
GCD and Factorisation of multivariate polynomials

R Freund
(freund@mytum.de)

JASS 2007,
Course ”The Power of Polynomials and How To Use Them“

28 March 2007

Abstract

Some widely known techniques can be used to factorise univariate polynomials over
the domain of integers. However, finding algorithms which factorise univariate and
multivariate polynomials over Z and other domains is a little trickier. Several factorisa-
tion algorithms first need GCDs of the polynomials. Computing GCDs of polynomials
is also necessary for adding rational functions. Both problems are aided by algebraical
concepts which allow us break a hard problem (a multivariate polynomial over the in-
tegers) up into several much easier problems (univariate polynomials over finite fields).
This is done by applying the Chinese Remainder Algorithm and Hensel Liftings.

1

1 Introduction

First, let us introduce some basic definitions and arithmetic concepts. For a more verbose
explanation see the first chapters of [1].

1.1 Euclidean Algorithm

Definition 1 An Euclidean domain is an integral domain D with a valuation v : D\{0} → N

with the following properties:

1. For all a, b ∈ D\{0}, v(ab) ≥ v(a)

2. For all a, b ∈ D with b 6= 0 there exist elements q, r ∈ D such that a = bq + r where either
r = 0 or v(r) < v(b)

We let quo(a, b) := q and rem(a, b) := r.

Example:

• Z is a Euclidean domain with the valuation v(a) = |a|

• Any field F is a Euclidean domain with the trivial valuation v(a) = 1 ∀ a 6= 0

• If F is a field then F[x] is a Euclidean domain with the valuation v(a(x)) = deg(a(x))

We have that
Fields ⊂ Euclidean domains ⊂ UFDs ⊂ integral domains.

In Euclidean domains, we can use the Euclidean algorithm to determine GCDs.

Algorithm: Euclidean Algorithm
Input: a, b ∈ D where D is an Euclidean domain
Output: GCD(a, b)

c← n(a)
d← n(b)
while d 6= 0 do {

r ← rem(c, d)
c← d
d← r

g← n(c)
return g

1.2 Multivariate polynomials

Definition 2 Let R be a ring. R[x1, . . . , xk] = R[x] is the set of all multivariate polynomials
over R. We write a(x) ∈ R[x] as

a(x) = ∑
e∈Nk

aexe

e = (e1, e2, . . . , ek) is the degree vector of a term x
e1
1 xe2

2 · · · x
ek
k .

To work with multivariate polynomials, we need some basic arithmetic concepts such
as an ordering.

2

Definition 3 Let d, e ∈ Nk be two exponent vectors. Let j < k be the smallest integer such that
dj 6= ej. Define the lexicographical ordering as follows:
d < e if dj < ej

d > e if dj > ej

The coefficient of the first term of a lexicographically ordered polynomial is called leading coeffi-
cient and denoted by lcoeff(a(x)).

Example: The following polynomial ∈ Z[x, y, z] is arranged in lexicographically de-
creasing order:
A(x) = 2x3y3z7 + 3x3y2z8 − 5x2y7 + z10

Definition 4 • The degree vector δ(A(x)) of a multivariate polynomial is the exponent vec-
tor of its leading term.

• The total degree of a term with e = (e1, e2, . . . , ek) is ∑
k
i=1 ei.

• The total degree of a multivariate polynomial is the maximum of all total degrees of its
terms.

In principle, the Euclidean Algorithm can be modified to work in polynomial rings.
However, problematic is the growth of remainders. Consider the following example:

Example: Let A(x), B(x) ∈ Z[x] be defined as

A(x) = x8 + x6 − 3x4 − 3x3 + x2 + 2x− 5

B(x) = 3x6 + 5x4 − 4x2 − 9x + 21

Running the Euclidean Algorithm in Q yields the following remainder sequence:

R2(x) = −
5

9
x4 +

1

9
x2 −

1

3

R3(x) = −
117

25
x2 − 9x +

411

25

R4(x) =
233150

19773
x−

102500

6591

R5(x) = −
1288744821

543589225

Since R5(x) is a unit in Q, A and B are relatively prime.

2 GCD

We now explain different algorithms for computing the GCD of multivariate polynomi-
als.

