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NP as a proof System

We can view NP as a proof system. For each language L ∈ NP
there exists a polynomial-time recognizable relation RL such that:

L = {x |∃y : s.t.(x , y) ∈ RL}

and (x , y) ∈ RL only if |y | ≤ poly(|x |).
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NP as a proof System

A good proof system must have the following properties:

1. The verifier strategy is efficient (polynomial-time in the NP
case)

2. Correctness requirements:

I Completeness: For a true assertion, there is a convincing
proof strategy (in the case of NP, if x ∈ L the a witness y
exists).

I Soundness: For a false assertion, no convincing proof strategy
exists (in the case of NP, if x /∈ L then no witness y exists).
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Interactive Proof Systems

Now we generalize the requirements from a proof system, adding
interaction and randomness.
An interactive proof is sequence of questions and answers between
the prover and the verifier.

At the end of the interaction, the verifier decides based the
knowledge he acquired in the process whether the claim is true or
false.
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Interactive Proof Systems

Definition 1
(interactive proof systems:) An interactive proof system for a
language L is a two-party game between a verifier and a prover
that interact on a common input in a way satisfying the following
properties:

1. The verifier strategy is a probabilistic polynomial-time
procedure (where time is measured in terms of the length of
the common input)

2. Correctness requirements:

I Completeness: There exists a prover strategy P, such that for
every x ∈ L, when interacting on the common input x, the
prover P convinces the verifier with probability at least 2

3 .
I Soundness: For a false assertion, no convincing proof strategy

exists (in the case of NP, if x /∈ L then no witness y exists).
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The IP Hierachy

Definition 2
(The IP Hierachy:) The complexity class IP consists of all
languages having an interactive proof system.
We call the number of message exchanges (a question and an
answer) between the two parties, the number of rounds in the
system. After a certain number of rounds the verifier decides
whether to accept or reject.
For every integer function r(.), the complexity class IP(r(.))
consists of all the languages that have an interactive proof system
in which, on common input x, at most r(|x |) rounds are used.
If we denote by poly the set of all integer polynomial functions,
then IP = IP(poly).
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Comments

I Clearly, NP ⊆ IP(1).
Also, BPP = IP(0).

I The number of rounds in IP cannot be more than a
polynomial in the length of the common input.

I The length of the messages exchanged cannot be more than a
polynomial in the length of the common input.

I Claim 3
Any language that has an interactive proof system, has one that
achieves error probability of at most 2−p(.) for any polynomial p(.).
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Comments

Proof.
Using Chernoff’s Bound:

Pr [z < (1− δ)E (z)] < e−
δ2E(z)

2

We choose k = O(p(.)) and δ = 1
4 and note that E (z) = 2

3k (so
that 3

4 ·
2
3 = 1

2) to get:

Pr [z < (1− 1

2
k] < 2−p(.)
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Comments

Introducing both interaction and randomness in the IP class is
essential:

I By adding interaction only, the interactive proof systems
collapse to NP-proof systems.

I By adding randomness only, we get a proof system in which
the prover sends a witness and the verifier can run a BPP
algorithm for checking its validity. We obtain the class
Merlin-Arthur game - MA.
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Graph Non-Isomorphism(GNI)

Example 4 (Graph Non-Isomorphism(GNI))

Two graphs G1 = (V1,E1) and G2 = (V2,E2) are called iosmorphic
(denoted G1

∼= G2) if there exists a 1-1 and onto mapping
π : V1 → V2 such that (u, v) ∈ E1 ⇔ (π(u), π(v)) ∈ E2. The
mapping π, if existing, is called an isomporhism between the
graphs. If no such mapping exists then the graphs are
non-isomophic (denoted G1 6∼= G2).
GNI is the language containing all pairs of non-isomorphic graphs.
Formally:

GNI = {(G1,G2) : G1 6∼= G2}
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Graph Non-Isomorphism(GNI)

An interactive proof system for GNI:

I G1 and G2 are given as input to the verifier and the prover.
Assume without loss of generality that
V1 = V2 = {1, 2, . . . , n}.

I The verifier chooses i ∈R {1, 2} and π ∈R Sn (Sn is the group
of all permutations on {1, 2, . . . , n}). He applies the mapping
π on the graph Gi to obtain a graph H

H = ({1, 2, . . . , n},EH) where EH = {(π(u), π(v)) : (u, v) ∈ Ei}

and sends the graph H to the prover.

I The prover sends j ∈ {1, 2} to the verifier.

I The verifier accepts iff j = i .

Florian Zuleger: IP, AM, MA 11/ 36
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Graph Non-Isomorphism(GNI)

I Remark: ISOMORPHISM is not known to be in P, but of
course it is in NP (guessing the right permutation and then
checking the isomorphism in polynomial time), whereas GNI is
not known to be in NP.

