Randomness and non-uniformity
 JASS 2006 Course 1: Proofs and Computers

Felix Weninger

TU München
April 2006

Outline

(1) Randomized computation

- Concepts of randomized algorithms
- Randomized complexity classes
- Random sources
(2) Non-uniformity
- Computation with advice
- Non-uniform polynomial time
- On \mathbf{P} vs. NP

Randomized algorithms

- Usage of random sources
- Probability of error (incorrect result)
- Application of randomized algorithms:
- Decision problems (e.g. primality tests)
- Function problems (e.g. factorization)
- Scientific computing (e.g. numerical simulation, Monte Carlo quadrature)
- ...
- Analysis of randomized algorithms: important application for probability theory
\rightarrow Randomized algorithms also called probabilistic
- This section of the talk focuses on time and error bounds of randomized algorithms for decision problems.

Example: Polynomial identity testing

Given two polynomials $p_{1}, p_{2} \in \mathbb{F}[x], \operatorname{deg}\left(p_{1}\right), \operatorname{deg}\left(p_{2}\right) \leq d$, decide whether $p_{1} \equiv p_{2}$!
Equivalent: Decide whether $p_{1}-p_{2} \equiv 0$!

Algorithm

(1) choose $S \subset \mathbb{F}, x \in S$
(2) $y:=p_{1}(x)-p_{2}(x)$
(3) if $(y=0)$ return " $p_{1} \equiv p_{2}$ " else return " $p_{1} \not \equiv p_{2}$ "

Analysis of the algorithm

- If $p_{1} \equiv p_{2}$, the algorithm always outputs $p_{1} \equiv p_{2}$.
- If $p_{1} \not \equiv p_{2}$, it answers incorrectly iff x is a root of $p_{1}-p_{2}$. \Rightarrow Probability for incorrect answer: $\leq \frac{d}{|S|}$
- Polynomial running time with bounded error probability: Monte Carlo algorithm

Discussion:

- Use of the algorithm is pointless if p_{1} and p_{2} are explicitly given (e.g. as a list of coefficients).
- Provably, the algorithm also works for multivariate polynomials $\in \mathbb{F}\left[x_{1}, \ldots, x_{m}\right]$.
- Important application: Determinants of symbolic matrices (implicitly given multivariate polynomials)
Evaluation of determinant: $\mathrm{O}\left(n^{3}\right)$; symbolic computation: no known deterministic polynomial-time algorithm!

Classification of randomized algorithms

- The four cases for a randomized algorithm A deciding L :

	$A(x)=1$	$A(x)=0$
$x \in L$		false negative $\left(p_{1}\right)$
$x \notin L$	false positive $\left(p_{2}\right)$	

- $p_{1}=0$ or $p_{2}=0: A$ is called a one-sided error algorithm
- $p_{1}=0$: "no" answer definitely correct
- $p_{2}=0$: "yes" answer definitely correct
- Otherwise: A is called a two-sided error algorithm (neither answer is definitely correct).
- "Pathological" example: Deciding L by coin toss is obviously a two-sided error algorithm with $p_{1}=p_{2}=\frac{1}{2}$.

NP from a probabilistic point of view

- Informal notion of nondeterministic computation: Choosing from possible computation steps uniformly at random
- \rightarrow Basic idea: Consider computations as "events" in the sense of probability theory!
- Standardized nondeterministic Turing machines (SNDTM):
- Computation tree: full binary tree of depth $f(|x|)$ (where x is the input and f is the machine's time bound)
- Theorem: If an arbitrary NDTM decides L within time $f(|x|)$, so does a SNDTM within time $O(f(|x|))$.
\rightarrow Easy probabilistic analysis: All computation "events" have probability $2^{-f(|x|)}$

NP from a probabilistic point of view (2)

Consider a NDTM deciding $L \in \mathbf{N P}$ in polynomial time $p(|x|)$:

- Zero probability of false positive (if $x \notin L$, all computations are required to reject).
- Probability of false negative: probably as high as $1-2^{-p(|x|)}$! (only one accepting computation required if $x \in L$)
Idea: Define a subset of NP such that it is guaranteed that a NDTM deciding a language L in this class has a "decent" amount of accepting connections if $x \in L$!

