MEMS
and
Nanotechnology
1. introduction
2. definition of MEMS & NEMS
3. active principles
4. types of MEMS
5. fabrication
6. problems with the fabrication
1. introduction
2. definition of MEMS & NEMS
3. active principles
4. types of MEMS
5. fabrication
6. problems with the fabrication
The Beginning

In Dec. 1959 Richard Feynman offered a prize of $1,000.

Challenge: build an electrical motor, each side smaller than
\[
\frac{1}{64} \text{in} \approx 0.397 \text{mm}
\]
electrical motor by William McLellan

diameter: 381μm

tools used for assembly:

- microscope
- sharpened tooth pick
- hairs of a fine artist's brush
1. introduction

2. definition of MEMS & NEMS
 2.1. What is MEMS?
 2.2. What is NEMS?
 2.3. problems with NEMS

3. active principles

4. types of MEMS

5. fabrication

6. problems with the fabrication
What is MEMS?

MEMS - microelectromechanical systems

transformation of energy:

- electricity
- light
- thermal energy

→ mechanical motion

MEMS mainly move by elastic deformation of their flexible components.
What is MEMS?

spider mite (length: approx. 0.5mm)

What is NEMS?

NEMS - nanoelectromechanical systems

• similar to MEMS but smaller (nanoscale)
• future prospects: ability to measure small displacements and forces at a molecular scale

The border between MEMS and NEMS can hardly be defined: 500nm or 0.5μm?
It is possible to create structures with only several nanometers in size, BUT:

- nanoscale cantilevers/beams: a considerable big number of atoms are surface atoms
- interference with surrounding molecules
- additional physical effects have to be considered (e.g. increased influence of adhesion)

⇒ just scaling down MEMS layouts does not work!
problems with NEMS-technology

some examples:

• NEMS can respond to masses of single atoms: sensors could respond to impacts of molecules

• measurement of small deflection/forces also means small signals: difficulty to tell the signals apart from the noise

• adhesion of pieces that operate as capacitive electrodes could induce short circuits
problems with NEMS-technology

- effects, that are irrelevant to micro devices, have to be considered for nano devices
- new design approaches have to be found
- production and packaging have to take place in an extremely clean environment
1. introduction
2. definition of MEMS & NEMS
3. active principles
 3.1. thermal transduction
 3.2. electrostatic transduction
 3.3. piezo-resistive effect
4. types of MEMS
5. fabrication
6. problems with the fabrication
thermal transduction

\[\Delta l = \alpha \cdot l \cdot \Delta T \]

block force:
\[F_b = E \cdot A \cdot \alpha \cdot \Delta T \]

\[F = F_b \]

\[\Rightarrow \text{ no displacement} \]
active principles

thermal transduction

vertical motion

moveable

fixed

bent beam actuator

bi-metal actuator
active principles

advantages & disadvantages of thermal transduction

+ large forces/displacements
– large input energies
– low frequencies
electrostatic transduction

parallel plate movement: \(\Delta x \)
comb finger movement: \(\Delta A \)

\[
\Delta U = -Q \frac{x}{\varepsilon \Delta A}
\]

\[
\Delta U = Q \frac{\Delta x}{\varepsilon A}
\]
electrostatic transduction

spring elements

parallel electrodes

comb drives

active principles
active principles

advantages & disadvantages of electrostatic transduction

+ fast response
+ easy integration with CMOS
– small actuation force
active principles

piezo-resistive effect

I + ΔI

V

connect piezo actuator to voltage source

⇒ change in length
active principles

piezo-resistive effect

Compress or expand piezo sensor

\[V \Rightarrow potential\ difference \]

\[F \]

\[l - \Delta l \]
active principles

piezo-resistive effect in polysilicon

\[
gauge \text{ factor } K = \frac{\Delta R}{\frac{R}{\Delta l}}
\]

thin film of polysilicon (p- or n-doped) isolator (e.g. SiO\(_2\), Si\(_3\)N\(_4\))

cantilever/beam/membrane
piezo-resistive effect in polysilicon

maximum gauge factor

p-doped: -40

n-doped: 20

$N_{A/D} \approx 10^{19} \text{cm}^{-3}$

$T_{\text{CVD}} = 560^\circ\text{C}$

annealing: $1000...1100^\circ\text{C}$
1. introduction
2. definition of MEMS & NEMS
3. active principles
4. types of MEMS
 4.1. sensors
 4.2. actuators
5. fabrication
6. problems with the fabrication
types of MEMS

