Introduction	IP and MA	Public-Coins Systems (AM)
00	0 000 000	

Course "Proofs and Computers", JASS'06

Introducing IP, AM, MA

Florian Zuleger

Fakultät für Informatik TU München

March 30, 2006

Introduction • 0 • 0	IP and MA 0 000 000	Public-Coins Systems (AM)	Perfect Completeness and Soundness 000000000 0	A zero knowledge proof
NP as a proof	System			

We can view NP as a proof system. For each language $L \in NP$ there exists a polynomial-time recognizable relation R_L such that:

$$L = \{x | \exists y : s.t.(x, y) \in R_L\}$$

and $(x, y) \in R_L$ only if $|y| \le poly(|x|)$.

Introduction O O O	IP and MA o ooo ooo	Public-Coins Systems (AM)	Perfect Completeness and Soundness 000000000 0	A zero knowledge proof
NP as a proof S	System			

1. The verifier strategy is efficient (polynomial-time in the NP case)

Introduction ○● ○○	IP and MA o ooo ooo	Public-Coins Systems (AM)	Perfect Completeness and Soundness 000000000 0	A zero knowledge proof
NP as a proof S	System			

- 1. The verifier strategy is efficient (polynomial-time in the NP case)
- 2. Correctness requirements:

Introduction ○● ○○	IP and MA o ooo ooo	Public-Coins Systems (AM)	Perfect Completeness and Soundness 000000000 0	A zero knowledge proof
NP as a proof S	System			

- 1. The verifier strategy is efficient (polynomial-time in the NP case)
- 2. Correctness requirements:
 - ► Completeness: For a true assertion, there is a convincing proof strategy (in the case of NP, if x ∈ L the a witness y exists).

Introduction ○● ○○	IP and MA o ooo ooo	Public-Coins Systems (AM)	Perfect Completeness and Soundness 000000000 0	A zero knowledge proof
NP as a proof S	System			

- 1. The verifier strategy is efficient (polynomial-time in the NP case)
- 2. Correctness requirements:
 - ► Completeness: For a true assertion, there is a convincing proof strategy (in the case of NP, if x ∈ L the a witness y exists).
 - Soundness: For a false assertion, no convincing proof strategy exists (in the case of NP, if x ∉ L then no witness y exists).

Introduction	IP and MA	Public-Coins Systems (AM)	Perfect Completeness and Soundness	A zero knowledge proof
00 00	0 000 000		0000000000	

Interactive Proof Systems

Now we generalize the requirements from a proof system, adding interaction and randomness.

An interactive proof is sequence of questions and answers between the prover and the verifier.

Prover		Verifier
	β_1	
	α_1	
-	β_2	
	0	
	0	
	0	
•	β_t	
	α_t	

At the end of the interaction, the verifier decides based the knowledge he acquired in the process whether the claim is true or false.

Introduction ○○ ○●	IP and MA o ooo ooo	Public-Coins Systems (AM)	Perfect Completeness and Soundness 000000000 0	A zero knowledge proof
Interactive Pro	of Systems			

Introduction ○○ ○●	IP and MA 0 000 000	Public-Coins Systems (AM)	Perfect Completeness and Soundness 000000000 0	A zero knowledge proof
Interactive Pro	of Systems			

(interactive proof systems:) An interactive proof system for a language L is a two-party game between a verifier and a prover that interact on a common input in a way satisfying the following properties:

1. The verifier strategy is a probabilistic polynomial-time procedure (where time is measured in terms of the length of the common input)

Introduction	IP and MA	Public-Coins Systems (AM)	Perfect Completeness and Soundness	A zero knowledge proof
00	0 000 000		00000000000	
Interactive Pro	of Systems			

- 1. The verifier strategy is a probabilistic polynomial-time procedure (where time is measured in terms of the length of the common input)
- 2. Correctness requirements:

Introduction	IP and MA	Public-Coins Systems (AM)	Perfect Completeness and Soundness	A zero knowledge proof
00	000		0	
Interactive Pro	000			

- 1. The verifier strategy is a probabilistic polynomial-time procedure (where time is measured in terms of the length of the common input)
- 2. Correctness requirements:
 - Completeness: There exists a prover strategy P, such that for every x ∈ L, when interacting on the common input x, the prover P convinces the verifier with probability at least ²/₃.