I Remark: We state that the secrecy of the outcome of the
coin tosses is essential to this protocol.
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Definition 5
(public-coin interactive proofs - AM:) Public coin proof systems
(known also as Arthur-Merlin games) are a special case of
interactive proof systems, in which, at each round, the verifier
can only toss coins, and send their outcome to the prover.
After a certain number of rounds the verifier decides
deterministically whether to accept or reject.
For every integer function r(.), the complexity class AM(r(.))
consists of all the languages that have an Arthur-Merlin proof
system in which, on common input x, at most r(|x |) rounds are
used.
Denote AM = AM(1).
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Surprisingly it was shown Arthur-Merlin games and the general
interactive proof systems are essentially equivalent:

Theorem 6
(Relating IP(.) to AM(.)):

∀r(.) : IP(r(.)) ⊆ AM(r(.) + 1)

Florian Zuleger: IP, AM, MA 14/ 36
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The following theorem shows that power of AM(r(.)) is invariant
under a linear change in the number of rounds:

Theorem 7
(Linear Speed-up Theorem):

∀r(.) ≥ 2 : AM(2r(.)) = AM(r(.))

Florian Zuleger: IP, AM, MA 15/ 36
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Combing the two las theorems we get:

Corollary 8

∀r(.) ≥ 2 : IP(2r(.)) = IP(r(.))

Corollary 9

(Collapse of constant-round IP to one-round AM):

IP(O(1)) = AM(1)

Corollary 10

(Relating MA to AM)
MA ⊆ AM

Florian Zuleger: IP, AM, MA 16/ 36
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Theorem 11
(Relating MA to PP):

MA ⊆ PP

Proof. Let L ∈ MA. Thus there are a polynomial p and a
polynomial-time Turing machine Q such that:

x ∈ L ⇒ ∃s ∈ {0, 1}p(|x |) : Pr [Q(x , r , x)] >
2

3

x /∈ L ⇒ ∀s ∈ {0, 1}p(|x |) : Pr [Q(x , r , x)] <
1

3

where probability is taken over uniform distribution in {0, 1}p(|x |).
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Using standard amplification we can construct a new polynomial
p1 and a new polynomial-time machine Q1 such that

x ∈ L ⇒ ∃s ∈ {0, 1}p(|x |) : Pr [Q1(x , r , s)] > 1− 4−p(|x |)

x /∈ L ⇒ ∀s ∈ {0, 1}p(|x |) : Pr [Q1(x , r , s)] < 4−p(|x |)

where probability is taken over uniform distribution in {0, 1}p1(|x |).
Consider now the uniform distribution on pairs
< r , s >∈ {0, 1}p(|x |)+p1(|x |). We have

x ∈ L ⇒ ∃Pr [Q1(x , r , s)] > 2−p(|x |)(1− 4−p(|x |)) > 4−p(|x |)

x /∈ L ⇒ Pr [Q1(x , r , s)] < 4−p(|x |)

This is equivalent to L ∈ PP. �
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What if we require Perfect Completeness, i.e., convincing the
verifier with probability 1?
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Perfect Completeness

Theorem 12
If a language has an interactive proof system then it has one with
perfect completeness.

We will show that given a public coin proof system we can
construct a perfect completeness public coin proof system.
We define:
AM0(r(.)) = {L| L has a perfect completeness
r(.) round public coin proof system}
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Perfect Completeness

We will show:

Lemma 13
If L has a public coin proof system then it has one with perfect
completeness

AM(r(.)) ⊆ AM0(r(.) + 1)

Florian Zuleger: IP, AM, MA 21/ 36
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Perfect Completeness

Proof.

I Assume that the Arthur-Merlin proof system consists of t
rounds.

I Assume that Arthur sends the same number of coins m in
each round.

I Also assume that the completeness and soundness error
probabilities of the proof system are at most 1

3tm . This is
obtained using standard amplification.

I We denote the messages sent by Arthur (the verifier) r1, . . . , rt
and the messages sent by Merlin (the prover) α1, . . . , αt .

I Denote by < P,V >x (r1, . . . , rt) the outcome of the game on
common input x between the optimal prover P and the
verifier V.
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Perfect Completeness

I We construct a new proof system with perfect completeness,
in which Arthur and Merlin play tm games simultaneously.

I Each game is like the original game except that the random
coins are shifted by a fixed amount.

I Formally, we add an additional round at the beginning in
which Merlin sends the tm shifts S1, . . . ,S tm where
S i = (S i

1, . . . ,S
i
t),S

i
j ∈ {0, 1}m to Arthur.
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Perfect Completeness

I For game i and round j , Merlin considers the random coins to
be rj ⊕ S i

j and sends as a message αi
j where αi

j is computed

according to (r1 ⊕ S i
1, . . . , rt ⊕ S i

t).

I The entire message in round j is α1
j , . . . , α

tm
j .

