

Imaging with PET and SPECT

Thorsten Poethko

Nuklearmedizinische Klinik und Poliklinik und Institut für Radiochemie Technische Universität München

General Aspect

Neutron number N = A-Z →

Production of commonly used PET-Nuclides via Compact Cyclotron

TUΠ

Nuclide	T _{1/2} (min)	Nuclear- Reaction	Energy (MeV)	Mode of decay [%]	Target product
¹¹ C	20.4	¹⁴ N(p,α)	13 → 3	β⁺ (99.8)	¹¹ CO ₂ ¹¹ CO
¹³ N	10.0	¹⁶ Ο(p,α)	16 → 7	β⁺ (100)	¹³ NO ₂ - ¹³ NO ₃ -
¹⁵ O	2.0	¹⁵ N(p,n)	10 → 0	β⁺ (99.9)	¹⁵ O ₂
¹¹ C	109.6	¹⁸ O(p,n)	16 → 3	β⁺ (97)	¹⁸ F _{aq} - ¹⁸ F ₂

Selection of Radionuclide

Half-life comparable with kinetics of physiological process ? (too short, too long)

Do the nuclear and physical properties fulfill the special demands ? (e.g. pure β^+ - Emitter)

Labeling chemistry compatible with targeting ? (e.g. metalated CNS-ligands)

Patient dose acceptable ? (CNS-ligands: C-11 or F-18)

Nuclide availability ? (Generator, cyclotron, energy range)

PET-Radionuclides

lsotope	•	Half- life [h]	Positron percentage branching %β⁺	Maximum positron energy [MeV] Εβ ⁺ _{max}	Intrinsic spacial resolution loss [mm]	Comments
¹⁸ F		1,8	96,9	0,63	0,7	
	⁵⁵ Co	17,5	76	1,50	1,6	Т _{½,D} = 2,6 у
⁶¹ Cu		3,4	61	1,22	1,5	
⁶⁴ Cu		12,7	18	0,65	0,7	
	⁶⁶ Ga	9,5	57	4,15	-	
	⁶⁸ Ga	1,14	89	1,90	2,4	G: ⁶⁸ Ge / 271d
⁷⁵ Br		1,6	71	1,72	2,2	T _{½,D} = 120 d
⁷⁶ Br		16,2	54	3,94	5,3	
	86 Y	14,7	33	3,14	1,8	
^{110m} ln		1,15	62	<mark>2</mark> ,20	3,0	G: ¹¹⁰ Sn / 4,1 h
	120g	1,35	56	4,59	5,4	
	¹²⁴	100,3	23	<mark>2</mark> ,14	2,3	

Resolution Limitation due to Positron Energy

Production of F-18

Nuclear reaction	¹⁸ O(p,n) ¹⁸ F	¹⁶ O(³ He,n) ¹⁸ F	20 Ne(d, α) 18 F	¹⁸ O(p,n) ¹⁸ F
Target	H ₂ ¹⁸ O	H ₂ O	Ne (0.1-0.2% F ₂ , 18 bar)	¹⁸ O ₂ (20 bar) (2. + 0.1% F ₂)
bombarding particle [MeV]	16 → 0	36 ightarrow 0	11.2 → 0	10 → 0
Chemical form	[¹⁸ F]F _{aq}	[¹⁸ F]F _{aq} ⁻	[¹⁸ F]F ₂	[¹⁸ F]F ₂
Thick target yield [MBq µA⁻¹ h⁻¹)	2.200	250	350-450	~350
Specific activity [TBq mmol⁻¹]	40×10 ³	40×10 ³	0.04–0.4	0.04-2

- Mainly produced via ¹⁸O(p,n)¹⁸F-reaction
- Product: ¹⁸F_{aq}⁻ with high specific activity and up to 100% radiochemical yield, compared to [¹⁸F]F₂ with low specific activity and max. 50% radiochemical yield