Introduction	IP and MA	Public-Coins Systems (AM)	Perfect Completeness and Soundness	A zero knowledge proof
00	000		0	
Interactive Pro	000			

- 1. The verifier strategy is a probabilistic polynomial-time procedure (where time is measured in terms of the length of the common input)
- 2. Correctness requirements:
 - Completeness: There exists a prover strategy P, such that for every x ∈ L, when interacting on the common input x, the prover P convinces the verifier with probability at least ²/₃.
 - Soundness: For a false assertion, no convincing proof strategy exists (in the case of NP, if x ∉ L then no witness y exists).

Introduction 00 00	IP and MA ● ○○○ ○○○	Public-Coins Systems (AM)	Perfect Completeness and Soundness 000000000 0	A zero knowledge proof
The IP Hierach	IV			

(*The IP Hierachy:*) The complexity class IP consists of all languages having an interactive proof system.

We call the number of message exchanges (a question and an answer) between the two parties, the number of rounds in the system. After a certain number of rounds the verifier decides whether to accept or reject.

For every integer function r(.), the complexity class IP(r(.)) consists of all the languages that have an interactive proof system in which, on common input x, at most r(|x|) rounds are used. If we denote by **poly** the set of all integer polynomial functions, then IP = IP(poly).

Introduction 00 00	IP and MA ○ ●○○ ○○○	Public-Coins Systems (AM)	Perfect Completeness and Soundness 000000000 0	A zero knowledge proof
Comments				

• Clearly,
$$NP \subseteq IP(1)$$
.
Also, $BPP = IP(0)$.

Introduction 00 00	IP and MA ○ ●○○ ○○○	Public-Coins Systems (AM)	Perfect Completeness and Soundness 000000000 0	A zero knowledge proof
Comments				

- Clearly, $NP \subseteq IP(1)$. Also, BPP = IP(0).
- The number of rounds in IP cannot be more than a polynomial in the length of the common input.

Introduction 00 00	IP and MA ○ ●○○ ○○○	Public-Coins Systems (AM)	Perfect Completeness and Soundness 000000000 0	A zero knowledge proof
Comments				

- Clearly, $NP \subseteq IP(1)$. Also, BPP = IP(0).
- The number of rounds in IP cannot be more than a polynomial in the length of the common input.
- The length of the messages exchanged cannot be more than a polynomial in the length of the common input.

Introduction 00 00	IP and MA ○ ●○○ ○○○	Public-Coins Systems (AM)	Perfect Completeness and Soundness 000000000 0	A zero knowledge proof
Comments				

- Clearly, $NP \subseteq IP(1)$. Also, BPP = IP(0).
- The number of rounds in IP cannot be more than a polynomial in the length of the common input.
- The length of the messages exchanged cannot be more than a polynomial in the length of the common input.

Introduction 00 00	IP and MA ○ ●○○ ○○○	Public-Coins Systems (AM)	Perfect Completeness and Soundness 000000000 0	A zero knowledge proof
Comments				

• Clearly,
$$NP \subseteq IP(1)$$
.
Also, $BPP = IP(0)$.

- The number of rounds in IP cannot be more than a polynomial in the length of the common input.
- The length of the messages exchanged cannot be more than a polynomial in the length of the common input.

► Claim 3

Any language that has an interactive proof system, has one that achieves error probability of at most $2^{-p(.)}$ for any polynomial p(.).

Introduction 00 00	IP and MA ○ ○●○ ○○○	Public-Coins Systems (AM)	Perfect Completeness and Soundness 000000000 0	A zero knowledge proof
Comments				

Proof. Using Chernoff's Bound:

$$Pr[z < (1 - \delta)E(z)] < e^{-\frac{\delta^2 E(z)}{2}}$$

We choose $k = O(p(.))$ and $\delta = \frac{1}{4}$ and note that $E(z) = \frac{2}{3}k$ (so that $\frac{3}{4} \cdot \frac{2}{3} = \frac{1}{2}$) to get:

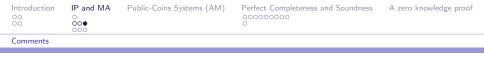
$$Pr[z < (1 - \frac{1}{2}k] < 2^{-p(.)}$$

2

Introduction 00 00	IP and MA ○ ○○● ○○○	Public-Coins Systems (AM)	Perfect Completeness and Soundness 000000000 0	A zero knowledge proof
Comments				

Introducing both interaction and randomness in the IP class is essential:

 By adding interaction only, the interactive proof systems collapse to NP-proof systems.



