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Randomized algorithms

Usage of random sources

Probability of error (incorrect result)

Application of randomized algorithms:

Decision problems (e.g. primality tests)
Function problems (e.g. factorization)
Scientific computing (e.g. numerical simulation, Monte Carlo
quadrature)
...

Analysis of randomized algorithms: important application for
probability theory
→ Randomized algorithms also called probabilistic

This section of the talk focuses on time and error bounds of
randomized algorithms for decision problems.
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Example: Polynomial identity testing

Given two polynomials p1, p2 ∈ F[x ], deg(p1), deg(p2) ≤ d , decide
whether p1 ≡ p2!
Equivalent: Decide whether p1 − p2 ≡ 0!

Algorithm

1 choose S ⊂ F, x ∈ S

2 y := p1(x)− p2(x)

3 if (y = 0) return “p1 ≡ p2“ else return “p1 6≡ p2“
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Analysis of the algorithm

If p1 ≡ p2, the algorithm always outputs p1 ≡ p2.

If p1 6≡ p2, it answers incorrectly iff x is a root of p1 − p2.
⇒ Probability for incorrect answer: ≤ d

|S |
Polynomial running time with bounded error probability:
Monte Carlo algorithm

Discussion:

Use of the algorithm is pointless if p1 and p2 are explicitly
given (e.g. as a list of coefficients).

Provably, the algorithm also works for multivariate
polynomials ∈ F[x1, . . . , xm].

Important application: Determinants of symbolic matrices
(implicitly given multivariate polynomials)
Evaluation of determinant: O(n3); symbolic computation: no
known deterministic polynomial-time algorithm!



Randomized computation
Non-uniformity

Concepts of randomized algorithms
Randomized complexity classes
Random sources

Classification of randomized algorithms

The four cases for a randomized algorithm A deciding L:

A(x) = 1 A(x) = 0

x ∈ L false negative (p1)

x /∈ L false positive (p2)

p1 = 0 or p2 = 0: A is called a one-sided error algorithm

p1 = 0: “no“ answer definitely correct
p2 = 0: “yes“ answer definitely correct

Otherwise: A is called a two-sided error algorithm (neither
answer is definitely correct).

“Pathological“ example: Deciding L by coin toss is obviously
a two-sided error algorithm with p1 = p2 = 1

2 .
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NP from a probabilistic point of view

Informal notion of nondeterministic computation: Choosing
from possible computation steps uniformly at random

→ Basic idea: Consider computations as “events“ in the sense
of probability theory!

Standardized nondeterministic Turing machines (SNDTM):

Computation tree: full binary tree of depth f (|x |) (where x is
the input and f is the machine’s time bound)
Theorem: If an arbitrary NDTM decides L within time f (|x |),
so does a SNDTM within time O(f (|x |)).

→ Easy probabilistic analysis: All computation “events“ have
probability 2−f (|x |)
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NP from a probabilistic point of view (2)

Consider a NDTM deciding L ∈ NP in polynomial time p(|x |):
Zero probability of false positive (if x /∈ L, all computations
are required to reject).

Probability of false negative: probably as high as 1− 2−p(|x |)!
(only one accepting computation required if x ∈ L)

Idea: Define a subset of NP such that it is guaranteed that a
NDTM deciding a language L in this class has a “decent“ amount
of accepting connections if x ∈ L!
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The class RP

RP: “randomized polynomial time“

Definition

A language L is in RP if there exists a SNDTM M deciding L and
a polynomial p, such that for every input x , M halts after p(|x |)
steps and the following holds:

1 x ∈ L ⇒ prob[M(x) = 0] ≤ 1
2 (false negative)

2 x /∈ L ⇒ prob[M(x) = 1] = 0 (false positive)
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Invariance of the constant

The constant 1
2 is arbitrary. Any constant 0 < ε < 1 results in the

same complexity class.