Production Scheme: Radiopharmaceutical Production

Automatic production

Automatic Synthesis

¹¹C-Methionine Production

Generators for Positron Emission

lsotope	Half-life	Mode of decay	<i>Ε</i> _β + [keV]
⁶⁸ Ge	271 d	EC (100%)	
Ļ			
⁶⁸ Ga	68 min	β ⁺ (90%), EC (10%)	1900
⁶² Zn	9.2 h	β ⁺ (93%), EC (7%)	660
Ļ			
⁶² Cu	9.7 min	β⁺ (98%), EC(2%)	2930
⁸² Sr	25 d	EC (100%)	
Ļ			
⁸² Rb	1.3 min	β ⁺ (96%), EC (4%)	3350

Structure of "non-isotopic" Radiopharmaceuticals

Address, Target	Pharmacophor, biospecific binding	Spacer, Linker	Labeling, Label	
Intra-/Extracellular Receptors Transporter Enzyme Antigens RNA	Small org. Molecules Peptidomimetics Peptide Protein Antibody Complex (lons)	Metabolic stabile Metabolic labile Enzymatic cleavable Hydrolytic sensitive pH sensitive	Covalent Complex Statically distributed Defined bondage No-carrier-added Carrier-added	

TUΠ **Peptide, Protein and Macromolecule Labeling** with Radiometals SO_3 COOH COOH COOH O•N EDC sulfo-NHS \mathbf{O} pH 5.5 СООН COOF COOH СООН pH 7.5 Protein-NH₂ ,0 // *"*0 COOH COOH-O - N - ProteinO - N - ProteinΗ ⁶⁴Cu ⁶⁴CuCl₂ СООН СООН COOH COOH In, Ga, Cu ... Lu, Y, Bi, Ac ... Fe, Gd,

Radionuclide Production for SPECT SPECT = Single-Photon-Emission-Computer Tomography

All these nuclides are commercially produced and sold

as radionuclide,

generators

or readily-prepared radiopharmaceuticals

Most important SPECT-Isotope is Technetium (^{99m}Tc) !

SPECT - Isotopes

Radio	T _{1/2}	Mode of	Main-	Productions data		
nuclide		decay	γ-Lines	Nuclear reaction	Energy range [MeV]	Yield [MBq/µAh]
⁶⁷ Ga	3.26 d	EC (100)	93 (27%)	⁶⁸ Zn(p,2n)	26→18	185
⁹⁹ Mo ↓	2.75 d	b- (100)	181 (6%) 740 (12%)	²³⁵ U(n,f) ⁹⁸ Mo(n,g)	σ _{th} = 0.14b	
^{99m} Tc	6.0 h	IT (100)	141 (87%)			
¹¹¹ In	2.8 d	EC (100)	173 (91%) 247 (94%)	¹¹² Cd(p,2n)	25→18	166
123	13.2 h	EC (100)	159 (83%)	¹²³ Te(p,n)	14.5→10	137
				¹²⁴ Xe(p,x) ¹²³ Xe	29 → 23	414
				¹²⁷ l(p,5n) ¹²³ Xe	65→45	777
²⁰¹ TI	3.06 d	EC (100)	68-82 (RL)	²¹⁰ TI(p,3n) ²⁰¹ Pb	28 → 20	
			166 (10.2%))		

^{99m}Tc-Generator (1)

ТШП

(1) Simple Handling Insert vacuum flask and elute desired volume.

(2) Transport-Security-valve

Prevent an elution after production and during transport

(3) Shifted needle

Reduction of energy rich Mo-radiation

(4) Max. protection against radiation

Protection from all side. ⁹⁹Mo-column is covered at least with 52 mm Pb. Supplementary shielding with overall 98 mm Pb.

(5) High concentrated activity

Total ^{99m}Tc-activity is less than 5 mL volume.

(6) Ready for use

Sterile, closed system.

Characterization of the tumor biology by molecular imaging

ТШП

2-[¹⁸F]Fluoro-2-Deoxy-Glucose-Synthesis ([¹⁸F]FDG)

[¹⁸F]FDG: Therapy control –gastric carcinoma-

[¹⁸F]FDG-PET versus [¹¹C]MET-PET -Brain Tumor-

O-(2-[¹⁸F]Fluoroethyl)-L-Tyrosin: [¹⁸F]FET (2)

FDG also accumulates in inflammation, amino acids and especially FET does not accumulate in inflammation.