The class RP

RP: "randomized polynomial time"

Definition

A language L is in RP if there exists a SNDTM M deciding L and a polynomial p, such that for every input x, M halts after $p(|x|)$ steps and the following holds:
(1) $x \in L \Rightarrow \operatorname{prob}[M(x)=0] \leq \frac{1}{2}$ (false negative)
(2) $x \notin L \Rightarrow \operatorname{prob}[M(x)=1]=0$ (false positive)

Invariance of the constant

The constant $\frac{1}{2}$ is arbitrary. Any constant $0<\epsilon<1$ results in the same complexity class.

Example

Let M^{\prime} be a SNDTM deciding L with $\operatorname{prob}\left[M^{\prime}(x)=0\right] \leq \frac{2}{3}$ for any $x \in L$. We build a TM M from M^{\prime} that runs the following procedure (amplification):
(1) Invoke $M^{\prime}(x)$ three times.
(2) Accept x iff M^{\prime} has accepted x at least once.

For $x \in L, \operatorname{prob}[M(x)=0] \leq\left(\frac{2}{3}\right)^{3}=\frac{8}{27} \leq \frac{1}{2}$ while M still rejects any $x \notin L$.

Clearly the probability of false negatives exponentially reduces in the number of executions of an RP algorithm!

Some additional notes on RP

- Similar constructions: $\frac{1}{2}$ can also be replaced by
- a fixed inverse polynomial $q(|x|)^{-1}$ ("negligible error probability ")
- or even $1-q(|x|)^{-1}$ ("noticeable success probability")
- Note the fundamental difference between the latter and the definition of NP (exponentially small fraction of accepting computations for $x \in L$)!
- The definition of RP is "asymmetric". Is RP closed under complement?

The class coRP

The (open) question whether $\mathbf{R P}$ is closed under complement is motivation for the definition of coRP, as follows:

Definition

A language L is in coRP if there exists a SNDTM M deciding L and a polynomial p, such that for every input x, M halts after $p(|x|)$ steps and the following holds:
(1) $x \in L \Rightarrow \operatorname{prob}[M(x)=0]=0$ (false negative)
(2) $x \notin L \Rightarrow \operatorname{prob}[M(x)=1] \leq \frac{1}{2}$ (false positive)

Obviously, coRP \subseteq coNP.
The famous Miller-Rabin primality test is a coRP algorithm.

Las Vegas Algorithms

Consider the set of languages $\mathbf{R P} \cap \mathbf{c o R P}$:

- A language $L \in \mathbf{R P} \cap \mathbf{c o R P}$ has two probabilistic polynomial algorithms:
- A_{1} : no false positives (RP)
- A_{2} : no false negatives (coRP).
- Run A_{1} and A_{2} in parallel, for k times.
- For $x \notin L$, we do not get a definitive result if and only if A_{2} keeps returning "probably $x \in L$ " $(x \in L$: vice versa).
- Probability for this case: 2^{-k}.
- After a finite number of steps (average case: polynomial), we have a definite result: Las Vegas algorithms

The class ZPP

- Complexity class for problems with Las Vegas algorithms: ZPP ("zero probability of error polynomial time")
- Typical problem: PRIMES $\left(O\left(\log ^{3} n\right)\right)$ Las Vegas algorithm; RP algorithm found by Adleman and Huang in 1987)

Definition

ZPP := RP \cap coRP

The class BPP

We are looking for an appropriate complexity class for problems which have efficient two-sided error algorithms: "bounded probability of error polynomial time".

Definition

A language L is in BPP if there exists a SNDTM M deciding L and a polynomial p, such that for every input x, M halts after $p(|x|)$ steps and the following holds:

$$
\operatorname{prob}\left[M(x)=\chi_{L}(x)\right] \geq \frac{3}{4}
$$

where $\chi_{L}(x)$ is the characteristic function of L.
Informally: " M decides L by clear majority".