Example

Let M ′ be a SNDTM deciding L with prob[M ′(x) = 0] ≤ 2
3 for any

x ∈ L. We build a TM M from M ′ that runs the following
procedure (amplification):

1 Invoke M ′(x) three times.

2 Accept x iff M ′ has accepted x at least once.

For x ∈ L, prob[M(x) = 0] ≤
(

2
3

)3
= 8

27 ≤
1
2 while M still rejects

any x /∈ L.

Clearly the probability of false negatives exponentially reduces in
the number of executions of an RP algorithm!
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Some additional notes on RP

Similar constructions: 1
2 can also be replaced by

a fixed inverse polynomial q(|x |)−1 (“negligible error
probability“)
or even 1− q(|x |)−1 (“noticeable success probability“)

Note the fundamental difference between the latter and the
definition of NP (exponentially small fraction of accepting
computations for x ∈ L)!

The definition of RP is “asymmetric“. Is RP closed under
complement?
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The class coRP

The (open) question whether RP is closed under complement is
motivation for the definition of coRP, as follows:

Definition

A language L is in coRP if there exists a SNDTM M deciding L
and a polynomial p, such that for every input x , M halts after
p(|x |) steps and the following holds:

1 x ∈ L ⇒ prob[M(x) = 0] = 0 (false negative)

2 x /∈ L ⇒ prob[M(x) = 1] ≤ 1
2 (false positive)

Obviously, coRP ⊆ coNP.
The famous Miller-Rabin primality test is a coRP algorithm.
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Las Vegas Algorithms

Consider the set of languages RP ∩ coRP:

A language L ∈ RP ∩ coRP has two probabilistic polynomial
algorithms:

A1: no false positives (RP)
A2: no false negatives (coRP).

Run A1 and A2 in parallel, for k times.

For x /∈ L, we do not get a definitive result if and only if A2

keeps returning “probably x ∈ L“ (x ∈ L: vice versa).

Probability for this case: 2−k .

After a finite number of steps (average case: polynomial), we
have a definite result: Las Vegas algorithms
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The class ZPP

Complexity class for problems with Las Vegas algorithms:
ZPP (“zero probability of error polynomial time“)

Typical problem: primes (O(log3 n)) Las Vegas algorithm;
RP algorithm found by Adleman and Huang in 1987)

Definition

ZPP := RP ∩ coRP
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The class BPP

We are looking for an appropriate complexity class for problems
which have efficient two-sided error algorithms: “bounded
probability of error polynomial time“.

Definition

A language L is in BPP if there exists a SNDTM M deciding L
and a polynomial p, such that for every input x , M halts after
p(|x |) steps and the following holds:

prob[M(x) = χL(x)] ≥ 3

4
,

where χL(x) is the characteristic function of L.

Informally: “M decides L by clear majority“.
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Notes on BPP

Again, the constant 3
4 is arbitrary and can be replaced by any

constant 1
2 < ε < 1 or even by 1

2 + q(|x |)−1 for a fixed
polynomial q.

Comparing BPP with NP, we get:

BPP NP
x ∈ L prob[M(x) = 1] ≥ 3

4 prob[M(x) = 1] > 0

x /∈ L prob[M(x) = 0] ≥ 3
4 prob[M(x) = 0] = 1

Therefore it is not clear at all whether BPP ⊆ NP or vice
versa. This is in fact an unresolved problem. However it is
considered unlikely that NP ⊆ BPP (why?)

We will get into BPP
?
⊆ NP later.
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The problem majsat

Does the majority of truth assignments satisfy a boolean
expression ϕ with n variables?

If ϕ ∈ L, there might be only 2n−1 + 1 satisfying truth
assignments.

That means: The obvious SNDTM accepts such ϕ ∈ L with a
probability as low as 1

2 + 2−n.

Therefore, BPP is probably not an appropriate complexity
class for majsat.