Biochemical Model: Choline

ТЛП

Prostate carcinoma

3'-[¹⁸F]Fluoro-3'-Deoxy-Thymidine: [¹⁸F]FLT

ТUП

Metabolic Scheme for [11C]Thymidine and FLT

ТUП

Visualization of Cell Proliferation with ¹⁸F-thymidine (FLT) in Esophageal Cancer

[¹⁸F]FLT

thymidine

The Mechanism of Non-Invasive Detection of Tumor Hypoxia

Blood flow

ТШТ

Peptide Receptor Imaging: PRI

Targets for Radiolabeled Peptides in Human Tumor Tissue

- Somatostatin-R neuroendocrine tumors, small cell lung cancer, medullary thyroid carcinoma, lymphoma (NHL)
- Integrins melanoma, breast tumor, osteosarcoma, glioblastoma
- VIP-R adenocarcinomas, small cell lung cancer, neuroendocrine tumors, lymphoma
- CCK-B-R medullary thyroid carcinoma, small cell lung cancer, stromal ovarian cancer, astrocytoma
- Substance P-R medullary thyroid cancer, small cell lung cancer, breast tumors
- Bombesin/ GRP-R colon cancer, small cell lung cancer, glioblastoma
- Neurotensin-R pancreatic cancer, prostate cancer, small cell lung cancer

(Mice, AR42J, n=3-5, 60 min p.i.)

Schottelius, Wester et al. Clin Cancer Res. (2004)

307

1024

12.0

9.0

6.0 -

з.о.

0.0

Male patient, 50 yrs, carcinoid with multiple metastases

Carbohydrated RGD-Peptide : [¹⁸F]Galacto-RGD

Carbohydrated RGD-Peptides with Improved Pharmacokinetics

Comparison of the Pharmacokinetics in Selected Tissues

BALB/c mice, osteosarcoma model; comparable data obtained with M21melanoma bearing mice

Non-invasive Monitoring of $\alpha_v \beta_3$ Expression on the Tumor Vasculature

nude mouse bearing a *human* squamous cell carcinoma at the right shoulder

Determination of $\alpha_v \beta_3$ -Expression in vivo

ТЛП

sagittal section, 170 min p.i., circular tracer uptake,

max. SUV=10

PET/CT image fusion; uptake corresponds with the tumor-wall

Immunohistochemistry, MAb LM609, staining of blood vessels

axial section, 140 min p,i, uptake in the lymph node

PET/CT image fusion

Immunohistochemistry, focal MAB LM609, staining of tumor cells and blood vessels

Structure of the Extracellular Domain of $\alpha_{v}\beta_{3}$

J.-P. Xiong, et. al, Science 2001.

ТШ **Multimeric** [¹⁸F]c(RGDfE)-Peptides HN⁻ NH ŃH 0≓ n H₂N NH₂ н N H ŇΗ 0 HN :0 0= Ô ΝН [¹⁸F]FB-CHO: 4-[¹⁸F]Fluorobenzaldehyde AOA: Aminooxy acetic acid -C -C-N-O H ΗÓ **Dpr:** Diaminopropionic acid NH Heg (PEG): ŃН 5 Heptaethyleneglycolen aminocarboxylic acid o NH COOH 5 н NH .O Ó н 0 NH н NH__COOH õ HN 5 5 l ŇН н H N-Cc(RGDfE) ŏ റ HN \sim ÷0 HŃ ŇН HN-Ò 5 Ò. 5 N۲ н -N-0 õ =0 HN н NH 0: NH₂ но NH O≈ H₂N 20 NH ŇН HN

Route suitable for a variety of radiolabeled aldehydes and ketones

Tumor to Organ Ratios

PET Imaging of [¹⁸F]RGD-Mono-, Di- and Tetramers

ECAT Exact HR⁺, 90 min p.i.

Affinities of Multimeric RGD-Peptides with/without RAD-Sequences

ТUП

Thumshirn et al. Eur Chem. 2003

ECAT Exact HR⁺, 90 min p.i.

