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Abstract

In the first part, we introduce randomized algorithms as a new
notion of efficient algorithms for decision problems. We classify ran-
domized algorithms according to their error probabilities, and define
appropriate complexity classes. (RP, coRP, ZPP, BPP, PP). We
discuss which classes are realistic proposals for design of probabilistic
algorithms. We cover the implementation of randomized algorithms
using different non-ideal random sources. We introduce the concept of
derandomization and the “hardness vs. randomness“ paradigm.
Second, we illustrate non-uniform complexity in terms of Boolean cir-
cuits and Turing machines that take advice. We demonstrate the power
of non-uniform complexity classes. We show the relevance of non-
uniform polynomial time for complexity theory, especially the P ?= NP
question.
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1 Randomized algorithms

1.1 Introduction

During the last three decades, usage of randomized algorithms has rapidly
expanded and has significantly changed the notion of efficient computation
and of algorithms themselves. It has turned out that for many decision
and function problems, a randomized algorithm is either the simplest or
the fastest algorithm available. Some fields of scientific computing, like
numerical simulation, are inherently based on randomization.

Randomized algorithms are characterized informally by two facts: They
use randomness to make decisions, and they may answer incorrectly. Anal-
ysis of randomized algorithms, especially their probability of error, is an
important application for probability theory, and randomized algorithms
are often also called probabilistic.

Naturally, since randomized computation is an enormous field, this paper
is far from comprehensive. It focuses mainly on time and error bounds for
decision problems. A lot of other aspects, like space bounds and randomized
algorithms for function problems are covered in [1], [2] and [4].

1.2 Example: Polynomial identity testing

Next we introduce a simple randomized algorithm for polynomial identity
testing : Given two polynomials p1 and p2 over some field F, test whether
they have identical coefficients (note that in the case of a finite field, this
is not necessarily the same as testing whether they have the same value for
every argument).

Of course, this is trivial if p1 and p2 are given explicitly. But as we will see
later, there are some interesting cases where polynomials are given implicitly
and evaluation is much less costly than determining their coefficients.

The description of the algorithm follows.

Algorithm 1 (Polynomial identity testing).

1. choose S ⊂ F, x ∈ S

2. y := p1(x)− p2(x)

3. if (y = 0) return “p1 ≡ p2“ else return “p1 6≡ p2“

This simple algorithm already shows some key aspects of randomized
algorithms. It it obvious that if p1 ≡ p2, the algorithm always answers
correctly. However, if p1 6≡ p2, it can happen that a root of p1 − p2 is
choosen as x in step 1 and therefore the algorithm returns “p1 ≡ p2“. This
event, however, occurs with a probability that is bounded by d

|S| , where d is
the maximum degree of p1 and p2. This holds because p1 − p2 can have at
most d roots; the worst case is that all roots are contained in S. The running
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time of the algorithm is determined by the complexity of evaluating p1 and
p2. In most cases this can be done in polynomial time, so the algorithm
represents the class of Monte Carlo algorithms with polynomial running
time and bounded error probability. There is also a significantly different
kind of randomized algorithm (Las Vegas algorithm), which we will discuss
later.

As shown in [1] and [2], an extension of this algorithm that works with
multivariate polynomials, that is polynomials with several variables, is pos-
sible. This leads to an important application for algorithm 1: determinants
of symbolic matrices, that is matrices with entries that are, in general, mul-
tivariate polynomials. Testing whether the determinant of such a matrix is
identically zero is a common problem, for example in graph theory. Here
we have implicitly given polynomials, which can be evaluated in polynomial
time by substituting numeric values for the variables and performing Gaus-
sian elimination on the resulting numeric matrix. It can be shown that the
size of the matrix entries during this process is polynomial, whereas sym-
bolic Gaussian elimination creates matrix entries of exponential size ([2]).
In fact, no deterministic polynomial time algorithm is known for computing
the determinant of a symbolic matrix, not even for testing whether it is zero
or not. Note that the naive algorithm even takes n! time.

1.3 Classification of randomized algorithms

In this section, we introduce some basic terms related to classification of
randomized algorithms. Since we consider only decision problems (in terms
of binary languages), we have the following cases:

• The algorithm decides correctly.

• An input x that belongs to the language is rejected by the algorithm
(false negative).

• An input x that does not belong to the language is accepted by the
algorithm (false positive).