Furthermore, there seems to be no succinct certificate for ϕ,
so majsat is not even likely to be in NP.
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Defining an appropriate class for majsat

We want languages to be decided by “simple majority“:

Definition

A language L is in PP’ if there exists a SNDTM M deciding L and
a polynomial p, such that for every input x , M halts after p(|x |)
steps and the following holds:

prob[M(x) = χL(x)] >
1

2

Still, this definition does not capture the difficulty of majsat!
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The class PP

We are going one step further:

Definition

A language L is in PP if there exists a SNDTM M deciding L and
a polynomial p, such that for every input x , M halts after p(|x |)
steps and the following holds:

1 x ∈ L ⇒ prob[M(x) = 1] > 1
2

2 x /∈ L ⇒ prob[M(x) = 0] ≥ 1
2

This is perhaps the weakest possible definition for a probabilistic
algorithm: “probabilistic polynomial time“.
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Discussion of PP

Theorem

NP ⊆ PP.

Proof.

NDTM
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Efficient experimentation

The following question is most important in analyzing probabilistic
algorithms:

How often do you have to repeat the algorithm so that you can
consider the result to be “correct“ with reasonable confidence?

RP algorithm: Repeat the algorithm n times →
At least one “no“ answer occurs → “no“ is correct
Otherwise: prob[n “yes“ answers are incorrect] ≤ 2−n.
Similar for coRP.

Two-sided error algorithms: Neither answer is surely correct!
Obvious solution: Take the “majority vote“ of n runs.
Problem: Estimate the error probability of this procedure!
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The Chernov bound for probabilistic algorithms

Lemma

Let A be a two-sided error algorithm that anwers correctly with
probability 1

2 + ε. Let Y denote the number of correct answers
after n independent executions of A: Y is a binomial random
variable. Then, for any 0 < ε < 1

2 ,

prob
[
Y ≤ n

2

]
≤ e−

ε2n
6 .

→ Choose n = c
ε2 with an appropriate c .

Corollary

BPP can be efficiently (that is in polynomial time) experimented.
PP (with ε probably exponentially small) cannot.
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Sources of randomness

Hardware random number generators: Use “external“
randomness found in

physical processes (nuclear decay detected by Geiger counters,
images from Lava lamps);
interrupts from I/O devices;
swap files; ...

Pseudorandom number generators: Deterministic algorithms

Generate a “long“ sequence of “random“ numbers from a
“short“ seed
“Quality“: Given uniform distribution on the seeds, how
uniform does the output “look“?
Examples: Linear congruential generators (simple, standard in
most computer systems, but poor quality), Mersenne twister
(complex, used for numerical simulation)
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Hardware random number generators

Properties of a perfect random source:

Independency (i.e. the value of bit xi is not influenced by the
values of x1 . . . xi−1)
Fairness (i.e. prob[xi = 1] = 1

2 ).

Physical processes tend to produce dependent bit sequences.

This fact leads to the concept of slightly random sources.
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Slightly random sources

Definition

(δ-random source) Let 0 < δ ≤ 1
2 , and let p : {0, 1}∗ → [δ, 1− δ]

be an arbitrary function. A δ−random source Sp is a sequence of
bits x1 . . . xn such that, for 1 ≤ i ≤ n,

prob[xi = 1] = p(x1 . . . xi−1)

Slightly random sources cannot drive a BPP algorithm!
(Notion of slightly random source as an adversary)

Nevertheless: Simulation of BPP algorithms using a
δ-random source is possible with cubic loss of efficiency
(Vazirani 1985; Papadimitriou 1994)
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Pseudorandom number generators

Linear congruential generators of the form

xn+1 = (axn + b) mod m

are fast, but fail many statistical tests for uniformity!

Our notion of “pseudorandom number generator“ (PRNG):
random sequence that looks uniform to any efficient observer

Cryptographically secure PRNG (CSPRNG)

“unpredictable“, but polynomial running time: key requirement
in cryptography!
→ use one-way functions: “easy“ to compute, “hard“ to invert
Existence of such functions: only conjectured (→ discrete
logarithm)!
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Derandomization of BPP

Naive approach: Iterate over all random strings and take
majority vote
⇒ deterministic algorithm, 100% correctness, but exponential
running time!