Imaging with PET and SPECT

Thorsten Poethko

Nuklearmedizinische Klinik und Poliklinik und Institut für Radiochemie Technische Universität München

General Aspect

Neutron number N = A-Z \longrightarrow

Production of commonly used PET-Nuclides via Compact Cyclotron

TUΠ

Nuclide	T _{1/2} (min)	Nuclear- Reaction	Energy (MeV)	Mode of decay [%]	Target product
¹¹ C	20.4	¹⁴ N(p,α)	13 → 3	β⁺ (99.8)	¹¹ CO ₂ ¹¹ CO
¹³ N	10.0	¹⁶ Ο(p,α)	16 → 7	β⁺ (100)	¹³ NO ₂ - ¹³ NO ₃ -
¹⁵ O	2.0	¹⁵ N(p,n)	10 → 0	β⁺ (99.9)	¹⁵ O ₂
¹¹ C	109.6	¹⁸ O(p,n)	16 → 3	β⁺ (97)	¹⁸ F _{aq} - ¹⁸ F ₂

Selection of Radionuclide

Half-life comparable with kinetics of physiological process ? (too short, too long)

Do the nuclear and physical properties fulfill the special demands ? (e.g. pure β^+ - Emitter)

Labeling chemistry compatible with targeting ? (e.g. metalated CNS-ligands)

Patient dose acceptable ? (CNS-ligands: C-11 or F-18)

Nuclide availability ? (Generator, cyclotron, energy range)

PET-Radionuclides

lsotope	Maximur pe Half- Positron positron life percentage energy [h] branching [MeV] %β ⁺ Εβ ⁺ _{max}		Maximum positron energy [MeV] Εβ ⁺ _{max}	Intrinsic spacial resolution loss [mm]	Comments	
¹⁸ F		1,8	96,9	0,63	0,7	
	⁵⁵ Co	17,5	76	1,50	1,6	Т _{½,D} = 2,6 у
⁶¹ Cu		3,4	61	1,22	1,5	
⁶⁴ Cu		12,7	18	0,65	0,7	
	⁶⁶ Ga	9,5	57	4,15	-	
	⁶⁸ Ga	1,14	89	1,90	2,4	G: ⁶⁸ Ge / 271d
⁷⁵ Br		1,6	71	1,72	2,2	T _{1/2,D} = 120 d
⁷⁶ Br		16,2	54	3,94	5,3	
	⁸⁶ Y	14,7	33	3,14	1,8	
^{110m} ln		1,15	62	2,20	3,0	G: ¹¹⁰ Sn / 4,1 h
	120g	1,35	56	4,59	5,4	
	¹²⁴	100,3	23	2,14	2,3	

Resolution Limitation due to Positron Energy

Production of F-18

Nuclear reaction	¹⁸ O(p,n) ¹⁸ F	¹⁶ O(³ He,n) ¹⁸ F	20 Ne(d, α) 18 F	¹⁸ O(p,n) ¹⁸ F
Target	H ₂ ¹⁸ O	H ₂ O	Ne (0.1-0.2% F ₂ , 18 bar)	¹⁸ O ₂ (20 bar) (2. + 0.1% F ₂)
bombarding particle [MeV]	16 → 0	36 ightarrow 0	11.2 → 0	10 → 0
Chemical form	[¹⁸ F]F _{aq}	[¹⁸ F]F _{aq} ⁻	[¹⁸ F]F ₂	[¹⁸ F]F ₂
Thick target yield [MBq µA⁻¹ h⁻¹)	2.200	250	350-450	~350
Specific activity [TBq mmol⁻¹]	40×10 ³	40×10 ³	0.04–0.4	0.04-2

- Mainly produced via ¹⁸O(p,n)¹⁸F-reaction
- Product: ¹⁸F_{aq}⁻ with high specific activity and up to 100% radiochemical yield, compared to [¹⁸F]F₂ with low specific activity and max. 50% radiochemical yield

