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Definition 1 (ring morphism)

Let R and R’ be two rings. Then a mapping θ : R → R ′ is called a
ring morphism if

1. θ(a + b) = θ(a) + θ(b) for all a, b ∈ R

2. θ(ab) = θ(a)θ(b) for all a, b ∈ R

3. θ(1) = 1

From this definition and the ring axioms also follows:

I θ(0) = 0

I θ(−a) = −θ(a)
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Example 2 (Modular Homomorphism)

θm : Z [x1, . . . , xv ] → Zm[x1, . . . , xv ]
is defined for a fixed m ∈ Z by:

I θm(xi ) = xi for 1 ≤ i ≤ v

I θm(a) = rem(a,m) for all coefficients a ∈ Z

”replace all coefficients by their ”modulo m” representation”

for a(x , y) = 2xy + 7x − y2 + 8 ∈ Z [x , y ]:
θ5(a) = 2xy + 2x − y2 − 2 ∈ Z5[x , y ]
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Example 3 (Evaluation Homomorphism)

θxi−α : D[x1, . . . , xv ] → D[x1, . . . , xi−1, xi+1, . . . , xv ]
is defined for a particular indeterminate xi and a fixed α ∈ D by:
θxi−α(a(x1, . . . , xv )) = a(x1, . . . , xi−1, α, xi+1, . . . , xv )
”substitute α for xi”

for a(x , y) = 2xy + 7x + y2 + 8 ∈ Z [x , y ]:
θx−2(a) = 4y + 14 + y2 + 8 ∈ Z [y ]
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Characterization of morphisms

Ring morphisms can be uniquely be characterized by ideals.

Definition 4
Let R be a commutative ring. A nonempty subset I of R is called
ideal if

1. a− b ∈ R for all a, b ∈ I

2. ar ∈ I for all a ∈ I and for all r ∈ R.
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Example 5 (Examples for ideals)

I < m >⊂ Z = {m · r : r = 0,±1,±2, . . .}
I < 4 >= {0,±4,±8,±12, . . .}
I < p(x) >⊂ Z [x ] = {p(x) · a(x) : a(x) ∈ Z [x ]}
I < x − 2 >= {(x − 2) · a(x) : a(x) ∈ Z [x ]}
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Correspondence of ideals and morphisms

We note that:

I Let R and R’ be commutative rings. The kernel K of a
morphism θ : R → R ′ is an ideal in R.

I If θ1 : R → R ′ and θ2 : R → R ′′ have the kernel K, the two
homomorphic images are θ1(R) and θ2(R) are isomorphic.

I Consequently, morphism can be constructed and notated
using their ideal.

I Congruence Arithmetic can be done modulo I for any ideal I.

Lukas Bulwahn: Computing with polynomials 9/ 34
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Correspondence of ideals and morphisms

Example 6

I The morphism θ4 has the kernel/ideal < 4 >.

I The morphism θx−2 has the kernel < x − 2 >.

I Evaluation of p(x): p(c) = d is isomorph to
d ≡ p(x) mod (x − c).

I From an ”ideal” viewpoint, modular and evalution morphisms
are the same.
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Operations on ideals

I The ideal < a1, a2, . . . , an > is defined as
{a1r1 + · · ·+ anrn : ri ∈ R}
a1, . . . , an ∈ R is called basis.

I For ideal I = < a1, . . . , an > and J =< b1, . . . , bm >:
the sum of two ideals is < I , J >=< a1, . . . , an, b1, . . . , bm >
the product of two ideals is
I · J =< a1b1, . . . , a1bm, a2b1, . . . , a2bm, . . . , anb1, . . . , anbm >
The i-th power is recursively defined by:
I 1 = I and I i = I · I i−1 for i ≥ 2.
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Example 7

I < x , y > are all polynomials a1x + a2y .

I < x , y > · < x , y > are all polynomials a1x
2 + a2xy + a3y

2.

I < x , y >k are all polynomials with terms of total degree k.
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Inverting modular morphisms with Chinese Remainder
Algorithm

The Chinese Remainder problem is stated as follows:
Given moduli m0,m1, . . . ,mn ∈ Z and given corresponding
residues ui ∈ Zmi , 0 ≤ i ≤ n, find an integer u ∈ Z such that
u ≡ ui mod mi , 0 ≤ i ≤ n.

This can be uniquely solved if all moduli are pairwise prime and
a ≤ u ≤ a + m with m =

∏n
i=0 mi for any fixed integer a ∈ Z .
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The Chinese Remainder Algorithm: Garner’s Algorithm

The key to the algorithm:
Express the solution u ∈ Zm in mixed radix representation.

Definition 8 (mixed radix representation)

u = v0 + v1 ·m0 + v2 · (m0m1) + · · ·+ vn · (
∏n−1

i=0 mi )

where vk ∈ Zmk
for 0 ≤ k ≤ n.

Example 9

m0 = 3;m1 = 5;m = 3 · 5 = 15
5 = (−1) + 2 · 3
Any number from -7 to 7 can be represented in this form.
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From modulo equations to mixed radix form

Iteration over i = 0 · · · n:

I For i = 0: u = u0 mod m0

Choose v0 = u0.