Introducing both interaction and randomness in the IP class is essential:

- By adding interaction only, the interactive proof systems collapse to NP-proof systems.
- By adding randomness only, we get a proof system in which the prover sends a witness and the verifier can run a BPP algorithm for checking its validity. We obtain the class Merlin-Arthur game - MA.

Introduction 00 00	IP and MA ○ ○○○ ●○○	Public-Coins Systems (AM)	Perfect Completeness and Soundness 00000000 0	A zero knowledge proof
Graph Non-Iso	morphism(GNI)			

Example 4 (Graph Non-Isomorphism(GNI))

Two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are called *iosmorphic* (denoted $G_1 \cong G_2$) if there exists a 1-1 and onto mapping $\pi : V_1 \rightarrow V_2$ such that $(u, v) \in E_1 \Leftrightarrow (\pi(u), \pi(v)) \in E_2$. The mapping π , if existing, is called an *isomporhism* between the graphs. If no such mapping exists then the graphs are *non-isomophic* (denoted $G_1 \not\cong G_2$). GNI is the language containing all pairs of non-isomorphic graphs. Formally:

$$GNI = \{(G_1, G_2) : G_1 \not\cong G_2\}$$

Introduction 00 00	IP and MA ○ ○○○ ○●○	Public-Coins Systems (AM)	Perfect Completeness and Soundness 000000000 0	A zero knowledge proof
Graph Non-Iso	morphism(GNI)			

 G₁ and G₂ are given as input to the verifier and the prover. Assume without loss of generality that V₁ = V₂ = {1, 2, ..., n}.

Introduction 00 00	IP and MA ○ ○○○ ○●○	Public-Coins Systems (AM)	Perfect Completeness and Soundness 00000000 0	A zero knowledge proof
Graph Non-Iso	morphism(GNI)			

- G₁ and G₂ are given as input to the verifier and the prover. Assume without loss of generality that V₁ = V₂ = {1, 2, ..., n}.
- The verifier chooses i ∈_R {1,2} and π ∈_R S_n (S_n is the group of all permutations on {1,2,...,n}). He applies the mapping π on the graph G_i to obtain a graph H

$$H = (\{1, 2, ..., n\}, E_H)$$
 where $E_H = \{(\pi(u), \pi(v)) : (u, v) \in E_i\}$

and sends the graph H to the prover.

Introduction 00 00	IP and MA ○ ○○○ ○●○	Public-Coins Systems (AM)	Perfect Completeness and Soundness 00000000 0	A zero knowledge proof
Graph Non-Iso	morphism(GNI)			

- G₁ and G₂ are given as input to the verifier and the prover. Assume without loss of generality that V₁ = V₂ = {1, 2, ..., n}.
- The verifier chooses i ∈_R {1,2} and π ∈_R S_n (S_n is the group of all permutations on {1,2,...,n}). He applies the mapping π on the graph G_i to obtain a graph H

$$H = (\{1, 2, ..., n\}, E_H)$$
 where $E_H = \{(\pi(u), \pi(v)) : (u, v) \in E_i\}$

and sends the graph H to the prover.

• The prover sends $j \in \{1,2\}$ to the verifier.

Introduction 00 00	IP and MA ○ ○○○ ○●○	Public-Coins Systems (AM)	Perfect Completeness and Soundness 00000000 0	A zero knowledge proof
Graph Non-Iso	omorphism(GNI)			

- G₁ and G₂ are given as input to the verifier and the prover. Assume without loss of generality that V₁ = V₂ = {1, 2, ..., n}.
- The verifier chooses i ∈_R {1,2} and π ∈_R S_n (S_n is the group of all permutations on {1,2,...,n}). He applies the mapping π on the graph G_i to obtain a graph H

$$H = (\{1, 2, ..., n\}, E_H)$$
 where $E_H = \{(\pi(u), \pi(v)) : (u, v) \in E_i\}$

and sends the graph H to the prover.

- The prover sends $j \in \{1, 2\}$ to the verifier.
- The verifier accepts iff j = i.

Introduction 00 00	IP and MA ○ ○○○ ○○●	Public-Coins Systems (AM)	Perfect Completeness and Soundness 000000000 0	A zero knowledge proof
Graph Non-Isomorphism(GNI)				

Remark: ISOMORPHISM is not known to be in P, but of course it is in NP (guessing the right permutation and then checking the isomorphism in polynomial time), whereas GNI is not known to be in NP.