Non-trivial derandomization: Take subset of all random
strings such that majority is preserved!

The connection to PRNGs:

Theorem

If there exists a PRNG G that turns a seed of size m(n) � n into a
pseudorandom sequence of length n, then BPP can be
derandomized in DTIME(time(G ) · 2m).
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Derandomization approaches

First derandomization approach: Use CSPRNG
⇒ sub-exponential derandomization of BPP under
assumption of one-way functions (Yao 1982).

Second approach: Nisan-Wigderson PRNG (NWPRNG)

use any hard function (superpolynomial running time of
PRNG)
1994: sub-exponential derandomization

Complete (polynomial) derandomization using NWPRNG and
hardness assumption in terms of circuits (→ next section):

Theorem (Impagliazzo and Wigderson, 1997)

If there is a language L ∈ E :=
⋃

c DTIME(2cn) which, for almost
all inputs of size n, requires Boolean circuits of size 2εn for some
ε > 0, then BPP = P.
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The BPP
?
= P question

Problem: Proving lower bound for circuit size seems to be
extremely hard!

“Hardness vs. randomness“ paradigm: Either there exist
provably hard functions or randomness extends the class of
efficient algorithms (Wigderson 2002).

Conjecture: BPP = P

Question: If BPP = P, is the concept of probabilistic computation
useless?
Papadimitriou 1994: P may be the class of problems with efficient
algorithms, deterministic polynomial or not.
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Summary

From the natural, but unrealistic model of nondeterministic
computation, we derived the plausible concept of randomized
computation.

We classified algorithms according to their bounds on error
probability and gave a notion which algorithms can be
efficiently experimented.

We had a look at the implementation of randomized
algorithms. We introduced a concept of non-ideal, but
plausible hardware random sources and its impact on
randomized computability.

Finally, we discussed pseudorandom number generators and
the idea of complete derandomization.
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Turing machines with advice

Another view of randomized computation: deterministic
Turing machine that takes an additional random string as
input

Generalization: arbitrary advice strings, one for all inputs of
length n

Definition

A language L is in P/f (n) if there exists a polynomial-time
two-input deterministic Turing machine M, a complexity function
f (n) and a sequence (an) of advice strings such that:

∀n : |an| ≤ f (n) (advice is space-bounded)

∀x ∈ {0, 1}n : M(an, x) = χL(x) (M decides L using an as
advice)
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The class P/poly

Non-uniformity in the definition of P/f (n):
No specification of (an)!

Advice of exponential size is pointless (why?)

Perhaps the most important subset of P/f (n):

Definition

P/poly :=
⋃
k

P/nk

It is clear that P ⊆ P/poly .
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Boolean circuits

Definition

A Boolean circuit is a dag (V ,E ) with a labelling function
s : V → {¬,∨,∧, x1, . . . , xn, 0, 1, out}, such that

s(v) = ¬ ⇒ deg+(v) = 1 (NOT gate)

s(v) = ∨ or s(v) = ∧ ⇒ deg+(v) = 2 (AND/OR gates)

s(v) = x1, . . . , xn, 0, 1 ⇒ deg+(v) = 0 (input)

s(v) = out ⇒ deg−(v) = 0 (output)

The labels x1, . . . , xn, out are used exactly once.

A boolean circuit C with inputs x1 . . . xn is usually more succinct
than an equivalent boolean expression ϕ(x1 . . . xn) (“shared
expressions“).
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Circuit complexity

Given a string x in binary encoding, what is the size (number of
gates) of a Boolean circuit C which has χL(x) as output for some

language L (“C decides L“)?

Definition

A language L ⊆ {0, 1}∗ has polynomial circuits if there exists a
sequence (Cn) of Boolean circuits and a polynomial p such that:

∀n : size(Cn) ≤ p(n)

Cn has n inputs, and the output of Cn is χL(x) ∀x ∈ {0, 1}n.