Denote the probability of a false negative by p1 and the probability of a false
positive with p2. If either p1 = 0 or p2 = 0, the algorithm is called a one-
sided error algorithm: If p1 = 0, a “no“ answer is a definitive one; if p2 = 0,
a “yes“ answer is. Otherwise, it is called a two-sided error algorithm.

It is worth noting that deciding a language by “coin toss“ is a two-sided
error algorithm with p1 = p2 = 1

2 . This “pathological example“ should be
kept in mind when considering error bounds for two-sided error algorithms
(on the other hand, we will see that a one-sided error algorithm with any
error probability bounded away from 1 by a fixed amount is acceptable!)
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1.4 Nondeterminism and randomness

Nondeterminism, as defined in terms of nondeterministic Turing machines,
is intuitively related to randomized computation: A nondeterministic Turing
machine can be considered as a machine that chooses from possible compu-
tation steps uniformly at random. As a consequence, we can view results of
nondeterministic computation as events in the sense of probability theory.

We next introduce a concept which makes probabilistic analysis of non-
deterministic Turing machines easier: standardized nondeterministic Turing
machines (SNDTM). These are nondeterministic Turing machines that, for
every configuration, have exactly two possible alternatives. Obviously such
a machine has a computation tree that is a full binary tree of depth 2−f(|x|),
where f(|x|) is the time bound of the machine, depending on the size of the
input x.

With the concepts from the previous section, we now analyze machines
deciding languages in the class NP. From the definition of NP, we conclude
that if one computation of such a machine is chosen at random, the prob-
ability of a false positive is zero, whereas the fact that only one accepting
computation is required for an input that belongs to the language implies
that the probability of a false negative can be as high as 1− 2−p(|x|), where
p(.) is the polynomial time bound of the machine. Clearly for practical pur-
poses this error probability is not acceptable. Therefore we are motivated
to look for a subset of NP such that the probability of a false negative is
“decently“ bounded away from 1.

1.5 Randomized complexity classes

1.5.1 The class RP

The considerations at the end of the previous section lead to the definition
of the complexity class RP, as follows.

Definition 2. A language L is in RP if there exists a SNDTM M deciding
L and a polynomial p, such that for every input x, M halts after p(|x|) steps
and the following holds:

1. x ∈ L ⇒ prob[M(x) = 0] ≤ 1
2 (false negative)

2. x /∈ L ⇒ prob[M(x) = 1] = 0 (false positive)

It should be noted that the constant 1
2 in Definition 2 is arbitrary. Any

constant strictly between 0 and 1 results in the same complexity class. To
see why, let RP′ be defined as above, but with a probability of 2

3 for a false
negative. Let us assume that L ∈ RP′ and is decided by a Turing machine
M ′. We build a Turing machine M that executes the following procedure
(note that Turing machines can simulate other Turing machines):
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1. Invoke M ′(x) three times.

2. Accept x iff M ′ has accepted x at least once.

We see that M fulfills the requirements of Definition 2: For any x ∈ L,
prob[M(x) = 0] ≤

(
2
3

)3 = 8
27 ≤

1
2 while M still rejects any x /∈ L. We

conclude that RP′ = RP.
From the above construction, we also see that generally the probability

of false negatives exponentially reduces in the number of executions of an
RP algorithm.

Similar constructions show that the probability of a false negative does
not even have to be constant, but can be inverse polynomial in the size of
the input. Note that this is still fundamentally different from the definition
of NP, where an exponentially small fraction of accepting computations is
allowed.

1.5.2 The class coRP

Obviously, there is some “asymmetry“ in the definition of RP. It is not
clear at all whether RP is closed under complement - in fact, this is an open
question and motivation for the definition of the class coRP for languages
whose complement is in RP:

Definition 3. A language L is in coRP if there exists a SNDTM M decid-
ing L and a polynomial p, such that for every input x, M halts after p(|x|)
steps and the following holds:

1. x ∈ L ⇒ prob[M(x) = 0] = 0 (false negative)

2. x /∈ L ⇒ prob[M(x) = 1] ≤ 1
2 (false positive)

We defined RP as a subset of NP. Obviously, coRP is a subset of
coNP.

An important example of a coRP algorithm is the famous Miller-Rabin
primality test with a probability of 1

4 for a false positive.