Notes on BPP

- Again, the constant $\frac{3}{4}$ is arbitrary and can be replaced by any constant $\frac{1}{2}<\epsilon<1$ or even by $\frac{1}{2}+q(|x|)^{-1}$ for a fixed polynomial q.
- Comparing BPP with NP, we get:

	$\mathbf{B P P}$	$\mathbf{N P}$
$x \in L$	$\operatorname{prob}[M(x)=1] \geq \frac{3}{4}$	$\operatorname{prob}[M(x)=1]>0$
$x \notin L$	$\operatorname{prob}[M(x)=0] \geq \frac{3}{4}$	$\operatorname{prob}[M(x)=0]=1$

Therefore it is not clear at all whether $\mathbf{B P P} \subseteq$ NP or vice versa. This is in fact an unresolved problem. However it is considered unlikely that NP \subseteq BPP (why?)

- We will get into BPP $\stackrel{?}{\subseteq}$ NP later.

The problem MAJSAT

Does the majority of truth assignments satisfy a boolean expression φ with n variables?

- If $\varphi \in L$, there might be only $2^{n-1}+1$ satisfying truth assignments.
- That means: The obvious SNDTM accepts such $\varphi \in L$ with a probability as low as $\frac{1}{2}+2^{-n}$.
- Therefore, BPP is probably not an appropriate complexity class for MAJSAT.
- Furthermore, there seems to be no succinct certificate for φ, so majsat is not even likely to be in NP.

Defining an appropriate class for MAJSAT

We want languages to be decided by "simple majority":

Definition

A language L is in PP' if there exists a SNDTM M deciding L and a polynomial p, such that for every input x, M halts after $p(|x|)$ steps and the following holds:

$$
\operatorname{prob}\left[M(x)=\chi_{L}(x)\right]>\frac{1}{2}
$$

Still, this definition does not capture the difficulty of MAJSAT!

The class PP

We are going one step further:

Definition

A language L is in PP if there exists a SNDTM M deciding L and a polynomial p, such that for every input x, M halts after $p(|x|)$ steps and the following holds:
(1) $x \in L \Rightarrow \operatorname{prob}[M(x)=1]>\frac{1}{2}$
(2) $x \notin L \Rightarrow \operatorname{prob}[M(x)=0] \geq \frac{1}{2}$

This is perhaps the weakest possible definition for a probabilistic algorithm: "probabilistic polynomial time".

Discussion of PP

Theorem
 $\mathbf{N P} \subseteq \mathbf{P P}$.

Proof.

Efficient experimentation

The following question is most important in analyzing probabilistic algorithms:

How often do you have to repeat the algorithm so that you can consider the result to be "correct" with reasonable confidence?

- RP algorithm: Repeat the algorithm n times \rightarrow
- At least one "no" answer occurs \rightarrow "no" is correct
- Otherwise: $\mathbf{p r o b}\left[n\right.$ "yes" answers are incorrect] $\leq 2^{-n}$.
- Similar for coRP.
- Two-sided error algorithms: Neither answer is surely correct! Obvious solution: Take the "majority vote" of n runs. Problem: Estimate the error probability of this procedure!

The Chernov bound for probabilistic algorithms

Lemma

Let A be a two-sided error algorithm that anwers correctly with probability $\frac{1}{2}+\epsilon$. Let Y denote the number of correct answers after n independent executions of $A: Y$ is a binomial random variable. Then, for any $0<\epsilon<\frac{1}{2}$,

$$
\operatorname{prob}\left[Y \leq \frac{n}{2}\right] \leq e^{-\frac{\epsilon^{2} n}{6}} .
$$

\rightarrow Choose $n=\frac{c}{\epsilon^{2}}$ with an appropriate c.

Corollary

BPP can be efficiently (that is in polynomial time) experimented. PP (with ϵ probably exponentially small) cannot.
(1) Randomized computation

- Concepts of randomized algorithms
- Randomized complexity classes
- Random sources
(2) Non-uniformity
- Computation with advice
- Non-uniform polynomial time
- On P vs. NP

Sources of randomness

- Hardware random number generators: Use "external" randomness found in
- physical processes (nuclear decay detected by Geiger counters, images from Lava lamps);
- interrupts from I/O devices;
- swap files; ...
- Pseudorandom number generators: Deterministic algorithms
- Generate a "long" sequence of "random" numbers from a "short" seed
- "Quality": Given uniform distribution on the seeds, how uniform does the output "look"?
- Examples: Linear congruential generators (simple, standard in most computer systems, but poor quality), Mersenne twister (complex, used for numerical simulation)

Hardware random number generators

- Properties of a perfect random source:
- Independency (i.e. the value of bit x_{i} is not influenced by the values of $x_{1} \ldots x_{i-1}$)
- Fairness (i.e. $\operatorname{prob}\left[x_{i}=1\right]=\frac{1}{2}$).
- Physical processes tend to produce dependent bit sequences.
- This fact leads to the concept of slightly random sources.