Introduction 00 00	IP and MA ○ ○○○ ○○●	Public-Coins Systems (AM)	Perfect Completeness and Soundness 000000000 0	A zero knowledge proof
Graph Non-Isomorphism(GNI)				

- Remark: ISOMORPHISM is not known to be in P, but of course it is in NP (guessing the right permutation and then checking the isomorphism in polynomial time), whereas GNI is not known to be in NP.
- Remark: We state that the secrecy of the outcome of the coin tosses is essential to this protocol.

00 0 00000000 00 000 0 000	Introduction	IP and MA	Public-Coins Systems (AM)	Perfect Completeness and Soundness	A zero knowledge proof
				000000000	

(public-coin interactive proofs - AM:) Public coin proof systems (known also as Arthur-Merlin games) are a special case of interactive proof systems, in which, at each round, **the verifier can only toss coins, and send their outcome to the prover**. After a certain number of rounds the verifier decides **deterministically** whether to accept or reject.

For every integer function r(.), the complexity class AM(r(.)) consists of all the languages that have an Arthur-Merlin proof system in which, on common input x, at most r(|x|) rounds are used.

Denote AM = AM(1).

Introduction	IP and MA	Public-Coins Systems (AM)	Perfect Completeness and Soundness	A zero knowledge proof
00	0 000 000		000000000	

Surprisingly it was shown Arthur-Merlin games and the general interactive proof systems are essentially equivalent:

Theorem 6 (Relating IP(.) to AM(.)):

 $\forall r(.): IP(r(.)) \subseteq AM(r(.)+1)$

Introduction IP and MA	A Public-Coins Systems (AM)	Perfect Completeness and Soundness	A zero knowledge proof
00 0 00 000 000		000000000	

The following theorem shows that power of AM(r(.)) is invariant under a linear change in the number of rounds:

Theorem 7 (Linear Speed-up Theorem):

$$\forall r(.) \geq 2 : AM(2r(.)) = AM(r(.))$$

Introduction	IP and MA	Public-Coins Systems (AM)	Perfect Completeness and Soundness	A zero knowledge proof
00	0 000 000		000000000	

Combing the two las theorems we get:

Corollary 8

$$\forall r(.) \geq 2 : IP(2r(.)) = IP(r(.))$$

Introduction	IP and MA	Public-Coins Systems (AM)	Perfect Completeness and Soundness	A zero knowledge proof
00	0 000 000		00000000000	

Combing the two las theorems we get:

Corollary 8

$$\forall r(.) \geq 2 : IP(2r(.)) = IP(r(.))$$

Corollary 9 (Collapse of constant-round IP to one-round AM):

IP(O(1)) = AM(1)

Introduction	IP and MA	Public-Coins Systems (AM)	Perfect Completeness and Soundness	A zero knowledge proof
00	0 000 000		000000000	

Combing the two las theorems we get:

Corollary 8

$$\forall r(.) \geq 2 : IP(2r(.)) = IP(r(.))$$

Corollary 9 (Collapse of constant-round IP to one-round AM):

IP(O(1)) = AM(1)

Corollary 10 (Relating MA to AM)

 $MA \subseteq AM$

Introduction	IP and MA	Public-Coins Systems (AM)
00 00	0 000 000	

Theorem 11 (Relating MA to PP):

$$MA \subseteq PP$$

Proof. Let $L \in MA$. Thus there are a polynomial p and a polynomial-time Turing machine Q such that:

$$x \in L \Rightarrow \exists s \in \{0,1\}^{p(|x|)} : Pr[Q(x,r,x)] > \frac{2}{3}$$
$$x \notin L \Rightarrow \forall s \in \{0,1\}^{p(|x|)} : Pr[Q(x,r,x)] < \frac{1}{3}$$

where probability is taken over uniform distribution in $\{0, 1\}^{p(|x|)}$.

Introduction	IP and MA	Public-Coins Systems (AM)	Perfect Completeness and Soundness	A zero knowledge proof
00	0 000 000		00000000000	

Using standard amplification we can construct a new polynomial p_1 and a new polynomial-time machine Q_1 such that

$$\begin{aligned} x \in L \Rightarrow \exists s \in \{0,1\}^{p(|x|)} : \Pr[Q_1(x,r,s)] > 1 - 4^{-p(|x|)} \\ x \notin L \Rightarrow \forall s \in \{0,1\}^{p(|x|)} : \Pr[Q_1(x,r,s)] < 4^{-p(|x|)} \end{aligned}$$

where probability is taken over uniform distribution in $\{0,1\}^{p_1(|x|)}$. Consider now the uniform distribution on pairs $< r, s > \in \{0,1\}^{p(|x|)+p_1(|x|)}$. We have

$$x \in L \Rightarrow \exists \Pr[Q_1(x, r, s)] > 2^{-p(|x|)} (1 - 4^{-p(|x|)}) > 4^{-p(|x|)}$$
$$x \notin L \Rightarrow \Pr[Q_1(x, r, s)] < 4^{-p(|x|)}$$