Production Scheme: Radiopharmaceutical Production

Automatic production

Automatic Synthesis

¹¹C-Methionine Production

Generators for Positron Emission

Isotope	Half-life	Mode of decay	<i>Ε</i> _β + [keV]
⁶⁸ Ge	271 d	EC (100%)	
Ļ			
⁶⁸ Ga	68 min	β ⁺ (90%), EC (10%)	1900
⁶² Zn	9.2 h	β ⁺ (93%), EC (7%)	660
Ļ			
⁶² Cu	9.7 min	β⁺ (98%), EC(2%)	2930
⁸² Sr	25 d	EC (100%)	
Ļ			
⁸² Rb	1.3 min	β ⁺ (96%), EC (4%)	3350

Structure of "non-isotopic" Radiopharmaceuticals

Address, Target	Pharmacophor, biospecific binding	Spacer, Linker	Labeling, Label	
Intra-/Extracellular Receptors Transporter Enzyme Antigens RNA	Small org. Molecules Peptidomimetics Peptide Protein Antibody Complex (lons)	Metabolic stabile Metabolic labile Enzymatic cleavable Hydrolytic sensitive pH sensitive	Covalent Complex Statically distributed Defined bondage No-carrier-added Carrier-added	

TUΠ **Peptide, Protein and Macromolecule Labeling** with Radiometals SO_3 COOH COOH COOH O•N EDC sulfo-NHS \mathbf{O} pH 5.5 СООН COOF COOH СООН pH 7.5 Protein-NH₂ ,0 // *"*⁰ COOH COOH-O - N - ProteinO - N - ProteinΗ ⁶⁴Cu ⁶⁴CuCl₂ СООН СООН COOH COOH In, Ga, Cu ... Lu, Y, Bi, Ac ... Fe, Gd,

Radionuclide Production for SPECT SPECT = Single-Photon-Emission-Computer Tomography

All these nuclides are commercially produced and sold

as radionuclide,

generators

or readily-prepared radiopharmaceuticals

Most important SPECT-Isotope is Technetium (^{99m}Tc) !

SPECT - Isotopes

Radio	T _{1/2}	Mode of	Main-	Productions data		
nuclide		decay	γ-Lines	Nuclear reaction	Energy range [MeV]	Yield [MBq/µAh]
⁶⁷ Ga	3.26 d	EC (100)	93 (27%)	⁶⁸ Zn(p,2n)	26→18	185
⁹⁹ Mo ↓	2.75 d	b- (100)	181 (6%) 740 (12%)	²³⁵ U(n,f) ⁹⁸ Mo(n,g)	σ _{th} = 0.14b	
^{99m} Tc	6.0 h	IT (100)	141 (87%)			
¹¹¹ In	2.8 d	EC (100)	173 (91%) 247 (94%)	¹¹² Cd(p,2n)	25→18	166
123	13.2 h	EC (100)	159 (83%)	¹²³ Te(p,n)	14.5→10	137
				¹²⁴ Xe(p,x) ¹²³ Xe	29 → 23	414
				¹²⁷ l(p,5n) ¹²³ Xe	65→45	777
²⁰¹ TI	3.06 d	EC (100)	68-82 (RL)	²¹⁰ TI(p,3n) ²⁰¹ Pb	28 → 20	
			166 (10.2%)			

^{99m}Tc-Generator (1)

ТШП

(1) Simple Handling Insert vacuum flask and elute desired volume.

(2) Transport-Security-valve

Prevent an elution after production and during transport

(3) Shifted needle

Reduction of energy rich Mo-radiation

(4) Max. protection against radiation

Protection from all side. ⁹⁹Mo-column is covered at least with 52 mm Pb. Supplementary shielding with overall 98 mm Pb.

(5) High concentrated activity

Total ^{99m}Tc-activity is less than 5 mL volume.

(6) Ready for use

Sterile, closed system.

Characterization of the tumor biology by molecular imaging

2-[¹⁸F]Fluoro-2-Deoxy-Glucose-Synthesis ([¹⁸F]FDG)

[¹⁸**F**]**FDG:** Therapy control –gastric carcinoma-

[¹⁸F]FDG-PET versus [¹¹C]MET-PET -Brain Tumor-

O-(2-[¹⁸F]Fluoroethyl)-L-Tyrosin: [¹⁸F]FET (2)

FDG also accumulates in inflammation, amino acids and especially FET does not accumulate in inflammation.