Slightly random sources

Definition

(δ-random source) Let $0<\delta \leq \frac{1}{2}$, and let $p:\{0,1\}^{*} \rightarrow[\delta, 1-\delta]$ be an arbitrary function. A δ-random source S_{p} is a sequence of bits $x_{1} \ldots x_{n}$ such that, for $1 \leq i \leq n$,

$$
\operatorname{prob}\left[x_{i}=1\right]=p\left(x_{1} \ldots x_{i-1}\right)
$$

- Slightly random sources cannot drive a BPP algorithm! (Notion of slightly random source as an adversary)
- Nevertheless: Simulation of BPP algorithms using a δ-random source is possible with cubic loss of efficiency (Vazirani 1985; Papadimitriou 1994)

Pseudorandom number generators

- Linear congruential generators of the form

$$
x_{n+1}=\left(a x_{n}+b\right) \quad \bmod m
$$

are fast, but fail many statistical tests for uniformity!

- Our notion of "pseudorandom number generator" (PRNG): random sequence that looks uniform to any efficient observer
- Cryptographically secure PRNG (CSPRNG)
- "unpredictable", but polynomial running time: key requirement in cryptography!
- \rightarrow use one-way functions: "easy" to compute, "hard " to invert
- Existence of such functions: only conjectured (\rightarrow discrete logarithm)!

Derandomization of BPP

- Naive approach: Iterate over all random strings and take majority vote
\Rightarrow deterministic algorithm, 100\% correctness, but exponential running time!
- Non-trivial derandomization: Take subset of all random strings such that majority is preserved!

The connection to PRNGs:

Theorem

If there exists a PRNG G that turns a seed of size $m(n) \ll n$ into a pseudorandom sequence of length n, then BPP can be derandomized in $\operatorname{DTIME}\left(\operatorname{time}(G) \cdot 2^{m}\right)$.

Derandomization approaches

- First derandomization approach: Use CSPRNG \Rightarrow sub-exponential derandomization of BPP under assumption of one-way functions (Yao 1982).
- Second approach: Nisan-Wigderson PRNG (NWPRNG)
- use any hard function (superpolynomial running time of PRNG)
- 1994: sub-exponential derandomization

Complete (polynomial) derandomization using NWPRNG and hardness assumption in terms of circuits (\rightarrow next section):

Theorem (Impagliazzo and Wigderson, 1997)
If there is a language $L \in \mathbf{E}:=\bigcup_{c} \operatorname{DTIME}\left(2^{c n}\right)$ which, for almost all inputs of size n, requires Boolean circuits of size $2^{\epsilon n}$ for some $\epsilon>0$, then $\mathbf{B P P}=\mathbf{P}$.

The BPP $\stackrel{?}{=} \mathbf{P}$ question

- Problem: Proving lower bound for circuit size seems to be extremely hard!
- "Hardness vs. randomness" paradigm: Either there exist provably hard functions or randomness extends the class of efficient algorithms (Wigderson 2002).
- Conjecture: $\mathbf{B P P}=\mathbf{P}$

Question: If $\mathbf{B P P}=\mathbf{P}$, is the concept of probabilistic computation useless?
Papadimitriou 1994: P may be the class of problems with efficient algorithms, deterministic polynomial or not.

Summary

- From the natural, but unrealistic model of nondeterministic computation, we derived the plausible concept of randomized computation.
- We classified algorithms according to their bounds on error probability and gave a notion which algorithms can be efficiently experimented.
- We had a look at the implementation of randomized algorithms. We introduced a concept of non-ideal, but plausible hardware random sources and its impact on randomized computability.
- Finally, we discussed pseudorandom number generators and the idea of complete derandomization.