I For i = k: v1, . . . , vk−1 are known.
Solve
v0 + v1(m0) + v2(m0m1) + · · ·+ vk(

∏k−1
i=0 mi ) ≡ uk mod mk

=⇒ vk ≡(
uk −

(
v0 + · · ·+ vk−1

(∏k−2
i=0 mi

))) (∏k−1
i=0 mi

)−1
mod mk

From mixed radix representation to standard representation by
evalution with Horner scheme.

Lukas Bulwahn: Computing with polynomials 16/ 34
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Inverting evaluation morphisms with Newton Interpolation

The polynomial interpolation problem is stated as follows:
Let D be a domain of polynomials over a coefficient field Zp. Given
moduli x − α0, x − α1, . . . , x − αn where αi ∈ Zp, 0 ≤ i ≤ n and
given corresponding residues ui ∈ D, 0 ≤ i ≤ n, find a polynomial
u(x) ∈ D[x ] such that u(x) ≡ ui mod x − αi , 0 ≤ i ≤ n.

α1, . . . , αn are also called interpolation points.

The polynomial interpolation problem can be uniquely solved with
Newton interpolation if deg(u(x)) ≤ n with n + 1 distinct
interpolation points.
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Inverting morphisms with Garner’s algorithm and Newton
interpolation

Problem: To invert a morphism for a polynomial with v invariants
and maximal degree d , we would need to solve O((d + 1)v−1)
image problems.

Instead of solving exponential many problems, we would like to
solve one problem in Zp[x ] and ”lift” it to Zp[x1, . . . , xv ].
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p-adic representation and approximation

Definition 10
A polynomial u(x) is in its polynomial p-adic representation when
it is in the form u(x) = u0(x) + u1(x)p + u2(x)p2 + · · ·+ un(x)pn.

Definition 11
Let a(x) ∈ Z [x ] be a given polynomial. A polynomial b(x) ∈ Z [x ]
is called an order n p-adic approximation to a(x) if
a(x) ≡ b(x) mod pn

The error in approximating a(x) by b(x) is a(x)− b(x) ∈ Z [x ].
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Example 12

u(x) = 27x2 + 11x + 7
in polynomial p-adic representation for p = 5:
u(x) = (2x2 + x + 2) + (2x + 1) · 5 + x2 · 52
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The Factorization Problem

We consider the following problem:
Given a polynomial a(x), we look for two polynomials u(x), w(x)
such that

a(x) = u(x) · w(x)

Reformulated, we are looking for a root of the function

F (u,w) = a(x)− u(x)w(x)

Assume, we found a solution u(0) and w (0) in Zp[x1].
We now invert a homomorphism θI ,p : Z [x1, . . . , xv ] → Zp[x1]
lifting two polynomials u and v as solution by an iterative method.
This iterative method is called the Hensel Construction.
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The Iteration Step of the Hensel Construction

I Assume, we already have a pair of approximations u(k) and
w (k).

I Solve F (u(k) + ∆u(k),w (k) + ∆w (k)) ≈ 0

I Leads to
δF
δu (u(k),w (k))∆u(k) + δF

δw (u(k),w (k))∆w (k) = −F (u(k),w (k))

I Get better approximations u(k+1) = u(k) + ∆u(k) and
w (k+1) = w (k) + ∆w (k)
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Univariate Hensel Lifting

Problem:
Inverting modular homomorphism θp : Z [x ] → Zp[x ]

Given polynomials a(x) ∈ Z [x ] and u0(x),w0(x) ∈ Zp[x ] such that

a(x) ≡ u0(x)w0(x) mod p

calculate u(x),w(x) ∈ Z [x ] such that

F (u, v) = a(x)− uw = 0
and u(x) ≡ u0(x) mod p
and w(x) ≡ w0(x) mod p
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The Iteration Step of the Hensel lifting

I We have order k approximations to u(x) and w(x), called u(k)

and w (k).

I Solve w0(x)uk(x) + u0(x)wk(x) = θp

(
a(x)−u(k)w (k)

pk

)
with

Extended Euclidean Algorithm

I Define u(k+1) = u(k) + uk(x)pk and w (k+1) = w (k) + wk(x)pk

and repeat iteration.
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Uniqueness of the Hensel Construction

If a(x) ∈ Z [x ] is monic and u(1) and w (1) are monic and relative
prime, then there are uniquely determined monic polynomials
factors u(k) and w (k) for any k ≥ 1.