Biochemical Model: Choline

ТЛП

Prostate carcinoma

3'-[¹⁸F]Fluoro-3'-Deoxy-Thymidine: [¹⁸F]FLT

ТUП

Metabolic Scheme for [11C]Thymidine and FLT

ТUП

Visualization of Cell Proliferation with ¹⁸F-thymidine (FLT) in Esophageal Cancer

[¹⁸F]FLT

thymidine

The Mechanism of Non-Invasive Detection of Tumor Hypoxia

Blood flow

ТШТ

Peptide Receptor Imaging: PRI

Targets for Radiolabeled Peptides in Human Tumor Tissue

- Somatostatin-R neuroendocrine tumors, small cell lung cancer, medullary thyroid carcinoma, lymphoma (NHL)
- Integrins melanoma, breast tumor, osteosarcoma, glioblastoma
- VIP-R adenocarcinomas, small cell lung cancer, neuroendocrine tumors, lymphoma
- CCK-B-R medullary thyroid carcinoma, small cell lung cancer, stromal ovarian cancer, astrocytoma
- Substance P-R medullary thyroid cancer, small cell lung cancer, breast tumors
- Bombesin/ GRP-R colon cancer, small cell lung cancer, glioblastoma
- Neurotensin-R pancreatic cancer, prostate cancer, small cell lung cancer

(Mice, AR42J, n=3-5, 60 min p.i.)

Schottelius, Wester et al. Clin Cancer Res. (2004)

307

1024

12.0

9.0

6.0 -

з.о.

0.0

Male patient, 50 yrs, carcinoid with multiple metastases

Carbohydrated RGD-Peptide : [¹⁸F]Galacto-RGD

Carbohydrated RGD-Peptides with Improved Pharmacokinetics

Comparison of the Pharmacokinetics in Selected Tissues

BALB/c mice, osteosarcoma model; comparable data obtained with M21melanoma bearing mice

Non-invasive Monitoring of $\alpha_v \beta_3$ Expression on the Tumor Vasculature

nude mouse bearing a *human* squamous cell carcinoma at the right shoulder

Determination of $\alpha_v \beta_3$ -Expression in vivo

ТЛП

sagittal section, 170 min p.i., circular tracer uptake,

max. SUV=10

PET/CT image fusion; uptake corresponds with the tumor-wall

Immunohistochemistry, MAb LM609, staining of blood vessels

axial section, 140 min p,i, uptake in the lymph node

PET/CT image fusion

Immunohistochemistry, focal MAB LM609, staining of tumor cells and blood vessels

Structure of the Extracellular Domain of $\alpha_{v}\beta_{3}$

J.-P. Xiong, et. al, Science 2001.

ТШ **Multimeric** [¹⁸F]c(RGDfE)-Peptides HN⁻ NH ŃH 0≓ n H₂N NH₂ н N H ŇΗ 0 HN :0 0= Ô ΝН [¹⁸F]FB-CHO: 4-[¹⁸F]Fluorobenzaldehyde AOA: Aminooxy acetic acid -C -C-N-O H ΗÓ **Dpr:** Diaminopropionic acid NH Heg (PEG): ŃН 5 Heptaethyleneglycolen aminocarboxylic acid o NH COOH 5 н NH .O Ó н 0 NH н NH__COOH õ HN 5 5 l ŇН н H N-Cc(RGDfE) ŏ റ HN \sim ÷0 HŃ ŇН HN-Ò 5 Ò. 5 N۲ н -N-0 õ =0 HN н NH 0: NH₂ но NH O≈ H₂N 20 NH ŇН HN

Route suitable for a variety of radiolabeled aldehydes and ketones

Tumor to Organ Ratios

PET Imaging of [¹⁸F]RGD-Mono-, Di- and Tetramers

ECAT Exact HR⁺, 90 min p.i.

Affinities of Multimeric RGD-Peptides with/without RAD-Sequences

ТUП

Thumshirn et al. Eur Chem. 2003

ECAT Exact HR⁺, 90 min p.i.