(1) Randomized computation

- Concepts of randomized algorithms
- Randomized complexity classes
- Random sources
(2) Non-uniformity
- Computation with advice
- Non-uniform polynomial time
- On \mathbf{P} vs. NP

Turing machines with advice

- Another view of randomized computation: deterministic Turing machine that takes an additional random string as input
- Generalization: arbitrary advice strings, one for all inputs of length n

Definition

A language L is in $\mathbf{P} / f(n)$ if there exists a polynomial-time two-input deterministic Turing machine M, a complexity function $f(n)$ and a sequence $\left(a_{n}\right)$ of advice strings such that:

- $\forall n:\left|a_{n}\right| \leq f(n)$ (advice is space-bounded)
- $\forall x \in\{0,1\}^{n}: M\left(a_{n}, x\right)=\chi_{L}(x)\left(M\right.$ decides L using a_{n} as advice)

The class P/poly

- Non-uniformity in the definition of $\mathbf{P} / f(n)$: No specification of $\left(a_{n}\right)$!
- Advice of exponential size is pointless (why?)
- Perhaps the most important subset of $\mathbf{P} / f(n)$:

Definition

$$
\mathbf{P} / \text { poly }:=\bigcup_{k} \mathbf{P} / n^{k}
$$

It is clear that $\mathbf{P} \subseteq \mathbf{P} /$ poly.

Boolean circuits

Definition

A Boolean circuit is a dag (V, E) with a labelling function $s: V \rightarrow\left\{\neg, \vee, \wedge, x_{1}, \ldots, x_{n}, 0,1\right.$, out $\}$, such that

- $s(v)=\neg \Rightarrow \operatorname{deg}^{+}(v)=1$ (NOT gate)
- $s(v)=\vee$ or $s(v)=\wedge \Rightarrow \operatorname{deg}^{+}(v)=2$ (AND/OR gates)
- $s(v)=x_{1}, \ldots, x_{n}, 0,1 \Rightarrow \operatorname{deg}^{+}(v)=0$ (input)
- $s(v)=$ out $\Rightarrow \operatorname{deg}^{-}(v)=0$ (output)
- The labels x_{1}, \ldots, x_{n}, out are used exactly once.

A boolean circuit C with inputs $x_{1} \ldots x_{n}$ is usually more succinct than an equivalent boolean expression $\varphi\left(x_{1} \ldots x_{n}\right)$ ("shared expressions").

Circuit complexity

Given a string x in binary encoding, what is the size (number of gates) of a Boolean circuit C which has $\chi_{L}(x)$ as output for some language L (" C decides L ")?

Definition

A language $L \subseteq\{0,1\}^{*}$ has polynomial circuits if there exists a sequence $\left(C_{n}\right)$ of Boolean circuits and a polynomial p such that:

- $\forall n: \operatorname{size}\left(C_{n}\right) \leq p(n)$
- C_{n} has n inputs, and the output of C_{n} is $\chi_{L}(x) \forall x \in\{0,1\}^{n}$.

Non-uniformity again: We do not specify how to construct C_{n} !

The connection to $\mathbf{P} /$ poly

Theorem

A language L has polynomial circuits iff $L \in \mathbf{P}$ /poly.

Proof sketch

- " \Rightarrow ": Use as advice strings binary encodings of $C_{n} \Rightarrow$ polynomial advice length; circuit value is \mathbf{P}-complete.
- " \Leftarrow ": Given polynomial-time TM M with polynomial advice strings a_{n}, "hard-wire" them into to M^{\prime}. Encode the computation matrix of M^{\prime}, which represents the input/output string over time, as a Boolean circuit (input gates: initial string; output gate: acceptance indicator). Show that this circuit has polynomial size (hint: show that the matrix entries are logarithmic in respect to n).

The power of $\mathbf{P} /$ poly

Theorem (Adleman)

$\mathbf{B P P} \subseteq \mathbf{P} /$ poly .

Proof.

Proof idea: We want to use random strings r as advice strings (one for all inputs of length n).
Let $L \in \mathbf{B P P}$ be decided by a TM M that is time-bounded by $p(n)$. Let $\operatorname{bad}(x):=\left\{r \in\{0,1\}^{p(n)}: M(x, r) \neq \chi_{L}(x)\right\}$. W.I.o.g.: M has error probability $\frac{1}{3^{n}} \Rightarrow \operatorname{prob}_{r \in\{0,1\}^{p(n)}}[r \in \operatorname{bad}(x)]=\frac{1}{3^{n}}$. Thus:
prob $\left[r \in \bigcup_{x \in\{0,1\}^{n}} \operatorname{bad}(x)\right] \leq \sum_{x \in\{0,1\}^{n}} \operatorname{prob}[r \in \operatorname{bad}(x)]=\frac{2^{n}}{3^{n}}<1$
This implies the existence of at least one "good" r.