For a non-monic polynomial a(x), some pre- and postprocessing
has to be done.
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Example for univariate Hensel lifting

I Factorizing a(x) = x3 + 10x2 − 432x + 5040 with p = 5

I Applying θ5(a(x)) = x3 − 2x = x(x2 − 2) = u(1) · w (1)

I First iteration of Hensel construction
I Calculate θ5(

a(x)−u(1)w(1)
5 ) = 2x2 − x − 2

I Solve (x2 − 2)u1(x) + xw1(x) = 2x2 − x − 2
I u1(x) = 1; w1(x) = x − 1
I u(2) = u(1) + u1(x) · p = x + 5

w (2) = w (1) + w1(x) · p = x2 + 5− 7

I Next iterations:

Iter uk wk u(k)(x) w (k)(x) e(x)

0 - - x x2 − 2 10x2 − 430x + 5040
1 1 x − 1 x + 5 x2 + 5x − 7 −450x + 5075
2 1 −x + 2 x + 30 x2 − 20x + 43 125x + 3750
3 0 1 x + 30 x2 − 20x + 168 0
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Multivariate Hensel lifting
Problem:
Inverting multivariate evaluation homomorphism
θI : Z [x1, . . . , xv ] → Z [x1]

Given polynomials a(x) ∈ Z [x1, . . . , xv ] and
u(1)(x),w (1)(x) ∈ Zpt [x1] such that

a(x) ≡ u0(x)w0(x) mod I

calculate u(x1, . . . , xv ),w(x1, . . . , xv ) ∈ Zpt [x1, . . . , xv ] such that

a(x)− uw ≡ 0 mod pt

and u(x1, . . . , xv ) ≡ u(1)(x1) mod < I , pt >
and w(x1, . . . , xv ) ≡ w (1)(x1) mod < I , pt >

The ideal I has the form < x2 − α2, . . . , xv − αv >.

Lukas Bulwahn: Computing with polynomials 29/ 34



General background Chinese Remainder Algorithm and Newton Interpolation The Hensel Lifting Multivariate Hensel lifting

Multivariate Hensel lifting
Problem:
Inverting multivariate evaluation homomorphism
θI : Z [x1, . . . , xv ] → Z [x1]

Given polynomials a(x) ∈ Z [x1, . . . , xv ] and
u(1)(x),w (1)(x) ∈ Zpt [x1] such that

a(x) ≡ u0(x)w0(x) mod I

calculate u(x1, . . . , xv ),w(x1, . . . , xv ) ∈ Zpt [x1, . . . , xv ] such that

a(x)− uw ≡ 0 mod pt

and u(x1, . . . , xv ) ≡ u(1)(x1) mod < I , pt >
and w(x1, . . . , xv ) ≡ w (1)(x1) mod < I , pt >

The ideal I has the form < x2 − α2, . . . , xv − αv >.

Lukas Bulwahn: Computing with polynomials 29/ 34



General background Chinese Remainder Algorithm and Newton Interpolation The Hensel Lifting Multivariate Hensel lifting

Ideal-adic representation
Analogously to p-adic representation, we can define a ideal-adic
representation for an ideal I.

Definition 13
Let I =< x2 − α2, x3 − α3, . . . , xv − αv > be an given ideal. A
polynomial u(x1, . . . , xv ) is in ideal-adic representation when it is in
the form

u(1) + ∆u(1) + ∆u(2) + . . . + ∆u(d)

where u(1) ∈ Z [x ]/I
and ∆u(k) ∈ I k for 1 ≤ k ≤ d

and d is maximal total degree of u with respect to I.

We define u(k+1) = u(1) + ∆u(1) + . . . + ∆u(k).
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More specific view at the Ideal-adic Representation

The term u(1) is u(x1, α2, α3, . . . , αv ).

A term ∆u(k) ∈ I k is a sum of all terms with total degree of k with
respect to I, so it has the form

v∑
i1=2

v∑
i2=i1

· · ·
v∑

ik=ik−1︸ ︷︷ ︸
k sums

u
(k)
i (x1)︸ ︷︷ ︸

coefficient

(xi1 − αi1) · (xi2 − αi2) · · · · · (xik − αik )︸ ︷︷ ︸
k factors

where 2 ≤ i1, . . . , ik ≤ v
and i is a vector with k entries of indices = (i1, i2, . . . , ik)
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Ideal-adic approximation

Definition 14
Let I be an ideal in Z [x1, . . . , xv ]. For a given polynomial
a ∈ Z [x1, . . . , xv ], a polynomial b ∈ Z [x1, . . . , xv ] is an order k
ideal-adic approximation to a with respect to I if

a ≡ b mod I k

The error is approximating a by b is a− b ∈ I k .

Example 15

The polynomial u(k) is an order k ideal-adic approximation to the
polynomial u.
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Iteration step for multivariate Hensel construction

From an k order ideal-adic approximation u(k) and w (k), we
calculate an k+1 order ideal-adic u(k+1) and w (k+1)

approximation.

I The update formula w (k)∆u(k) + u(k)∆w (k) =
(a(x1, . . . , xv )− u(k)w (k)) mod < I k + 1, pt >

I Represent a(x1, . . . , xv )− u(k)w (k) =∑v
i1=2

∑v
i2=i1

· · ·
∑v

ik=ik−1
c

(k)
i (x1)(xi1 − αi1) · · · · · (xik − αik )

I Separate and simplify equation to
w (1)ui (x1) + u(1)wi (x1) = ci (x1) mod pt

I Solve with Extended Euclidean Algorithm
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Outlook

We did not discuss

I Leading Coefficient Problem in the univariate Hensel
Construction

I Bad performance because of the Bad-Zero Problem

I Using sparseness of solution to improve Hensel Construction

I Quadratic Iteration, also known as Zassenhaus Construction
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