1.5.3 The class ZPP

We now consider the set of languages RP∩coRP. A language L in this set
has two probabilistic polynomial algorithms: Denote with A1 the algorithm
that does not produce false positives, and with A2 the one that does not
produce false negatives. If we run both algorithms in parallel for k times,
we get a definitive result with probability 1−2−k. To see why, let us assume
that an input x does not belong to L. Now, since A1 by definition always
answers “x /∈ L“, the only event where we do not get a definitive result is
that A2 keeps producing false positives. It is evident from the construction
in the section 1.5.1 that this event has probability 2−k.

6



A somewhat archetypical problem in RP ∩ coRP is primality testing
(note that the RP primality test, presented by Adleman and Huang in 1987,
is a quite complicated one, in contrast to the relatively simple Miller-Rabin
test).

The existence of such problems is motivation for the definition of the
complexity class ZPP (for “zero probability of error polynomial time“), as
follows:

Definition 4. ZPP := RP ∩ coRP

The algorithm outlined above is called a Las Vegas Algorithm: It has zero
probability of error, but its running time is not bounded a priori. However,
it can be shown that the average running time is polynomial, which makes
ZPP a class quite close to P.

1.5.4 The class BPP

In section 1.3, we introduced two-sided error algorithms. The complexity
classes we have seen so far all concern one-sided error algorithms. We now
define a complexity class for algorithms with bounded probability of error
and polynomial running time (BPP):

Definition 5. A language L is in BPP if there exists a SNDTM M deciding
L and a polynomial p, such that for every input x, M halts after p(|x|) steps
and the following holds:

prob[M(x) = χL(x)] ≥ 3
4

where χL(x) is the characteristic function of L, defined as

χL(x) :=

{
1 x ∈ L

0 otherwise

Again, the constant in the above definition is arbitrary and can be re-
placed by any constant strictly between 1/2 and 1, or by 1

2 + q(|x|)−1, with
q(.) being a suitable polynomial.

Note that it is an open question whether BPP ⊆ NP, or whether NP ⊆
BPP - we do not get it from the definition like in the previous sections.
The reason is that on the one hand, the bound on the probability of a false
negative in the definition of BPP is stronger than in NP; on the other hand,
the definition of NP requires a zero probability of false positives, which is
only bounded in the case of a BPP algorithm.

However, the latter inclusion is considered unlikely because it would im-
ply that every NP-complete problem has an efficient probabilistic algorithm.
In contrast, the first inclusion is believed to be true (see 1.7).
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1.5.5 The class PP

We now have a look at “majority problems“. An important example is
majsat, a variant of the boolean satisfiability problem: Given a boolean
formula ϕ with n variables, is it true that the majority of truth assignments
satisfy it?

The obvious Turing machine which nondeterministically chooses truth
assignments and tests whether they satisfy the formula has an acceptance
probability as low as 1

2 + 2−n for a “yes“ instance, because there might be
only 2n−1 + 1 satisfying truth assignments. Therefore BPP seems to be
an inappropriate complexity class for this problem. Note that this problem
is also unlikely to be in NP, because the obvious certificate for a “yes“
instance (2n−1 + 1 satisfying assignments) is far from succinct!

We want a suitable complexity class for such “majority problems“. In
a first step, we define a class PP’ that allows arbitrarily small differences
between the number of accepting and rejecting computations:

Definition 6. A language L is in PP’ if there exists a SNDTM M deciding
L and a polynomial p, such that for every input x, M halts after p(|x|) steps
and the following holds:

prob[M(x) = χL(x)] >
1
2

Note that this definition still does not capture the difficulty of majsat
because a “no“ instance might have exactly half, i.e. 2n−1, satisfying as-
signments. On the other hand, we cannot replace the “>“ in the definition
by a “≥“ since that would define a meaningless class (remember the state-
ment about a “coin-toss“ decision in the introduction). By a construction
described in [4], however, it is possible to change “>“ to “≥“ for “no“ in-
stances only, without changing the complexity class.

Definition 7. A language L is in PP if there exists a SNDTM M deciding
L and a polynomial p, such that for every input x, M halts after p(|x|) steps
and the following holds:

1. x ∈ L ⇒ prob[M(x) = 1] > 1
2

2. x /∈ L ⇒ prob[M(x) = 0] ≥ 1
2

Theorem 8. PP’ = PP.