The power of $\mathbf{P} /$ poly

Theorem

$\mathbf{P} /$ poly contains non-recursive languages.

Proof.

(1) Claim: Every unary language $L \subseteq\{1\}^{*}$ is in $\mathbf{P} /$ poly.

Proof: Define as advice string $a_{n}:= \begin{cases}1 & 1^{n} \in L \\ 0 & \text { otherwise }\end{cases}$
(2) Claim: There are non-recursive unary languages.

Proof: Given any non-recursive $L \subseteq\{0,1\}^{*}$, define

$$
U:=\left\{1^{n} \mid \text { binary expansion of } n \text { is in } L\right\}
$$

Introducing uniformity

- Clearly \mathbf{P} / poly is an unrealistic model of computation!
- Idea: Consider languages decided by uniform Boolean circuits, i.e. circuits constructed by polynomially time-bounded (or logarithmically space-bounded) Turing machines!
"Unfortunately":

Theorem

A language $L \subseteq\{0,1\}^{*}$ has uniform polynomial circuits iff $L \in \mathbf{P}$.
Note: By giving a uniform description of the advice strings in the proof that $\mathbf{B P P} \subseteq \mathbf{P} /$ poly, we would have proven that $\mathbf{P}=\mathbf{B P P}$!

So what is left?

(1) Randomized computation

- Concepts of randomized algorithms
- Randomized complexity classes
- Random sources
(2) Non-uniformity
- Computation with advice
- Non-uniform polynomial time
- On \mathbf{P} vs. NP

Sparse languages

Definition

A language $L \subseteq\{0,1\}^{*}$ is sparse if there exists a polynomial p such that

$$
\forall n:\left|L \cap\{0,1\}^{n}\right| \leq p(n)
$$

Otherwise, L is dense.

Example

Every unary language is sparse. Every known NP-complete language is dense.

Lemma
Every sparse language is in \mathbf{P} /poly.

Sparse languages and $\mathbf{P} \stackrel{?}{=} \mathbf{N P}$

Theorem (Fortune)

$\mathbf{P}=\mathbf{N P}$ iff every $L \in \mathbf{N P}$ Karp-reduces to a sparse language.

Definition (informal)

A language L Cook-reduces to L^{\prime} iff L can be decided in polynomial time, using polynomially many queries of the type " $x \in L^{\prime}$?" to an oracle for L^{\prime}.

Claim: A Karp reduction is a special case of a Cook reduction.

Theorem (Karp and Lipton)

$\mathbf{N P} \subseteq \mathbf{P} /$ poly iff every $L \in \mathbf{N P}$ Cook-reduces to a sparse language.
If $\mathbf{N P} \nsubseteq \mathbf{P} /$ poly, then $\mathbf{P} \neq \mathbf{N P}$.

Summary

- We defined computation with advice and the class $\mathbf{P} /$ poly of languages decided by polynomial-time deterministic Turing machines with advice of polynomial length. We saw that there is a strong connection to circuit complexity.
- We proposed that \mathbf{P} /poly provides an upper bound for efficient computation, as it contains BPP.
- However, it also contains undecidable languages because of the lack of uniformity in the advice.
- We introduced the concept of uniformity and showed that this reduces \mathbf{P} / poly to \mathbf{P}.
- Finally, we saw that nevertheless \mathbf{P} / poly is of great theoretical interest. We had a look at a proof that $\mathbf{P} \neq \mathbf{N P}$ under a reasonable conjecture.

References

Rajeev Motwani and Prabhakar Raghavan: Randomized Algorithms. Cambridge University Press, 1995.

囯 Christos H. Papadimitriou: Computational Complexity. Addison Wesley, 1994.
(R) Avi Wigderson and Irit Dinur: Derandomizing Pseudorandomness - A Survey (2002).

䡒 Oded Goldreich: Introduction to Complexity Theory - Lecture Notes (1999).