- sensors
 - accelerometers
 - gyroscopes

- actuators
 - micromirrors
 - droplet generator
 - microengines
 - micropumps
sensors: accelerometers

- in automotive applications to activate safety systems and to implement vehicle stability systems
- hard disc protection systems
- ...
a simple MEMS accelerometer is designed as followed:
- the proof mass is suspended by one to four silicon beams
- basic design and mechanical equivalent:
sensors: accelerometers

- acceleration causes displacement of the proof mass
- displacement of the proof mass can be measured by strain gauges in the beams or change in capacitance

Diagram:
- Suspension beams with strain gauges
- Proof mass with capacitive electrodes
sensors: accelerometers

depending on the change in each capacitance, the three-dimensional acceleration vector can be derived

vertical acceleration

horizontal acceleration
sensors: gyroscopes

gyroscopes

vibratory gyroscopes: transfer of energy between two vibration modes

vibrating mechanical element: proof mass
Coriolis acceleration

\[\vec{a}_c = 2 \vec{\omega} \times \vec{v} \]
sensors: gyroscopes

rotation detection by capacitive electrodes under the proof mass

Draper Lab comb drive tuning fork gyroscope
actuators: micromirrors

micromirrors for phase modulation

16 μm
actuators: droplet generator

- nozzle
- membrane
- ink reservoir
- cooling hole
- heating element
actuators: microengines

microengine with electrostatically driven combdrives

actuators: microengines

close-up view on different linkage designs

actuators: microengines

torque: \(M_i = F_i \cdot r \cdot |\sin \varphi_i| \)
actuators: micropumps

micropump with piezo actuators

frequency controlled flow rate
1. introduction
2. definition of MEMS & NEMS
3. active principles
4. types of MEMS
5. fabrication
6. problems with the fabrication
fabrication

epitaxial growth

• thermal oxidation (SiO$_2$-layers)
• chemical vapour deposition
• thermal evaporation (metallic layers)
• electrolytic deposition
fabrication

chemical vapour deposition (CVD)

e. g. layer of phosphorus-doped silicon

Heated chamber

\[\text{SiH}_4 + \text{PH}_3 \rightarrow \text{n-doped silicon layer} \]
fabrication

minimum structure width:
- ultraviolet light: 1μm
- e-beam, x-ray: <1μm

etching
- plasma etching,
- KOH-etching (Si),
- HF-etching (SiO$_2$),
- ...

ultraviolet light
- mask
- photo resist
- Si, SiO$_2$
fabrication

etching

- isotropic
 - e.g. SiO$_2$ etched by HF

- anisotropic
 - e.g. <100> - Si etched by KOH
 - e.g. plasma etched Si
silicon wet etching (e.g. with KOH)

selective etching rate: \[
\frac{R \{ <100> \text{- crystal plane} \}}{R \{ <111> \text{- crystal plane} \}} = 30 \frac{1}{1}
\]
silicon wet etching (e. g. with KOH)

\[
\text{Si} + 2 \text{OH}^- + 2 \text{H}_2\text{O} \rightarrow \text{SiO}_2(\text{OH})_2^- + \text{H}_2
\]

surface structure of \(<111>\) - silicon

surface structure of \(<100>\) - silicon
reactive ion etching: combines chemical and physical etching

e.g. flour ions react with silicon AND heavy ions impact on the surface

attention: physical etching also attacks the pattern
reactive ion etching
reactive ion etching

Si: \(\text{SiCl}_4, \text{CCl}_4, \text{BCl}_3, \text{SF}_6 \)

\(\text{SiO}_2: \ C_2\text{F}_6, \text{CHF}_3 \)
1. introduction
2. definition of MEMS & NEMS
3. active principles
4. types of MEMS
5. fabrication
6. problems with the fabrication
problems with the fabrication

contamination

- microscopic contaminations (dust)
- molecular dirt:
 - e. g. oil fog from vacuum pumps
 → adhesion degradation of epitaxial layers
problems with the fabrication

hillocks

KOH-etching: dust particles may result in hillocks
list of references & picture credits

M. Glück: *MEMS in der Mikrosystemtechnik*, B.G. Teubner Verlag, Wiesbaden 2005

http://mems.sandia.gov
http://www.wikipedia.com
http://physicsweb.org
http://news.bbc.co.uk
http://archives.caltech.edu
http://www.invensense.com
http://mems.cwru.edu