This is perhaps the weakest possible definition for a probabilistic al-
gorithm: “probabilistically polynomial time“. It is argued that this class
should rather be called “Majority-P“ (in analogy to #P or ⊕P). The reason
is that PP is not a realistic proposal of probabilistic algorithms, as we will
see in the next section. First, we establish another result that outlines the
power of PP:
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Theorem 9. NP ⊆ PP.

Proof. Let L ∈ NP decided by a SNDTM N . We build a machine N ′

such that its computation tree consists of a root node which is connected
to the root of N ’s computation tree and another computation tree of the
same depth which has only accepting computations. Case distinction on
membership of input x in L:

1. x ∈ L: Since N has, by definition of NP, at least one accepting
computation, N ′ has at least one more accepting than rejecting com-
putations.

2. x /∈ L: Since N has, by definition of NP, only rejecting computations,
N ′ has exactly half accepting computations.

By definition 7, L ∈ PP. The theorem follows.

1.5.6 Efficient experimentation

Although the definitions of the complexity classes presented so far seem
quite similar, there is an important difference between them, concerning the
design of concrete algorithms for problems in these classes. A most central
question in analysis of probabilistic algorithms is whether they allow efficient
experimentation: How often has the algorithm to be repeated so that the
result can be considered correct with reasonable confidence?

For the class RP, this question is easy to answer: If an algorithm for a
problem in this class is repeated n times, then if at least one “no“ answer
occurs, this is the correct one; otherwise the probability of n “yes“ answers
being incorrect is at most 2−n. The same holds (vice versa) for coRP.

However, for two-sided error algorithms, this question is trickier since
neither answer is surely correct. The obvious solution is to take the “ma-
jority vote“ of n runs. The task is now to estimate the error probability of
this procedure.

Here a lemma from probability theory comes most handy, which is pre-
sented in a version suited to randomized algorithms:

Lemma 10 (The Chernov bound for probabilistic algorithms). Let
A be a two-sided error algorithm that anwers correctly with probability 1

2 + ε.
Let Y denote the number of correct answers after n independent executions
of A: Y is a binomial random variable. Then, for any 0 < ε < 1

2 ,

prob
[
Y ≤ n

2

]
≤ e−

ε2n
6 .

By choosing n = c
ε2

, a suitable c can make this probability arbitrarily
small.
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For BPP, ε is at least inverse polynomial or constant. For PP, however,
ε can be arbitrarily (i.e. even expontentially) small. If we equate efficient
experimentation with polynomial running time, we can immediately con-
clude:

Corollary 11. BPP can be efficiently experimented. PP cannot.

1.6 Random sources

Practical implementation of algorithms closely depends on availability of
random sources, i.e. sources of random bit strings x1 . . . xn. The most com-
monly used random sources in modern computer systems can be classified
into hardware random sources and pseudorandom number generators.

Whether a random source can be used to drive a randomized algorithm
depends mainly on two properties. A perfect random source is characterized
by independency (i.e. the value of bit xi is not influenced by the values
of x1 . . . xi−1) and fairness (i.e. prob[xi = 1] = 1

2). It turns out that the
“difficult“ property is independency ([2]).

1.6.1 Hardware random sources

Randomness can be found in many physical processes, such as nuclear de-
cay and lava lamps (the latter being more comfortable to the average user...)
Digital measurement of these processes (Geiger counters, digital imaging)
is a common method to generate “random“ bit strings. Another approach,
which is often found in end-user cryptography software, is to use random-
ness inherent in computer systems (e.g. swap files or interrupts from I/O
devices). The drawback is that those strings are not random at all: clearly
the property that the described sources lack is independency. The definition
of slightly random sources deals with this fact:

Definition 12 (δ-random source). Let 0 < δ ≤ 1
2 , and let p : {0, 1}∗ →

[δ, 1 − δ] be an arbitrary function. A δ−random source Sp is a sequence of
bits x1 . . . xn such that, for 1 ≤ i ≤ n,

prob[xi = 1] = p(x1 . . . xi−1)

The key aspect of this definition is that arbitrary dependencies on pre-
vious outcomes are allowed. As a consequence, slightly random sources
cannot be used to drive randomized algorithms directly. The reason is that
an arbitrarily dependent random source could be an adversary which knows
the randomized algorithm and outputs “random“ bits exactly such that the
algorithm makes choices that lead to an incorrect result!

