Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
	000000 000 0	0 0000000 00	0 0 0	0	

Course "Proofs and Computers", JASS'06

PCP-Theorem by Gap Amplification

Bernhard Vesenmayer

Faculty of Mathematics TU Munich

March 29, 2006

Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
	000000 000 0	0 0000000 00	0 0 0	0	

Preprocessing

Constant degree Expanderizing Preprocessing

Powering

Assignments N(e) Two Cases

Composition

Preparation Composition Properties

Main Theorem Proof of the Main Theorem Proof of PCP Theorem

Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
	000000 000 0	0 0000000 00	0 0 0	0	

Preprocessing

In this step we want to transform a given constraint graph into a 'nice' one. That means for the resulting graph G' should hold:

- 1. G' is of constant degree d, i.e. independent of the input graph G,
- 2. G' is d-regular with self-loops, and $\lambda(G') \leq \lambda < d$,
- 3. $\beta_1 \cdot \text{UNSAT}(G) \leq \text{UNSAT}(G') \leq \text{UNSAT}(G).$

Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
	00000	0	0	0	
	000	0000000	0		
	0	00	0		
Constant de	gree				

Constant degree

Proposition 1 (Constant degree)

Any constraint graph $G = \langle (V, E), \Sigma, \mathscr{C} \rangle$ can be transformed into a $(d_0 + 1)$ -regular graph $G' = \langle (V', E'), \Sigma, \mathscr{C}' \rangle$ such that |V'| = 2|E| and

cUNSAT(G) \leq UNSAT(G') \leq UNSAT(G)

for some global constants $d_0, c > 0$.

Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
	00000 000 0	0 0000000 00	0 0	0	
Constant de	gree				

1. Let X_n be a d_0 -regular expander on n vertices with $h(X_0) > h_0$.

Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
	00000 000 0	0 0000000 00	0	0	
Constant deg	gree				

- 1. Let X_n be a d_0 -regular expander on n vertices with $h(X_0) > h_0$.
- 2. Let d_v be the degree of v. Replace v by X_{d_v} , equipped with equality constraints, denoted by [v]. Let E_1 be the set of such edges.

Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
	00000 000 0	0 0000000 00	0 0	0	
Constant de	gree				

- 1. Let X_n be a d_0 -regular expander on n vertices with $h(X_0) > h_0$.
- 2. Let d_v be the degree of v. Replace v by X_{d_v} , equipped with equality constraints, denoted by [v]. Let E_1 be the set of such edges.
- For every (u, v) ∈ E put an edge between one vertice of [u] and [v], such that each vertice only sees one such 'external' edge. Let E₂ be the set of those edges.

Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
		0 0000000 00	0 0	0	
Constant deg	gree				

- 1. Let X_n be a d_0 -regular expander on n vertices with $h(X_0) > h_0$.
- 2. Let d_v be the degree of v. Replace v by X_{d_v} , equipped with equality constraints, denoted by [v]. Let E_1 be the set of such edges.
- For every (u, v) ∈ E put an edge between one vertice of [u] and [v], such that each vertice only sees one such 'external' edge. Let E₂ be the set of those edges.
- 4. Define $G' := ([V], \mathbf{E} = E_1 \cup E_2)$, where $[V] := \cup_{v \in V} [v]$.

Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
	00000	0	0	0	
	000	0000000	0		
	0	00	0		
Constant de	gree				

Properties: Upper bound

- 1. Let $\sigma: V \to \Sigma$ be a best assignment of G.
- 2. Define $\sigma' : [V] \to \Sigma$ by: $\forall v \in V, x \in [v] : \sigma'(x) = \sigma(v)$

 $\Rightarrow \mathrm{UNSAT}(\mathcal{G}) = \mathrm{UNSAT}_{\sigma}(\mathcal{G}) \geq \mathrm{UNSAT}_{\sigma'}(\mathcal{G}') \geq \mathrm{UNSAT}(\mathcal{G}')$

Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
		0 0000000 00	0 0	0	

Constant degree

Properties: Lower bound

- 1. Let $\sigma': [V] \to \Sigma$ be a best assignment.
- 2. Define $\sigma: V \to \Sigma$ by: $\sigma(v) := \max_{a \in \Sigma} (P_{x \in [v]}(\sigma'(x) = a))$
- 3. Let $F \subset E$, $\mathbf{F} \subset \mathbf{E}$ be the set of edges that reject σ, σ' .
- 4. Let $S := \bigcup_{v \in V} \{x \in [v]; \sigma'(x) \neq \sigma(v)\}.$

$$\Rightarrow |\mathbf{F}| + |S| \ge |F| = \alpha \cdot |E|, \text{ where } \alpha := \frac{|F|}{|E|}.$$

Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
	000000	0	0	0	
	000	0000000	0		
	0	00	0		
Constant de	gree				

Properties: Lower bound - Two cases

We have to distinguish between two cases:

- 1. $|\mathbf{F}| \ge \frac{\alpha}{2} |E|$
- 2. $|\mathbf{F}| < \frac{\alpha}{2}|E|$

The first case is simple:

$$\begin{aligned} |\mathbf{F}| &\geq \frac{\alpha}{2} |E| = \frac{\alpha}{2d} |\mathbf{E}| \\ \Rightarrow \text{UNSAT}(G') &= \text{UNSAT}_{\sigma'}(G') \\ &\geq \frac{1}{2d} \text{UNSAT}_{\sigma}(G) \\ &\geq \frac{1}{2d} \text{UNSAT}(G). \end{aligned}$$

Outline	Preprocessing 00000 000	Powering 0 0000000	Composition 0 0	Main Theorem 0	Proof of PCP Theorem
	0	00	0		
Constant dee	ree				

Properties: Lower bound - Two cases

Second case: $|\mathbf{F}| < \frac{\alpha}{2} |E| \Rightarrow |S| \ge \frac{\alpha}{2} |E|$. Define the following: 1. $S^{v} := [v] \cap S$ 2. $S_{a}^{v} := \{x \in S^{v}; \sigma'(x) = a\}$ 3. $|S_{a}^{v}| \le \frac{|[v]|}{2} \Rightarrow |E(S_{a}^{v}, [v] \setminus S_{a}^{v})| \ge h_{0} \cdot |S_{a}^{v}|$ 4. $|\mathbf{F}| \ge \sum_{v \in V} \sum_{a \in \Sigma} h_{0} |S_{a}^{v}| = h_{0} |S| \ge h_{0} \frac{\alpha}{2} |E| = \frac{h_{0}\alpha}{2d} |\mathbf{E}|$

Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
	000000	0	0	0	
	000	0000000	0		
	0	00	0		

Expanderizing

Proposition 2 (Expanderizing)

Let $d_0, h_0 > 0$ be some global constants. Any d-regular constraint graph G can be transformed into G' such that

1.
$$G'$$
 is $(d + d_0 + 1)$ -regular, has self-loops, and
 $\lambda(G') \le d + d_0 + 1 - \frac{h_0^2}{d + d_0 + 1} < \deg(G')$,
2. $\operatorname{size}(G') = O(\operatorname{size}(G))$ and

2.
$$size(G') = O(size(G))$$
, and

3.
$$\frac{d}{d+d_0+1}$$
 · UNSAT(G) \leq UNSAT(G') \leq UNSAT(G).

Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
	000000	0 0000000 00	0	0	

1. Let
$$E_{loop} := \{(v, v); v \in V\}.$$

Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
		0 0000000 00	0	0	

Construction of G'

1. Let
$$E_{loop} := \{(v, v); v \in V\}.$$

2. Let X = (V, E') be a d_0 -regular expander on |V| vertices with $h(X) \ge h_0$.

Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
	000000	0	0	0	
	000	0000000	0		
	0	00	0		

- 1. Let $E_{loop} := \{(v, v); v \in V\}.$
- 2. Let X = (V, E') be a d_0 -regular expander on |V| vertices with $h(X) \ge h_0$.
- 3. Define $G' = (V, E \cup E' \cup E_{loop})$ with trivial constraints on the new edges.

Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
	000000 000 0	0 0000000 00	0 0 0	0	

Properties

1. G' is $(d + d_0 + 1)$ -regular and of the same size as G.

2.
$$\lambda(G') \leq d + d_0 + 1 - \frac{h(G')^2}{d(G')} \leq d + d_0 + 1 - \frac{h_0^2}{d + d_0 + 1} < d + d_0 + 1$$

3. The fraction of unsatisfied edges drops at most by $\frac{d}{d+d_0+1}$. \Box

Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
	000000 000 •	0 0000000 00	0 0	0	

Preprocessing

Lemma 1 (Preprocessing)

There exist constants $0 < \lambda < d$ and $\beta_1 > 0$ such that any constraint graph G can be transformed into a constraint graph G', denoted G' = prep(G), such that

- 1. G' is d-regular with self-loops, and $\lambda(G') \leq \lambda < d$.
- 2. G' has the same alphabet as G, and size(G') = O(size(G)).
- 3. $\beta_1 \cdot \text{UNSAT}(G) \leq \text{UNSAT}(G') \leq \text{UNSAT}(G)$.

Proof. Consecutively apply the previous two propositions.

Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
	000000 000 0	0 0000000 00	0 0	0	

In this step we amplify the satisfiability gap. Let G be a given constraint graph. Consider the graph G^t which is defined as follows:

1. The vertices of G^t are the same as the vertices of G

Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
	000000 000 0	0 0000000 00	0 0	0	

In this step we amplify the satisfiability gap. Let G be a given constraint graph. Consider the graph G^t which is defined as follows:

- 1. The vertices of G^t are the same as the vertices of G
- 2. *u* and *v* are connected by *k* edges in **E** iff the number of *t*-step paths from *u* to *v* in *G* is exactly *k*.

Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
	000000 000 0	0 0000000 00	0 0	0	

In this step we amplify the satisfiability gap. Let G be a given constraint graph. Consider the graph G^t which is defined as follows:

- 1. The vertices of G^t are the same as the vertices of G
- 2. *u* and *v* are connected by *k* edges in **E** iff the number of *t*-step paths from *u* to *v* in *G* is exactly *k*.
- 3. The alphabet of G^t is Σ^{d^t} , where every vertex specifies values for all its neighbours reachable in t steps.

Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
	000000 000 0	0 0000000 00	0 0 0	0	

In this step we amplify the satisfiability gap. Let G be a given constraint graph. Consider the graph G^t which is defined as follows:

- 1. The vertices of G^t are the same as the vertices of G
- 2. *u* and *v* are connected by *k* edges in **E** iff the number of *t*-step paths from *u* to *v* in *G* is exactly *k*.
- 3. The alphabet of G^t is Σ^{d^t} , where every vertex specifies values for all its neighbours reachable in t steps.
- 4. The constraint associated with an edge $\mathbf{e} = (u, v) \in \mathbf{E}$ is satisfied iff the assignments for u and v are consistent with an assignment that satisfies all of the constraints induced by the t neighbourhoods of u and v.

Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
	000000 000 0	0 0000000 00	0 0 0	0	

Lemma 2 (Powering)

Let $\lambda < d$, and $|\Sigma|$ be arbitrary constants. There exists a constant $\beta_2 = \beta_2(\lambda, d, |\Sigma|) > 0$, such that for every $t \in \mathbb{N}$ and for every *d*-regular constraint graph $G = \langle (V, E), \Sigma, \mathscr{C} \rangle$ with self-loops and $\lambda(G) \leq \lambda$

UNSAT
$$(G^t) \geq \beta_2 \sqrt{t} \cdot \min\left(UNSAT(G), \frac{1}{t}\right)$$

Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
	000000 000 0	• 0000000 00	0 0 0	0	
A					

Assignments

- 1. Let $\tilde{\sigma}$ be a best assignment for G^t , i.e. UNSAT $_{\tilde{\sigma}}(G^t) = \text{UNSAT}(G^t)$.
- 2. Let $\tilde{\sigma}(v)_w$ denote the value that is specified for w by v.
- 3. For every $1 \le j \le t$ and $v \in V$ let $X_{v,j}$ be a random variable with distribution

$$P(X_{v,j} = a) := \frac{\# \text{ j-step from } v \text{ to some } w \text{ with } \tilde{\sigma}(w)_v = a}{\# \text{ j-step paths starting at } v}$$