This is equivalent to $L \in PP$. \Box

Introduction	IP and MA	Public-Coins Systems (AM)
00	0 000 000	

What if we require Perfect Completeness, i.e., convincing the verifier with probability 1?

Introduction 00 00	IP and MA 0 000 000	Public-Coins Systems (AM)	Perfect Completeness and Soundness • 00000000 O	A zero knowledge proof
Perfect Compl	eteness			

Theorem 12

If a language has an interactive proof system then it has one with perfect completeness.

We will show that given a public coin proof system we can construct a perfect completeness public coin proof system. We define:

 $AM^0(r(.)) = \{L | L \text{ has a perfect completeness} \}$

r(.) round public coin proof system}

Introduction 00 00	IP and MA 0 000 000	Public-Coins Systems (AM)	Perfect Completeness and Soundness 00000000 0	A zero knowledge proof
Perfect Comple	eteness			

We will show:

Lemma 13

If L has a public coin proof system then it has one with perfect completeness

 $AM(r(.)) \subseteq AM^0(r(.)+1)$

Introduction 00 00	IP and MA 0 000 000	Public-Coins Systems (AM)	Perfect Completeness and Soundness 000000000 0	A zero knowledge proof
Perfect Comple	eteness			

 Assume that the Arthur-Merlin proof system consists of t rounds.

Introduction 00 00	IP and MA 0 000 000	Public-Coins Systems (AM)	Perfect Completeness and Soundness 000000000 0	A zero knowledge proof
Perfect Comple	eteness			

- Assume that the Arthur-Merlin proof system consists of t rounds.
- ► Assume that Arthur sends the same number of coins *m* in each round.

Introduction 00 00	IP and MA 0 000 000	Public-Coins Systems (AM)	Perfect Completeness and Soundness oo●oooooo o	A zero knowledge proof
Perfect Comple	eteness			

- Assume that the Arthur-Merlin proof system consists of t rounds.
- ► Assume that Arthur sends the same number of coins *m* in each round.
- Also assume that the completeness and soundness error probabilities of the proof system are at most ¹/_{3tm}. This is obtained using standard amplification.

Introduction 00 00	IP and MA 0 000 000	Public-Coins Systems (AM)	Perfect Completeness and Soundness oo●ooooooo ○	A zero knowledge proof
Perfect Comple	eteness			

- Assume that the Arthur-Merlin proof system consists of t rounds.
- ► Assume that Arthur sends the same number of coins *m* in each round.
- Also assume that the completeness and soundness error probabilities of the proof system are at most ¹/_{3tm}. This is obtained using standard amplification.
- We denote the messages sent by Arthur (the verifier) r₁,..., r_t and the messages sent by Merlin (the prover) α₁,..., α_t.

Introduction 00 00	IP and MA 0 000 000	Public-Coins Systems (AM)	Perfect Completeness and Soundness oo●ooooooo ○	A zero knowledge proof
Perfect Comple	eteness			

- Assume that the Arthur-Merlin proof system consists of t rounds.
- ► Assume that Arthur sends the same number of coins *m* in each round.
- Also assume that the completeness and soundness error probabilities of the proof system are at most ¹/_{3tm}. This is obtained using standard amplification.
- We denote the messages sent by Arthur (the verifier) r₁,..., r_t and the messages sent by Merlin (the prover) α₁,..., α_t.
- ▶ Denote by < P, V >_x (r₁,..., r_t) the outcome of the game on common input x between the optimal prover P and the verifier V.

Introduction 00 00	IP and MA o ooo ooo	Public-Coins Systems (AM)	Perfect Completeness and Soundness $000 \bullet 00000$	A zero knowledge proof
Perfect Compl	eteness			

▶ We construct a new proof system with perfect completeness, in which Arthur and Merlin play *tm* games simultaneously.

Introduction 00 00	IP and MA 0 000 000	Public-Coins Systems (AM)	Perfect Completeness and Soundness $000 \bullet 00000$	A zero knowledge proof
Perfect Comple	eteness			

- ▶ We construct a new proof system with perfect completeness, in which Arthur and Merlin play *tm* games simultaneously.
- Each game is like the original game except that the random coins are shifted by a fixed amount.