To gain further insight into the impact of non-ideal random sources on
randomized computability, we informally define the complexity class δ −
BPP (see [2] for a formal definition):
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Definition 13. A language is in δ − BPP if it is decided by a SNDTM
driven by a δ-random source, such that the probability of a false answer is
less than 1

4 .

To see what is meant by “driven by a δ-random source“, consider the
following example:

δ = 0.1, p = {(λ, 0.4), (0, 0.3), (1, 0.8), . . . }

The first bit is 1 with probability 0.4 and 0 with probability 0.6. If the
first bit is 0, then the second bit will be 1 with probability 0.3 and 0 with
probability 0.7. Oterwise, the second bit will be 1 with probability 0.8 and
0 with probability 0.2, and so on. The Turing machine uses those random
bits to make its choices.

Theorem 14. δ −BPP = BPP.

Proof. Show that slightly random sources can be used to simulate any ran-
domized algorithm with cubic loss of efficiency (see [2]).

Perhaps it could be argued that this is more a theoretical result because
a cubic loss of efficiency is unacceptable for most applications.

1.6.2 Pseudorandom number generators

Pseudorandom number generators (PRNG) are, informally, deterministic
algorithms that turn a “short“ seed (start value) into a “long“ sequence of
random bits. A quality measure for PRNGs is how close the distribution on
the output sequence is to a real uniform distribution. Since the 1950’s, the
most commonly used PRNG algorithms are linear congruential generators
(LCG) which are blazingly fast, use little memory, but have some severe
statistical flaws. For example, it is known that if they are used to choose
points in n-dimensional space, those points lie on discrete hyperplanes.

A stronger notion of a PRNG is closely related to cryptography. In this
field, the intention is that any attacker with limited computational resources
will fail to predict the outcome of the PRNG. Here so-called “one-way func-
tions“ are very useful: These functions are bijections that are easy to com-
pute, but arguably hard to invert. An example is the discrete logarithm:
Given a, b ∈ Z and p ∈ P, ab mod p is fast to compute (using successive
squaring), but there is no known polynomial-time algorithm that, given p, a
and ab mod p, computes b (the discrete equivalent of the logarithm to base
a).

The problem is that the existence of one-way functions is based on strong
complexity assumptions (mainly that there is no polynomial-time algorithm
for the discrete logarithm problem) and can therefore only be conjectured.
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1.7 Derandomization

Since the dependency on random sources seems to be quite an issue in
implementing randomized algorithms, the concept of derandomization, that
is, the removal of any use of random sources, might be promising. There is
a natural way of derandomizing a BPP algorithm: Iterate over all possible
random strings, then take the majority of the outcomes. This approach is
clearly a deterministic algorithm and it is always correct, by the definition
of BPP. Of course, this takes exponential running time (note that even
problems in PP can be addressed in that way). In contrast, the belief is
that a non-trivial derandomization of BPP is possible, meaning that we
can take a subset of the random strings such that the majority of correct
answers is preserved.

There is an interesting connection to PRNGs: Consider a PRNG that
turns a seed of size m(n) � n into a pseudorandom sequence of length n. If
the output of the PRNG looks uniform to any polynomial-size circuit (see
section 2.3 on circuit complexity; polynomial-size circuits are more powerful
than polynomial-time algorithms), then, to any algorithm in BPP, there is
no more randomness in the set of all possible random strings than in the set
that is generated by the PRNG. This means that iterating over all seeds of
the PRNG is sufficient for a derandomization of a BPP algorithm.

Theorem 15. If there exists a PRNG G that turns a seed of size m(n) � n
into a pseudorandom sequence of length n, then BPP can be derandomized
in DTIME(time(G) · 2m).

Proof. See [3].

Early derandomization approaches (Yao 1982) used cryptographically
secure PRNGs, which lead to a subexponential derandomization under the
assumption that one-way functions exist.

In 1994, Nisan and Wigderson presented a completely different PRNG
(NWPRNG) that loosened from the cryptographic background and is based
on general hard-to-compute functions (not just in one way). Superpolyno-
mial running time of the PRNG is normally not acceptable in cryptographic
applications, but okay for derandomization purposes. The advantage of the
NWPRNG is that, informally speaking, it is “modular“ in the sense that
you can “plug in“ different hardness assumptions and end up with deran-
domizations in different running times. Using their own PRNG, Nisan and
Wigderson showed a subexponential derandomization of BPP.