I At the end of the protocol Arthur accepts if at least one out
of the tm games is accepting.
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Perfect Completeness

I In order to show perfect completeness we will show that for
every x ∈ L there exists S1, . . . ,S tm such that for all r1, . . . , rt
at least one of the games is accepting.

I We use a probabilistic argument to show that the
complementary event occurs with probability strictly smaller
than 1.
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Perfect Completeness

PrS1,...,S tm [∃r1, . . . , rt
tm∧
i=1

(< P,V >x (r1 ⊕ S i
1, . . . , rt ⊕ S i

t) = 0)]

≤(1)

∑
r1,...,rt∈{0,1}m

PrS1,...,S tm [
tm∧
i=1

(< P,V >x (r1⊕S i
1, . . . , rt⊕S i

t) = 0)]

≤(2) 2tm · ( 1

3tm
)tm < 1

Inequality (1) is obtained using the union bound. Inequality (2) is
due to the fact that the rj ⊕ S i

j are independent random variables
so the results of the games are independent, and that the optimal
prover fails to convince the verifier on a true assertion with
probability at most 1

3tm .
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Perfect Completeness

We still have to show that the proof system suggested satisfies the
soundness requirement. We show that for every x /∈ L and for any
prover strategy PF and choices of shifts S1, . . . ,S tm the
probability that one or more of the tm games is accepting is at
most 1

3 .
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Perfect Completeness

Prr1,...,rt [
tm∨
i=1

(< P,V >x (r1 ⊕ S i
1, . . . , rt ⊕ S i

t) = 1)]

≤(1)

tm∑
i=1

Prr1,...,rt [< PF,V >x (r1 ⊕ S i
1, . . . , rt ⊕ S i

t) = 1)]

≤(2)

tm∑
i=1

1

3tm
=

1

3

Inequality (1) is obtained using the union bound. Inequality (2) is
due to the fact that any prover has probability of at most 1

3tm of
success for a single game. �
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Perfect Soundness

Unlike the last theorem, requiring perfect soundness reduces the
model to an NP-proof system.

Proposition 14

If a lanuage L has an interactive proof system with perfect
soundness then L ∈ NP.

Remark: (This is an alternative argument for interactive proof
systems collapsing to NP without randomness. This is due to the
fact that perfect soundness is equivalent to a deterministic verifier.)
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We shall conclude this paper with a very interesting protocol that
uses interactive proofs and cryptography.
Suppose that Alice is a girl with superintellectual abilities capable
to solve NP-problems.
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And suppose that Bob - an ordinary guy, but a good friend - is
only able to compute problems in P.

Alice knows a 3-coloring of a large graph G = (V ,E ) and wants to
convince Bob that she has a coloring of G without telling him the
coloring.
What is required here is a zero knowledge proof, that is, an
interactive protocol at the end of which Bob is convinced that with
very high probability Alice has a legal 3-coloring of G , but has no
clue about the actual 3-coloring.
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Alice’s coloring is χ : V 7→ {00, 11, 01}. The protocol proceeds in
rounds. At each round, Alice carries out the following steps:

I She generates a random permutation π of the three colors.

I She generates |V | RSA public-private key pairs, (pi , qi , di , ei ),
one for each node i ∈ V .

I For each node i she computes the probabilistic encoding
(yi , y

′
i ), according the jthe RSA system, of the color π(χ(i)).
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I Supppose that bib
′
i are the two bits of π(χ(i)); then

yi = (2xi + bi )
ei modpiqi and y ′

i = (2x ′i + b′i )
ei modpiqi , where

xi and x ′i are random integers no greater than pq
2 .

I All these computations are private to Alice. Alice reveals to
Bob the integers (ei , piqi , yi , y

′
i ) for each node i ∈ V . That is,

the public part of the RSA systems, and the encrypted colors.
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Bob’s turn:

I Bob picks at random an edge [i , j ] ∈ E , and inquires whether
its endpoints have a different color.

I Alice then reveals to Bob the secret keys di and dj of the
endpoints, allowing Bob to compute bi = y ei

i mod2, and
similarly for b′i ,bj and b′j .

I He checks that indeed bib
′
i 6= bjb

′
j .
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Alice and Bob repeat k|E | times, where k is a parameter
representing the desired reliability of the protocol.

I If Alice has a legal coloring of G , all inquiries of Bob will be
satisfied.

I If she has no legal coloring, then necessarily at each round
there is an edge [i , j ] ∈ E such that χ(i) = χ(j).

I At each round Bob has a probability of at least 1
|E | if

discovering that edge.

I After k|E | rounds, the probability of Bob finding out that
Alice has no legal coloring is at least 1− e−k .
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I What is remarkable about this protocol is that Bob has
learned nothing about Alice’s coloring of G in the process.

I As a final note the zero knowledge protocol just described
works for 3-COLORING, an NP-complete problem. Using
reductions, it is possible to conclude all problems in NP have
zero-knowledge proofs.
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