Introduction 00 00	IP and MA 0 000 000	Public-Coins Systems (AM)	Perfect Completeness and Soundness $000 \bullet 00000$	A zero knowledge proof
Perfect Compl	eteness			

- ▶ We construct a new proof system with perfect completeness, in which Arthur and Merlin play *tm* games simultaneously.
- Each game is like the original game except that the random coins are shifted by a fixed amount.
- Formally, we add an additional round at the beginning in which Merlin sends the *tm* shifts S¹,..., Stm where Sⁱ = (Sⁱ₁,...,Sⁱ_t), Sⁱ_j ∈ {0,1}^m to Arthur.

Introduction 00 00	IP and MA 0 000 000	Public-Coins Systems (AM)	Perfect Completeness and Soundness $00000000000000000000000000000000000$	A zero knowledge proo
Perfect Comple	teness			

For game *i* and round *j*, Merlin considers the random coins to be r_j ⊕ Sⁱ_j and sends as a message αⁱ_j where αⁱ_j is computed according to (r₁ ⊕ Sⁱ₁,..., r_t ⊕ Sⁱ_t).

Introductio 00 00	n IP and MA 0 000 000	Public-Coins Systems (AM)	Perfect Completeness and Soundness $00000000000000000000000000000000000$	A zero knowledge proof
Perfect Co	mpleteness			

- For game *i* and round *j*, Merlin considers the random coins to be r_j ⊕ Sⁱ_j and sends as a message αⁱ_j where αⁱ_j is computed according to (r₁ ⊕ Sⁱ₁,..., r_t ⊕ Sⁱ_t).
- The entire message in round j is $\alpha_j^1, \ldots, \alpha_j^{tm}$.

Introduction	IP and MA	Public-Coins Systems (AM)
00 00	0 000 000	

Perfect Completeness

- For game i and round j, Merlin considers the random coins to be r_j ⊕ Sⁱ_j and sends as a message αⁱ_j where αⁱ_j is computed according to (r₁ ⊕ Sⁱ₁,..., r_t ⊕ Sⁱ_t).
- The entire message in round j is $\alpha_j^1, \ldots, \alpha_j^{tm}$.
- At the end of the protocol Arthur accepts if at least one out of the *tm* games is accepting.

Introduction 00 00	IP and MA 0 000 000	Public-Coins Systems (AM)	Perfect Completeness and Soundness $00000000000000000000000000000000000$	A zero knowledge proof
Perfect Compl	eteness			

In order to show perfect completeness we will show that for every x ∈ L there exists S¹,..., Stm such that for all r₁,..., r_t at least one of the games is accepting.

Introduction 00 00	IP and MA 0 000 000	Public-Coins Systems (AM)	Perfect Completeness and Soundness $00000000000000000000000000000000000$	A zero knowledge pro
Perfect Comple	eteness			

- In order to show perfect completeness we will show that for every x ∈ L there exists S¹,..., Stm such that for all r₁,..., r_t at least one of the games is accepting.
- We use a probabilistic argument to show that the complementary event occurs with probability strictly smaller than 1.

	Introduction 00 00	IP and MA o ooo ooo	Public-Coins Systems (AM)	Perfect Completeness and Soundness $00000000000000000000000000000000000$	A zero knowledge proof
Perfect Completeness					

$$Pr_{S^{1},\ldots,S^{tm}}[\exists r_{1},\ldots,r_{t}\bigwedge_{i=1}^{tm}(\langle P,V\rangle_{x}(r_{1}\oplus S_{1}^{i},\ldots,r_{t}\oplus S_{t}^{i})=0)]$$

$$\leq_{(1)} \sum_{r_1,...,r_t \in \{0,1\}^m} \Pr_{S^1,...,S^{tm}} [\bigwedge_{i=1}^{tm} (\langle P, V \rangle_x (r_1 \oplus S_1^i, \ldots, r_t \oplus S_t^i) = 0)]$$

$$\leq_{(2)} 2^{tm} \cdot (\frac{1}{3tm})^{tm} < 1$$

Inequality (1) is obtained using the union bound. Inequality (2) is due to the fact that the $r_j \oplus S_j^i$ are independent random variables so the results of the games are independent, and that the optimal prover fails to convince the verifier on a true assertion with probability at most $\frac{1}{3tm}$.