A complete derandomization of BPP (that is, a polynomial-time one)
was established by Impagliazzo and Wigderson in 1997, using a somewhat
strong hardness assumption in terms of boolean circuits.

Theorem 16. If there is a language L ∈ E :=
⋃

c DTIME(2cn) which, for
almost all inputs of size n, requires Boolean circuits of size 2εn for some
ε > 0, then BPP = P.
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The problem is that the proof of lower bounds for circuit sizes seems to
be one of the hardest subjects in theoretical computer science.

However, the above results lead to the “hardness versus randomness“
paradigm, perhaps one of the most interesting results of modern theoretical
computer science, as formulated in [3]:

Either there exist provably hard functions or randomness extends the class
of efficient algorithms.

It follows from the implication in theorem 16 that not both of these assump-
tions can be true. Since most experts conjecture the existence of provably
hard functions, it is believed that P = BPP, which implies that all com-
plexity classes considered so far, with the exception of PP, are equal from
a set-theoretic point of view - but that does not necessarily mean that the
concepts of probabilistic computation are useless: First, P and BPP refer
only to decision problems, which are only one field of application of random-
ized algorithms. Second, there are problems like primality testing that do
have a deterministic polynomial-time algorithm (primes: O(log11 n)), but
also a significantly faster (primes: O(log3 n)) randomized polynomial-time
algorithm which is preferable in almost every practical respect.

2 Non-uniformity

2.1 Turing machines with advice

Randomized polynomial time can be illustrated by two-string Turing ma-
chines which take an additional random string of polynomial size as input.
A computation model which is intuitively a generalization of this concept
is computation with advice. By that we mean informally that a Turing ma-
chine is allowed to read a string which not only tells them how to choose
from alternative computations, but actively aids their decision in arbitrary
ways. Clearly it is pointless to allow a different advice string for every input,
as that advice string could just be the value of the characteristic function
of the language to decide. So a natural restriction is to allow exactly one
advice string for all inputs of a certain length. We will see later that ran-
domized computation is indeed a special case of advised computation as
specified above.

Next we define the family of complexity classes P/f(n) that capture
advised computation.

Definition 17. A language L is in P/f(n) if there exists a polynomial-time
two-input deterministic Turing machine M , a complexity function f(n) and
a sequence (an) of advice strings such that:

• ∀n : |an| ≤ f(n) (advice is space-bounded)
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• ∀x ∈ {0, 1}n : M(an, x) = χL(x) (M decides L using an as advice)

We see that advised computation is non-uniform in the sense that the
construction of the advice strings is not specified; in fact, the sequence (an)
does not even have to be computable!

2.2 Non-uniform polynomial time: the class P/poly

Note that it makes no sense to allow advice of superpolynomial size in the
above definition, since such advice could never be read in polynomial time.
Furthermore, in a machine model with random access to the string, an
advice string of exponential length could be a lookup table for the language
to decide. These considerations lead to the definition of P/poly: the class of
problems decided by Turing machines that take advice of polynomial length.

Definition 18. P/poly :=
⋃
k

P/nk

It is clear that P ⊆ P/poly, since P can be considered to be the class of
problems decided by Turing machines with empty advice.

2.3 Circuit complexity

Complexity classes are usually defined in terms of Turing machines. An-
other, interesting view of complexity uses Boolean circuits.

Definition 19. A Boolean circuit is a dag (V,E) with a labelling function
s : V → {¬,∨,∧, x1, . . . , xn, 0, 1, out}, such that

• s(v) = ¬ ⇒ deg+(v) = 1 (NOT gate)

• s(v) = ∨ or s(v) = ∧ ⇒ deg+(v) = 2 (AND/OR gates)

• s(v) = x1, . . . , xn, 0, 1 ⇒ deg+(v) = 0 (input)

• s(v) = out ⇒ deg−(v) = 0, deg+(v) = 1 (output)

• The labels x1, . . . , xn, out are used exactly once.

A boolean circuit C with inputs x1 . . . xn is usually more succinct than an
equivalent boolean expression ϕ(x1 . . . xn). The reason is that in the above
definition, we do not limit the indegree of gates, which makes it possible
to connect the output of a gate (which corresponds to an expression like
“x3∨x4“) to the input of several other gates, so that expressions that occur
more than once in a Boolean formula need to be realized only once in the
corresponding circuit (“shared expressions“).

