such an instance and Gi be the the outcome after
applying the main theorem on Gi−1.

3. Set k := dlog(α|E0|)e = O(log n) :⇒ ∀i ≤ k : size(Gi ) ≤
C i · size(G0) = poly(n).

4. If UNSAT(G0) = 0 then UNSAT(Gi ) = 0.

5. If not, then we have by
induction:UNSAT(Gi ) ≥ min(2iUNSAT(G0), α).

6. Therefore 2kUNSAT(G0) ≥ α and therefore
UNSAT(Gk) ≥ α.

7. Now a local gadget reduction takes Gk to 3SAT form, while
maintaining the satisfiability gap up to some constant.

Bernhard Vesenmayer: PCP Theorem 33/ 33



Outline Preprocessing Powering Composition Main Theorem Proof of PCP Theorem

Proof of the Main Theorem

1. It is NP-hard to decide if UNSAT(G ) = 0 or not for a given
constraint graph G with |Σ| = 7.

2. Let G0 be such an instance and Gi be the the outcome after
applying the main theorem on Gi−1.

3. Set k := dlog(α|E0|)e = O(log n) :⇒ ∀i ≤ k : size(Gi ) ≤
C i · size(G0) = poly(n).

4. If UNSAT(G0) = 0 then UNSAT(Gi ) = 0.

5. If not, then we have by
induction:UNSAT(Gi ) ≥ min(2iUNSAT(G0), α).

6. Therefore 2kUNSAT(G0) ≥ α and therefore
UNSAT(Gk) ≥ α.

7. Now a local gadget reduction takes Gk to 3SAT form, while
maintaining the satisfiability gap up to some constant.

Bernhard Vesenmayer: PCP Theorem 33/ 33



Outline Preprocessing Powering Composition Main Theorem Proof of PCP Theorem

Proof of the Main Theorem

1. It is NP-hard to decide if UNSAT(G ) = 0 or not for a given
constraint graph G with |Σ| = 7.

2. Let G0 be such an instance and Gi be the the outcome after
applying the main theorem on Gi−1.

3. Set k := dlog(α|E0|)e = O(log n) :⇒ ∀i ≤ k : size(Gi ) ≤
C i · size(G0) = poly(n).

4. If UNSAT(G0) = 0 then UNSAT(Gi ) = 0.

5. If not, then we have by
induction:UNSAT(Gi ) ≥ min(2iUNSAT(G0), α).

6. Therefore 2kUNSAT(G0) ≥ α and therefore
UNSAT(Gk) ≥ α.

7. Now a local gadget reduction takes Gk to 3SAT form, while
maintaining the satisfiability gap up to some constant.

Bernhard Vesenmayer: PCP Theorem 33/ 33



Outline Preprocessing Powering Composition Main Theorem Proof of PCP Theorem

Proof of the Main Theorem

1. It is NP-hard to decide if UNSAT(G ) = 0 or not for a given
constraint graph G with |Σ| = 7.

2. Let G0 be such an instance and Gi be the the outcome after
applying the main theorem on Gi−1.

3. Set k := dlog(α|E0|)e = O(log n) :⇒ ∀i ≤ k : size(Gi ) ≤
C i · size(G0) = poly(n).

4. If UNSAT(G0) = 0 then UNSAT(Gi ) = 0.

5. If not, then we have by
induction:UNSAT(Gi ) ≥ min(2iUNSAT(G0), α).

6. Therefore 2kUNSAT(G0) ≥ α and therefore
UNSAT(Gk) ≥ α.

7. Now a local gadget reduction takes Gk to 3SAT form, while
maintaining the satisfiability gap up to some constant.

Bernhard Vesenmayer: PCP Theorem 33/ 33



Outline Preprocessing Powering Composition Main Theorem Proof of PCP Theorem

Proof of the Main Theorem

1. It is NP-hard to decide if UNSAT(G ) = 0 or not for a given
constraint graph G with |Σ| = 7.

2. Let G0 be such an instance and Gi be the the outcome after
applying the main theorem on Gi−1.

3. Set k := dlog(α|E0|)e = O(log n) :⇒ ∀i ≤ k : size(Gi ) ≤
C i · size(G0) = poly(n).

4. If UNSAT(G0) = 0 then UNSAT(Gi ) = 0.

5. If not, then we have by
induction:UNSAT(Gi ) ≥ min(2iUNSAT(G0), α).

6. Therefore 2kUNSAT(G0) ≥ α and therefore
UNSAT(Gk) ≥ α.

7. Now a local gadget reduction takes Gk to 3SAT form, while
maintaining the satisfiability gap up to some constant.

Bernhard Vesenmayer: PCP Theorem 33/ 33


	Outline
	Preprocessing
	Constant degree
	Expanderizing
	Preprocessing

	Powering
	Assignments
	N(e)
	Two Cases

	Composition
	Preparation
	Composition
	Properties

	Main Theorem
	Proof of the Main Theorem

	Proof of PCP Theorem