Florian Zuleger: IP, AM, MA

Introduction 00 00	IP and MA o ooo ooo	Public-Coins Systems (AM)	Perfect Completeness and Soundness $00000000000000000000000000000000000$	A zero knowledge proof
Perfect Compl	eteness			

We still have to show that the proof system suggested satisfies the soundness requirement. We show that for every $x \notin L$ and for any prover strategy P^{\bigstar} and choices of shifts S^1, \ldots, S^{tm} the probability that one or more of the tm games is accepting is at most $\frac{1}{3}$.

Introduction 00 00	IP and MA 0 000 000	Public-Coins Systems (AM)	Perfect Completeness and Soundness	A zero knowledge proof	
Perfect Completeness					

$$Pr_{r_1,\ldots,r_t}[\bigvee_{i=1}^{tm} (\langle P, V \rangle_x (r_1 \oplus S_1^i,\ldots,r_t \oplus S_t^i) = 1)]$$

$$\leq_{(1)} \sum_{i=1}^{tm} Pr_{r_1,...,r_t} [< P^{\bigstar}, V >_x (r_1 \oplus S_1^i, \ldots, r_t \oplus S_t^i) = 1)]$$

$$\leq_{(2)} \sum_{i=1}^{tm} \frac{1}{3tm} = \frac{1}{3}$$

Inequality (1) is obtained using the union bound. Inequality (2) is due to the fact that any prover has probability of at most $\frac{1}{3tm}$ of success for a single game. \Box

Florian Zuleger: IP, AM, MA

Introduction 00 00	IP and MA 0 000 000	Public-Coins Systems (AM)	Perfect Completeness and Soundness \bullet	A zero knowledge proof	
Perfect Soundness					

Unlike the last theorem, requiring *perfect soundness* reduces the model to an NP-proof system.

Proposition 14

If a lanuage L has an interactive proof system with perfect soundness then $L \in NP$.

Remark: (This is an alternative argument for interactive proof systems collapsing to NP without randomness. This is due to the fact that perfect soundness is equivalent to a deterministic verifier.)

Introduction	IP and MA	Public-Coins Systems (AM)	Perfect Completeness and Soundness	A zero knowledge proof
00	0 000 000		0000000000	

We shall conclude this paper with a very interesting protocol that uses interactive proofs and cryptography.

Suppose that Alice is a girl with superintellectual abilities capable to solve NP-problems.

Introduction	IP and MA	Public-Coins Systems (AM)	Perfect Completeness and Soundness	A zero knowledge proof
00	0 000 000		00000000 0	

And suppose that Bob - an ordinary guy, but a good friend - is only able to compute problems in P.

Alice knows a 3-coloring of a large graph G = (V, E) and wants to convince Bob that she has a coloring of G without telling him the coloring.

What is required here is a zero knowledge proof, that is, an interactive protocol at the end of which Bob is convinced that with very high probability Alice has a legal 3-coloring of G, but has no clue about the actual 3-coloring.

ntroduction	IP and MA 0 000 000	Public-Coins Systems (AM)	Perfect Completeness and Soundness 000000000 0	A zero knowledge proof

Alice's coloring is $\chi: V \mapsto \{00, 11, 01\}$. The protocol proceeds in rounds. At each round, Alice carries out the following steps:

• She generates a random permutation π of the three colors.

Introduction	IP and MA	Public-Coins Systems (AM)	Perfect Completeness and Soundness	A zero knowledge proof
00	0 000 000		000000000	

Alice's coloring is $\chi: V \mapsto \{00, 11, 01\}$. The protocol proceeds in rounds. At each round, Alice carries out the following steps:

- She generates a random permutation π of the three colors.
- She generates |V| RSA public-private key pairs, (p_i, q_i, d_i, e_i), one for each node i ∈ V.

Introduction 00 00	IP and MA 0 000 000	Public-Coins Systems (AM)	Perfect Completeness and Soundness 000000000 0	A zero knowledge proof

Alice's coloring is $\chi: V \mapsto \{00, 11, 01\}$. The protocol proceeds in rounds. At each round, Alice carries out the following steps:

- She generates a random permutation π of the three colors.
- She generates |V| RSA public-private key pairs, (p_i, q_i, d_i, e_i), one for each node i ∈ V.
- For each node i she computes the probabilistic encoding (y_i, y'_i), according the jthe RSA system, of the color π(χ(i)).