Using Boolean circuits, the complexity of deciding a language L can be
formulated as follows: Given an input string x in binary encoding, what is
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the size (number of gates) of a Boolean circuit which has the bits of x as
input and χL(x) as output?

Like P is often considered the class of problems with efficient algorithms,
we might say that a language has succinct circuits if their size is polynomially
bounded.

Definition 20. A language L ⊆ {0, 1}∗ has polynomial circuits if there
exists a sequence (Cn) of Boolean circuits and a polynomial p such that:

• ∀n : size(Cn) ≤ p(n)

• Cn has n inputs, and the output of Cn is χL(x) ∀x ∈ {0, 1}n.

Polynomial circuits as defined above are again non-uniform since there
need not be an explicit description of the circuits!

The definitions of languages decided by polynomial circuits and lan-
guages decided by Turing machines with advice of polynomial length resem-
ble each other closely. In fact, they denote the same class of languages:

Theorem 21. A language L has polynomial circuits if and only if L ∈
P/poly.

Proof.

• “⇒“: Let L be a language that has a family Cn of polynomial circuits.
We can build a Turing machine that uses binary encodings of Cn as
advice strings an. Since Cn is polynomially bounded, so is an; it is a
standard result in complexity theory that the value of a Boolean circuit
can be computed in polynomial time (circuit value is a P-complete
problem). It follows that L ∈ P/poly.

• “⇐“: Let L ∈ P/poly. Then there exists a polynomial-time Turing
machine M with polynomial advice strings an. It is a standard result
that for some n, we can build a polynomial-time Turing machine M ′

that behaves like M with an “hard-wired“ into it. We now encode the
computation matrix of M ′, which represents the input/output string
over time, as a Boolean circuit whose input gates represent the initial
string and whose output gate is a Boolean value indicating whether the
machine halts in an accepting state. This circuit has polynomial size:
Since M ′ is polynomially time-bounded in n, so are its state space and
alphabet. It follows that the matrix entries (consisting of a character,
a state and a Boolean indicator for the position of the head) have
logarithmic size. Any matrix entry mi,j depends only on the entries
mi−1,j−1, mi−1,j and mi−1,j+1 since in one time step the head can
move at most one character right or left. Therefore the computation
matrix can be represented by a polynomial number of circuits with a
logarithmic number of input gates. It is left to show that any Boolean
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circuit with k input gates has size at most k2k. See [4], chapter 2, for
a detailed proof.

2.4 The power of P/poly

The motivation for the introduction of P/poly was to generalize randomized
computation to obtain a higher “upper bound on efficient computation“.
The following result states that indeed non-uniform polynomial time is a
generalization of randomized polynomial time:

Theorem 22 (Adleman’s theorem).

BPP ⊆ P/poly.

Proof. The basic proof idea is indeed to use random strings r as advice
strings. We have to show that for every n, there exists one random string
that makes a Turing machine decide correctly on all inputs of length n.
Let L ∈ BPP be decided by a Turing machine M that is time-bounded by
p(|x|). Let

bad(x) := {r ∈ {0, 1}p(|x|) : M(x, r) 6= χL(x)}
In other words, bad(x) denotes the set of random strings that make M
decide incorrectly on input x. We can assume without loss of generality
that M has an error probability of at most 1

3n : If M has a higher error
probability, we can use the amplification described previously to obtain a
polynomial-time machine with the desired error probability. It follows that
probr∈{0,1}p(|x|) [r ∈ bad(x)] = 1

3n (in the following statement, the probabil-
ities are implicitly taken over all possible random strings). We have:

prob

r ∈
⋃

x∈{0,1}n

bad(x)

 ≤ ∑
x∈{0,1}n

prob [r ∈ bad(x)] =
2n

3n
< 1

The first expression denotes the probability that one random string is “bad“
for any input x. The first inequality comes from the union bound : There
might be strings which are bad for more than one x; these occur only once
in the union of all bad(x).
The above inequality, read from left to right, states that there are more
random strings than there are random strings that are “bad“ for any input.
It follows that there must exist at least one random string that is “good“
for all inputs of length n. The desired conclusion follows.

The above proof is an example of the probabilistic proof technique, a
non-constructive proof of existence.