4. Now define $\sigma: V \to \Sigma$ as follows:

$$\sigma(\mathbf{v}) := \operatorname{maxarg}_{\mathbf{a} \in \boldsymbol{\Sigma}}(P(X_{\mathbf{v}, \frac{t}{2}} = \mathbf{a}))$$

Outline	Preprocessing 000000 000 0	Powering ○ ●○○○○○○○	Composition 0 0	Main Theorem O	Proof of PCP Theorem
N(e)					

$N(\mathbf{e})$

- 1. Let $F \subset E$ be a subset of the edges that reject σ , such that $\text{UNSAT}(G) = \frac{|F|}{|E|}$.
- 2. Let $I_r := \{\frac{t}{2} r < i \le \frac{t}{2} + r\}.$
- 3. For each $\mathbf{e} = (v_0, \dots, v_t) \in \mathbf{E}$ define the following random variable

$$N_{i}(\mathbf{e}) := \begin{cases} 1 & \text{if } (v_{i-1}, v_{i}) \in F \land \tilde{\sigma}(v_{0})_{v_{i-1}} = \sigma(v_{i-1}) \\ & \land \tilde{\sigma}(v_{t})_{v_{i}} = \sigma(v_{i}) \\ 0 & \text{otherwise} \end{cases}$$
$$N(\mathbf{e}) := \sum_{i \in I_{r}} N_{i}$$

Then $\text{UNSAT}_{\tilde{\sigma}}(G^t) \geq P(N > 0) \geq \frac{E^2(N)}{E(N^2)}$.

Outline	Preprocessing 000000 000 0	Powering ○ ○●○○○○○○ ○○	Composition 0 0	Main Theorem O	Proof of PCP Theorem
N(e)					

1. By definition we have: $E(N) = \sum_{i \in I_r} E(N_i) = \sum_{i \in I_r} P(N_i > 0).$ 2. We can gain the probability of $P(N_i > 0)$ as follows: $P(N_i > 0) = P((u, v) \in F)P(X_{u,i-1} = \sigma(u))P(X_{v,t-i} = \sigma(v))$

$$= \frac{|F|}{|E|} P(X_{u,i-1} = \sigma(u)) P(X_{v,t-i} = \sigma(v))$$

3. For any $l \in I_r$ we can decompose as follows $(B_{l,p})$ is binomially distributed with $p = 1 - \frac{1}{d}$ and $X'_{u,k}$ is defined like $X_{u,k}$ but without loops):

$$P(X_{u,l} = \sigma(u)) = \sum_{k=0}^{l} P(B_{l,p} = k) P(X'_{u,k} = \sigma(u)),$$

Outline	Preprocessing 000000 000 0	O ○ ○ ○ ○ ○ ○ ○ ○	Composition 0 0	Main Theorem O	Proof of PCP Theorem
N(e)					

Now we need the following technical proposition, stating the distribution of B_{l_1} and B_{l_2} are quite similar:

Proposition 3

For every $p \in [0,1]$ and c > 0 there exists some $0 < \tau \le 1$ such that if $|l_1 - l_2| \le (\sqrt{l_1} \land \sqrt{l_2})$, then

$$\tau \leq \frac{P(B_{l_1,p}=k)}{P(B_{l_2,p}=k)} \leq \frac{1}{\tau} \quad \forall k, |k-pl_1| \vee |k-pl_2| \leq c(\sqrt{l_1} \wedge \sqrt{l_2})$$

1. Define
$$J := \{k \in \mathbb{N}; |k - pl| \lor |k - p\frac{t}{2}| \le c(\sqrt{\frac{t}{2}} \land \sqrt{l})\}.$$

2. Choose c such that $P(B_{\frac{t}{2},p} \notin J) \leq \frac{1}{2|\Sigma|}$.

Outline	Preprocessing 000000 000 0	O ○ ○ ○ ○ ○ ○ ○ ○	Composition 0 0	Main Theorem O	Proof of PCP Theorem
N(e)					