Introduction	IP and MA	Public-Coins Systems (AM)	Perfect Completeness and Soundness	A zero knowledge proof
00	0 000 000		000000000	

Suppose that b_ib'_i are the two bits of π(χ(i)); then y_i = (2x_i + b_i)^{e_i} modp_iq_i and y'_i = (2x'_i + b'_i)^{e_i} modp_iq_i, where x_i and x'_i are random integers no greater than ^{pq}/₂.

Introduction	IP and MA	Public-Coins Systems (AM)
00	0 000 000	

- Suppose that b_ib'_i are the two bits of π(χ(i)); then y_i = (2x_i + b_i)^{e_i} modp_iq_i and y'_i = (2x'_i + b'_i)^{e_i} modp_iq_i, where x_i and x'_i are random integers no greater than ^{pq}/₂.
- ► All these computations are private to Alice. Alice reveals to Bob the integers (e_i, p_iq_i, y_i, y'_i) for each node i ∈ V. That is, the public part of the RSA systems, and the encrypted colors.

Introduction	IP and MA	Public-Coins Systems (AM)	Perfect Completeness and Soundness
00 00	0 000 000		00000000000

Bob's turn:

▶ Bob picks at random an edge [i, j] ∈ E, and inquires whether its endpoints have a different color.

Introduction	IP and MA	Public-Coins Systems (AM)
00	0 000 000	

Bob's turn:

- Bob picks at random an edge $[i, j] \in E$, and inquires whether its endpoints have a different color.
- ▶ Alice then reveals to Bob the secret keys *d_i* and *d_i* of the endpoints, allowing Bob to compute $b_i = y_i^{e_i} mod2$, and similarly for b'_i, b_j and b'_i .

Introduction	IP and MA	Public-Coins Systems (AM)
00	0 000 000	

Bob's turn:

- ▶ Bob picks at random an edge [i, j] ∈ E, and inquires whether its endpoints have a different color.
- ► Alice then reveals to Bob the secret keys d_i and d_j of the endpoints, allowing Bob to compute b_i = y_i^{e_i} mod2, and similarly for b'_i, b_j and b'_i.
- He checks that indeed $b_i b'_i \neq b_j b'_j$.

Introduction	IP and MA	Public-Coins Systems (AM)	Perfect Completeness and Soundness	A zero knowledge proof
00 00	0 000 000		0000000000	

► If Alice has a legal coloring of *G*, all inquiries of Bob will be satisfied.

Introduction	IP and MA	Public-Coins Systems (AM)	Perfect Completeness and Soundness	A zero knowledge proof
00	0 000 000		0000000000	

- ► If Alice has a legal coloring of *G*, all inquiries of Bob will be satisfied.
- ▶ If she has no legal coloring, then necessarily at each round there is an edge $[i, j] \in E$ such that $\chi(i) = \chi(j)$.

Introduction	IP and MA	Public-Coins Systems (AM)	Perfect Completeness and Soundness	A zero knowledge proof
00	0 000 000		0000000000	

- ► If Alice has a legal coloring of *G*, all inquiries of Bob will be satisfied.
- ▶ If she has no legal coloring, then necessarily at each round there is an edge $[i,j] \in E$ such that $\chi(i) = \chi(j)$.
- ► At each round Bob has a probability of at least ¹/_{|E|} if discovering that edge.

Introduction	IP and MA	Public-Coins Systems (AM)	Perfect Completeness and Soundness	A zero knowledge proof
00	0 000 000		0000000000	

- ► If Alice has a legal coloring of *G*, all inquiries of Bob will be satisfied.
- If she has no legal coloring, then necessarily at each round there is an edge [i, j] ∈ E such that χ(i) = χ(j).
- ► At each round Bob has a probability of at least ¹/_{|E|} if discovering that edge.
- ► After k|E| rounds, the probability of Bob finding out that Alice has no legal coloring is at least 1 - e^{-k}.

00 0 00000000 00 000 0 000	Introduction	IP and MA	Public-Coins Systems (AM)	Perfect Completeness
				0000000000000

What is remarkable about this protocol is that Bob has learned nothing about Alice's coloring of G in the process.

Introduction	IP and MA	Public-Coins Systems (AM)
00	0 000 000	

- What is remarkable about this protocol is that Bob has learned nothing about Alice's coloring of G in the process.
- As a final note the zero knowledge protocol just described works for 3-COLORING, an NP-complete problem. Using reductions, it is possible to conclude all problems in NP have zero-knowledge proofs.