The inherent non-uniformity in P/poly actually makes this class (and
therefore polynomial circuits) far more powerful than polynomial-time algo-
rithms:
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Theorem 23. P/poly contains non-recursive languages.

Proof. The theorem is obtained from the following two claims:

1. Every unary language L ⊆ {1}∗ is in P/poly.
Proof: Since in any unary language there is at most one string of
length n, we can simply define the characteristic function of L as advice
strings:

an :=

{
1 1n ∈ L

0 otherwise

2. There are non-recursive unary languages.
Proof: Given any non-recursive L ⊆ {0, 1}∗, define

U := {1n | binary expansion of n is in L}

U is non-recursive since there is an (exponential) reduction from L to
U .

We now attempt to rid P/poly of this absurdness and define languages
with uniform circuits, i.e. languages that have circuits that can be explicitly
described and efficiently constructed:

Definition 24. A language has uniform polynomial circuits if it can be
decided by a sequence of polynomially sized circuits (Cn) (as in definition
20) and there exists a polynomially time-bounded Turing machine which, for
all n, on input 1n outputs a description of Cn.

The following result proposes that this restriction has a somewhat ex-
treme consequence:

Theorem 25. A language L ⊆ {0, 1}∗ has uniform polynomial circuits if
and only if L ∈ P.

Proof.

• “⇒“: If L has polynomial circuits, then one can construct a Turing
machine that simulates the machine constructing Cn and then eval-
uates Cn on the input. It is clear that this machine has polynomial
running time, therefore L ∈ P.

• “⇐“: Let L ∈ P be decided by a machine M . For any n, we can build
a polynomial-time Turing machine that performs the construction of
a circuit Cn which encodes the computation of M (as outlined in the
proof of theorem 21).

Note that from a practical point of view, this theorem basically states
that problems with efficient algorithms can be solved by succinct and easily
constructible hardware.
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2.5 On P
?
= NP

We have seen that while the inherent non-uniformity in P/poly leads to some
absurdities, the introduction of uniformity reduces this class to P. Besides
the fact that P/poly cannot serve as a realistic computational model, it
is of great theoretical interest. In fact, the P vs. NP question was a
motivation for the development of the concept of circuit complexity: If we
could prove that NP has no polynomial circuits, it would immediately follow
that P 6= NP.

In this section, we present two theorems related to the P vs. NP ques-
tion. First have to introduce the definition of density of languages.

Definition 26. A language L ⊆ {0, 1}∗ is sparse if there exists a polynomial
p such that

∀n : |L ∩ {0, 1}n| ≤ p(n)

Otherwise, L is dense.

Example 27. Every unary language is sparse (take p(.) ≡ 1). Every known
NP-complete language is dense.

Lemma 28. Every sparse language is in P/poly.

Proof. Let L be a sparse language. Define as advice string an a concatena-
tion of all strings of length n in L. By assumption, an has polynomial size
(n · p(n)) and L can therefore be decided in polynomial time, by scanning
an appropriately.

Theorem 29 (Fortune). P = NP iff every L ∈ NP Karp-reduces to a
sparse language.

Proof. See [4], chapter 8.

Recall that Karp reductions (also called polynomial-time transforma-
tions) are the kind of reductions commonly used in connection with NP-
completeness. If every L ∈ NP Karp-reduced to a sparse language, there
would be a sparse NP-complete language, which is strongly believed not to
be the case (example 27).

However, one could argue that things could be different if one allowed
more powerful reductions, for example Cook reductions.

Definition 30. A language L Cook-reduces to L′ if L can be decided in
polynomial time, using polynomially many queries of the type “x ∈ L′?“ to
an oracle for L′.

It is evident that a Karp reduction is a special Cook reduction, where
there is only one oracle query allowed, and only at the end. In contrast, in
a Cook reduction the outcome of oracle queries can be used in the further
course of the reduction.
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Theorem 31 (Karp and Lipton). NP ⊆ P/poly if and only if every
L ∈ NP Cook-reduces to a sparse language.

Proof. See [4], chapter 8.

In terms of circuits, both theorems are quite parallel: Theorem 29 refers
to the belief that NP has no uniform polynomial circuits (that is, P 6= NP);
theorem 31 refers to the (stronger) conjecture that NP has no polynomial
circuits, uniform or not.
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