Non-uniformity again: We do not specify how to construct Cn!
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The connection to P/poly

Theorem

A language L has polynomial circuits iff L ∈ P/poly .

Proof sketch

“⇒“: Use as advice strings binary encodings of Cn ⇒
polynomial advice length; circuit value is P-complete.

“⇐“: Given polynomial-time TM M with polynomial advice
strings an, “hard-wire“ them into to M ′. Encode the
computation matrix of M ′, which represents the input/output
string over time, as a Boolean circuit (input gates: initial
string; output gate: acceptance indicator). Show that this
circuit has polynomial size (hint: show that the matrix entries
are logarithmic in respect to n).
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The power of P/poly

Theorem (Adleman)

BPP ⊆ P/poly .

Proof.

Proof idea: We want to use random strings r as advice strings
(one for all inputs of length n).
Let L ∈ BPP be decided by a TM M that is time-bounded by p(n).
Let bad(x) := {r ∈ {0, 1}p(n) : M(x , r) 6= χL(x)}. W.l.o.g.: M
has error probability 1

3n ⇒ probr∈{0,1}p(n) [r ∈ bad(x)] = 1
3n . Thus:

prob

r ∈
⋃

x∈{0,1}n

bad(x)

 ≤ ∑
x∈{0,1}n

prob [r ∈ bad(x)] =
2n

3n
< 1

This implies the existence of at least one “good“ r .
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The power of P/poly

Theorem

P/poly contains non-recursive languages.

Proof.

1 Claim: Every unary language L ⊆ {1}∗ is in P/poly .

Proof: Define as advice string an :=

{
1 1n ∈ L

0 otherwise

2 Claim: There are non-recursive unary languages.
Proof: Given any non-recursive L ⊆ {0, 1}∗, define

U := {1n | binary expansion of n is in L}
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Introducing uniformity

Clearly P/poly is an unrealistic model of computation!

Idea: Consider languages decided by uniform Boolean circuits,
i.e. circuits constructed by polynomially time-bounded (or
logarithmically space-bounded) Turing machines!

“Unfortunately“:

Theorem

A language L ⊆ {0, 1}∗ has uniform polynomial circuits iff L ∈ P.

Note: By giving a uniform description of the advice strings in the
proof that BPP ⊆ P/poly , we would have proven that P = BPP!

So what is left?
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Sparse languages

Definition

A language L ⊆ {0, 1}∗ is sparse if there exists a polynomial p such
that

∀n : |L ∩ {0, 1}n| ≤ p(n)

Otherwise, L is dense.

Example

Every unary language is sparse. Every known NP-complete
language is dense.

Lemma

Every sparse language is in P/poly .



Randomized computation
Non-uniformity

Computation with advice
Non-uniform polynomial time
On P vs. NP

Sparse languages and P
?
= NP

Theorem (Fortune)

P = NP iff every L ∈ NP Karp-reduces to a sparse language.

Definition (informal)

A language L Cook-reduces to L′ iff L can be decided in
polynomial time, using polynomially many queries of the type
“x ∈ L′?“ to an oracle for L′.

Claim: A Karp reduction is a special case of a Cook reduction.

Theorem (Karp and Lipton)

NP ⊆ P/poly iff every L ∈ NP Cook-reduces to a sparse language.

If NP 6⊆ P/poly , then P 6= NP.
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Summary

We defined computation with advice and the class P/poly of
languages decided by polynomial-time deterministic Turing
machines with advice of polynomial length. We saw that there
is a strong connection to circuit complexity.

We proposed that P/poly provides an upper bound for
efficient computation, as it contains BPP.

However, it also contains undecidable languages because of
the lack of uniformity in the advice.

We introduced the concept of uniformity and showed that this
reduces P/poly to P.

Finally, we saw that nevertheless P/poly is of great theoretical
interest. We had a look at a proof that P 6= NP under a
reasonable conjecture.
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