- 1. By construction of σ we have $P(X_{u,\frac{t}{2}} = \sigma(u)) \geq \frac{1}{|\Sigma|}$.
- 2. Apply the proposition with $r := -\frac{3}{2} + \frac{1}{2}\sqrt{1+2t}$ (then the condition $|l_1 l_2| \le \sqrt{l_1} \land \sqrt{l_2}$ is met) and with $l_1 = \frac{t}{2}, l_2 = i 1$:

$$P(X_{u,i-1} = \sigma(u)) \geq \sum_{k \in J} P(B_{i-1,p} = k) P(X'_{u,k} = \sigma(u))$$

$$\geq \tau \cdot \sum_{k \in J} P(B_{\frac{t}{2},p} = k) P(X'_{u,k} = \sigma(u))$$

$$\geq \tau (P(X_{u,\frac{t}{2}} = \sigma(u)) - \frac{1}{2|\Sigma|})$$

$$\geq \frac{\tau}{2|\Sigma|}$$

Outline	Preprocessing 000000 000 0	Powering ○ ○○○○●○○ ○○	Composition 0 0	Main Theorem O	Proof of PCP Theorem
N(e)					

Therefore we finally have:

$$E(N) = \sum_{i \in I_r} E(N_i) = \sum_{i \in I_r} P(N_i > 0)$$

$$= \sum_{i \in I_r} \frac{|F|}{|E|} P(X_{u,i-1} = \sigma(u)) P(X_{v,t-i} = \sigma(v))$$

$$\geq |I_r| \frac{\tau^2}{4|\Sigma|^2} \frac{|F|}{|E|}$$

$$\geq \Omega(\sqrt{t}) \cdot \frac{|F|}{|E|}$$

Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
	000000 000 0	0 00000●0 00	0 0	0	
N(e)					

 $E(N^2)$

Define $Z_i(\mathbf{e}) = 1$ iff $e_i \in F$, else $Z_i(\mathbf{e}) = 0$, $Z(\mathbf{e}) := \sum_{i \in I_r} Z_i(\mathbf{e})$.

$$\begin{split} E(Z^2) &= \sum_{i \in I_r} E(Z_i^2) + 2 \sum_{i < j; i, j \in I_r} E(Z_i Z_j) \\ &= |I_r| \frac{|F|}{|E|} + 2 \sum_{i < j; i, j \in I_r} E(Z_i Z_j) \\ E(Z_i Z_j) &= P(Z_i Z_j > 0) = P(Z_i > 0) P(Z_j > 0 | Z_i > 0) \\ &= \frac{|F|}{|E|} P(Z_j > 0 | Z_i > 0) \\ P_{|\mathbf{e}|=t}(Z_j (\mathbf{e}) > 0 | Z_i(\mathbf{e}) > 0) \\ &= P_{|\mathbf{e}'|=t-i+1}(Z_{j-i+1}(\mathbf{e}') > 0 | Z_1(\mathbf{e}') > 0) \le \frac{|F|}{|E|} + \left(\frac{\lambda}{d}\right)^{j-i} \end{split}$$

N(e)	Outline	Preprocessing 000000 000 0	O ○ ○ ○ ○ ○ ○ ○	Composition 0 0	Main Theorem O	Proof of PCP Theorem
	N(e)					

$E(N^2)$

Having that $\lambda < d$, we know that $\sum_{i=0}^{\infty} \left(\frac{\lambda}{d}\right)^i = K < \infty$. Gathering all those results, we can estimate $E(N^2)$:

$$E(N^{2}) \leq E(Z^{2}) \leq |I_{r}| \frac{|F|}{|E|} + 2\frac{|F|}{|E|} \sum_{i < j; i, j \in I_{r}} \left(\frac{|F|}{|E|} + \left(\frac{\lambda}{d}\right)^{j-i} \right)$$

$$\leq O(\sqrt{t}) \frac{|F|}{|E|} + 2\left(|I_{r}|^{2} \left(\frac{|F|}{|E|}\right)^{2} + |I_{r}| \frac{|F|}{|E|} K\right)$$

$$= O(\sqrt{t}) \frac{|F|}{|E|} + O(t) \left(\frac{|F|}{|E|}\right)^{2}$$

Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
	000000 000 0	0 0000000 ●0	0 0 0	0	
Two Cases					

Powering: Two Cases

Now we can show the amplification. However we have to distinguish between two cases:

- 1. UNSAT(**G**) > $\frac{1}{\sqrt{t}}$
- 2. UNSAT(**G**) $\leq \frac{1}{\sqrt{t}}$

The first case is simple:

$$\begin{aligned} \text{UNSAT}(G^t) &\geq P(N > 0) \geq \frac{\Omega(\sqrt{t})^2 \frac{|F|^2}{|E|^2}}{O(t) \frac{|F|}{|E|}} \geq \Omega(1) \frac{|F|}{|E|} \geq \Omega(1) \frac{1}{\sqrt{t}} \\ &= \Omega(\sqrt{t}) \frac{1}{t} \geq \Omega(\sqrt{t}) \min(\text{UNSAT}(G), \frac{1}{t}) \end{aligned}$$

Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
	000000	0	0	0	
	0000	00	õ		
Two Cases					

Powering: Two Cases

Let $\mathrm{UNSAT}(G) \leq \frac{1}{\sqrt{t}}$, then we have:

$$E(N^2) \le O(\sqrt{t})\frac{|F|}{|E|} + O(t)\left(\frac{|F|}{|E|}\right)^2 \le O(\sqrt{t})\frac{|F|}{|E|}$$

$$\Rightarrow \text{UNSAT}(G^{t}) \geq P(N > 0) \geq \frac{\Omega(\sqrt{t})^{2} \frac{|F|^{2}}{|E|^{2}}}{O(\sqrt{t}) \frac{|F|}{|E|}} \\ \geq \Omega(\sqrt{t}) \frac{|F|}{|E|} \geq \Omega(\sqrt{t}) \min(\text{UNSAT}(G), \frac{1}{t})$$

outinite		0		
0000C 000 0	00000 00000 00		0	

Composition

Definition 4

[Assignment Tester] An Assignment Tester with alphabet Σ_0 and rejection probability $\varepsilon > 0$ is a polynomial-time transformation \mathscr{P} whose input is a circuit Φ over Boolean variables X, and whose output is a constraint graph $G = \langle (V, E), \Sigma_0, \mathscr{C} \rangle$ such that $X \subset V$, and such that the following holds. Let $V' = V \setminus X$, and let $a : X \to \{0, 1\}$ be an assignment.

1. If $a \in \text{SAT}(\Phi)$, there exists $b : V' \to \Sigma_0$ such that $\text{UNSAT}_{a \cup b}(G) = 0$.

2. If
$$a \notin \text{SAT}(\Phi)$$
 then for all $b : V' \to \Sigma_0$ holds
 $\text{UNSAT}_{a \cup b}(G) \geq \varepsilon \cdot \text{dist}(a, \text{SAT}(\Phi)).$

	Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
0 00 0		000000 000 0	0 0000000 00	0 0 0	0	

Composition

We this we can state the composition lemma:

Lemma 3 (Composition)

Let \mathscr{P} an assignment tester with constant rejection probability $\varepsilon > 0$, and alphabet $\Sigma_0, |\Sigma_0| = O(1)$. There exists $\beta_3 > 0$ that depends only on \mathscr{P} , such that any constraint graph $G = \langle (V, E), \Sigma, \mathscr{C} \rangle$ can be transformed into a constraint graph $G' = \langle (V', E'), \Sigma_0, \mathscr{C}' \rangle$, denoted by $G \circ \mathscr{P}$, such that size $(G') = M(|\Sigma|) \cdot size(G)$, and

$\beta_3 \cdot \text{UNSAT}(G) \leq \text{UNSAT}(G') \leq \text{UNSAT}(G)$

Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
	000000	0	•	0	
	000	0000000	0		
Preparation					

Composition: Preparation

The assignment tester needs input constraints defined over Boolean variables.

- 1. Let $e: \Sigma \to \{0,1\}^{l}$ be an encoding with relative Hamming distance $\varrho > 0, l = O(\log |\Sigma|)$.
- 2. Replace each $v \in V$ by I Boolean variables [v].
- Replace each constraint c over the two variables v, w by c̃ over [v] ∪ [w], such that c̃ is satisfied iff the assignment for [v] ∪ [w] is a legal encoding via e of an assignment for v and w that satisfies c.

Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
	000000	0	0	0	
	000	0000000	•		
	0	00	0		
Composition					

Composition: Composition

- 1. Run \mathscr{P} on any such \tilde{c} and get constraint graphs $G_c = \langle (V_c, E_c), \Sigma_0, \mathscr{C}_c \rangle.$
- 2. Without loss of generality we can assume $|E_c| = |E_{c'}|$ for any constraints c, c'.
- 3. Define the resulting graph G' as follows:

$$G' = \left\langle (V', E'), \Sigma_0, \mathscr{C}' \right\rangle,$$

where $V' = \cup_{c \in \mathscr{C}} V_c, E' = \cup_{c \in \mathscr{C}} E_c, \mathscr{C}' = \cup_{c \in \mathscr{C}} \mathscr{C}_c.$

Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
	000000	0000000	0	0	
Properties					

Composition: Properties

- 1. Any c is transformed into a constraint $\tilde{c}: \{0,1\}^{2l} \to \{T,F\}.$
- 2. Set *M* as the maximal size of the output graph of \mathscr{P} for an input \tilde{c} .

 $\Rightarrow M$ only depends on $|\Sigma|$ and \mathscr{P} , and we have $size(G') \leq M \cdot size(G)$.

- 3. Let $\sigma': V' \to \Sigma_0$ be a best assignment for G'.
- 4. Define $\sigma: V \to \Sigma$ by: $\sigma(v) := \operatorname{minarg}_{a \in \Sigma}(\operatorname{dist}(e(a), \sigma'([v]))).$
- 5. Let c be a constraint over the variables u, v that rejects σ .
- 6. That means $\operatorname{dist}(\sigma'|_{[u]\cup[v]}, \operatorname{SAT}(\tilde{c})) \geq \frac{\varrho}{4}$.
- 7. By definition at least a fraction of $\varepsilon \cdot \frac{\varrho}{4}$ of the constraints in \mathscr{C}_c reject σ' .

$$\Rightarrow \text{UNSAT}(G') \geq \frac{\varepsilon \varrho}{4} \cdot \text{UNSAT}(G).$$

Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
	000000 000 0	0 0000000 00	0 0 0	0	

Main Theorem

Finally we can state the main amplification theorem:

Theorem 4 (Main)

For any Σ , $|\Sigma| = O(1)$, there exist constants C > 0 and $0 < \alpha < 1$, such that given a constraint graph $G = \langle (V, E), \Sigma, \mathscr{C} \rangle$ one can construct, in polynomial time, a constraint graph $G' = \langle (V', E'), \Sigma_0, \mathscr{C}' \rangle$ such that

- 1. $size(G') \leq C \cdot size(G)$ and $|\Sigma_0| = O(1)$.
- 2. If UNSAT(G) = 0 then UNSAT(G') = 0
- 3. UNSAT(G') $\geq \min(2 \cdot \text{UNSAT}(G), \alpha)$.

Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem	
	000000	0 0000000 00	0	•		
Proof of the Main Theorem						

1. Define $G' = (prep(G))^t \circ \mathscr{P}$ using the previous lemmata.

2. Each lemma only incurs a linear blowup of the size.

3. Choose
$$t = \left\lceil \left(\frac{2}{\beta_1 \beta_2 \beta_3}\right)^2 \right\rceil$$
 and $\alpha = \frac{\beta_3 \beta_2}{\sqrt{t}}$:

$$\begin{aligned} \text{JNSAT}(G') &\geq \beta_3 \cdot \text{UNSAT}((\textit{prep}(G))^t) \\ &\geq \beta_3 \cdot \beta_2 \sqrt{t} \cdot \min(\text{UNSAT}(\textit{prep}(G)), \frac{1}{t}) \\ &\geq \beta_3 \cdot \beta_2 \sqrt{t} \cdot \min(\beta_1 \text{UNSAT}(G), \frac{1}{t}) \\ &\geq \min(2 \cdot \text{UNSAT}(G), \alpha). \end{aligned}$$

J

Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
	000000 000 0	0 0000000 00	0 0 0	0	

1. It is NP-hard to decide if UNSAT(G) = 0 or not for a given constraint graph G with $|\Sigma| = 7$.

Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
	000000 000 0	0 0000000 00	0 0 0	0	

- 1. It is NP-hard to decide if UNSAT(G) = 0 or not for a given constraint graph G with $|\Sigma| = 7$.
- 2. Let G_0 be such an instance and G_i be the the outcome after applying the main theorem on G_{i-1} .

Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
	000000 000 0	0 0000000 00	0 0 0	0	

- 1. It is NP-hard to decide if UNSAT(G) = 0 or not for a given constraint graph G with $|\Sigma| = 7$.
- 2. Let G_0 be such an instance and G_i be the the outcome after applying the main theorem on G_{i-1} .
- 3. Set $k := \lceil \log(\alpha |E_0|) \rceil = O(\log n) :\Rightarrow \forall i \le k : size(G_i) \le C^i \cdot size(G_0) = poly(n).$

Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
	000000 000 0	0 0000000 00	0 0 0	0	

- 1. It is NP-hard to decide if UNSAT(G) = 0 or not for a given constraint graph G with $|\Sigma| = 7$.
- 2. Let G_0 be such an instance and G_i be the the outcome after applying the main theorem on G_{i-1} .
- 3. Set $k := \lceil \log(\alpha |E_0|) \rceil = O(\log n) :\Rightarrow \forall i \le k : size(G_i) \le C^i \cdot size(G_0) = poly(n).$
- 4. If $\text{UNSAT}(G_0) = 0$ then $\text{UNSAT}(G_i) = 0$.

Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
	000000 000 0	0 0000000 00	0 0 0	0	

- 1. It is NP-hard to decide if UNSAT(G) = 0 or not for a given constraint graph G with $|\Sigma| = 7$.
- 2. Let G_0 be such an instance and G_i be the the outcome after applying the main theorem on G_{i-1} .
- 3. Set $k := \lceil \log(\alpha | E_0|) \rceil = O(\log n) :\Rightarrow \forall i \le k : size(G_i) \le C^i \cdot size(G_0) = poly(n).$
- 4. If $\text{UNSAT}(G_0) = 0$ then $\text{UNSAT}(G_i) = 0$.
- 5. If not, then we have by induction: UNSAT(G_i) $\geq \min(2^i \text{UNSAT}(G_0), \alpha)$.

Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
	000000 000 0	0 0000000 00	0 0 0	0	

- 1. It is NP-hard to decide if UNSAT(G) = 0 or not for a given constraint graph G with $|\Sigma| = 7$.
- 2. Let G_0 be such an instance and G_i be the the outcome after applying the main theorem on G_{i-1} .
- 3. Set $k := \lceil \log(\alpha |E_0|) \rceil = O(\log n) :\Rightarrow \forall i \le k : size(G_i) \le C^i \cdot size(G_0) = poly(n).$
- 4. If $\text{UNSAT}(G_0) = 0$ then $\text{UNSAT}(G_i) = 0$.
- 5. If not, then we have by induction: UNSAT(G_i) $\geq \min(2^i \text{UNSAT}(G_0), \alpha)$.
- Therefore 2^kUNSAT(G₀) ≥ α and therefore UNSAT(G_k) ≥ α.

Outline	Preprocessing	Powering	Composition	Main Theorem	Proof of PCP Theorem
	000000 000 0	0 0000000 00	0 0 0	0	

- 1. It is NP-hard to decide if UNSAT(G) = 0 or not for a given constraint graph G with $|\Sigma| = 7$.
- 2. Let G_0 be such an instance and G_i be the the outcome after applying the main theorem on G_{i-1} .
- 3. Set $k := \lceil \log(\alpha | E_0 |) \rceil = O(\log n) :\Rightarrow \forall i \le k : size(G_i) \le C^i \cdot size(G_0) = poly(n).$
- 4. If $\text{UNSAT}(G_0) = 0$ then $\text{UNSAT}(G_i) = 0$.
- 5. If not, then we have by induction: UNSAT(G_i) $\geq \min(2^i \text{UNSAT}(G_0), \alpha)$.
- 6. Therefore $2^k \text{UNSAT}(G_0) \ge \alpha$ and therefore $\text{UNSAT}(G_k) \ge \alpha$.
- 7. Now a local gadget reduction takes G_k to 3SAT form, while maintaining the satisfiability gap up to some constant.