2.1 MGCD

The first algorithm we will look at is called Modular GCD Algorithm (MGCD). It uses
ring homomorphisms to map polynomials from a domain D to a simpler, finite domain
D′. Since information is ”lost” when we map to finite fields, we need to do this several
times, and use fields with different characteristics. It then solves for the GCD in the new
domain - for example, by the Euclidean Algorithm. Since it can be shown that deg(GCD
in D) ≤ deg(GCD in D′) we have an upper bound for the degree of the GCD in D.

3

Multivariate polynomials are handled recursively by viewing R[x1, . . . , xk] as R[x1, . . . , xk−1][xk].
This is done by evaluating the polynomial at random points using evaluation homomor-
phism φw−b : R[w] → R. The GCDs are then mapped to the original domain with the
Chinese Remainder Algorithm.

Example: Let A(x), B(x) ∈ Z[x] be given as

A(x) = x4 + 25x3 + 145x2 − 171x− 360

B(x) = x5 + 14x4 + 15x3 − x2 − 14x− 15

We now perform several reductions (modulo 5, 7 and 11) and calculate GCDs in Z5, Z7, Z11,
respectively.
In Z5 we reduct A and B to

A5(x) = x4 − x

B5(x) = x5 − x4 − x2 + x

Calculating the GCD in Z5 yields x4 − x.
In Z7 we reduct A and B to

A7(x) = x4 − 3x3 − 2x2 − 3x− 3

B7(x) = x5 + x3 − x2 − 1

Calculating the GCD in Z7 yields x2 + 1.
Since the result in Z7 gives a much better upper bound for the GCD’s degree, we discard

the result in Z5. Such homomorphisms are called unlucky homomorphism.
In Z11 we reduct A and B to

A11(x) = x4 + 3x3 + 2x2 + 5x + 3

B11(x) = x5 + 3x4 + 4x3 − x2 − 3x− 4

Calculating the GCD in Z11 yields x2 + 3x + 4.
Since two reductions have the same degree, we assume both of them to be good. We thus

have
GCD(A(x), B(x)) = x2 + ax + b

Using the two GCDs we have

a ≡ 0 mod 7, a ≡ 3 mod 11

b ≡ 1 mod 7, b ≡ 4 mod 11

The Chinese Remainder Algorithm can then compute the unique values a = 14, b = 15.
Checking the candidate GCD by division shows that x2 + 14x + 15 is indeed the desired
GCD.

Algorithm: Modular GCD algorithm MGCD
Input: A, B ∈ Z[x1, . . . , xk]
Output: GCD of A, B

// Make A and B monic, compute coefficient bound
a← icont(A), b← icont(B), A← A/a, B← B/b;
c← igcd(a, b), g← igcd(lcoe f f (A), lcoe f f (B))

4

(q, H)← (0, 0), n← min(degk(A), degk(B))
limit← 2n |g|min(|A|∞ , |B|∞)
// Choose homomorphisms

while true do { p← New(LargePrime)
while p | g do p← New(LargePrime)
Ap ← A mod p; Bp ← B mod p
gp ← g mod p; Cp ← PGCD(Ap, Bp, p); m← degk(Cp);

// Normalise so that gp = lcoe f f (Cp)

Cp ← gplcoe f f (Cp)−1Cp

// Test for unlucky homomorphisms
if m < n then {

(q, H)← (p, Cp); n← m }
elseif m = n then {

// Test for completion, update coefficients of GCD

// candidate H via integer CRA
for all coefficients hi in H do {

hi ← IntegerCRA([q, p], [hi, (cp)i])
q← qp }

if q > limit then {
// Remove integer content of result, division check

C← pp(H)
if C | A and C | B then

return c · C }
elseif m = 0 then

return c
end

Luckily, it can be shown that unlucky homomorphisms are rare, and do therefore not
impact the algorithm significantly.
Problematic for multivariate polynomials, however, is the fact that the number of do-
mains which have to be used is exponential in the number of variables. This is very
ineffective when the polynomials have a sparse rather than a dense structure. Whilst
MGCD might therefore work well for univariate polynomials, for multivariate polyno-
mials we need to look at other algorithms.

2.2 SparseMod

A probabilistic algorithm better suited for multivariate polynomials was developed by
Zippel in 1979 in his PhD thesis ([2]). The algorithm is based on the observation, that
evaluating a polynomial at a random point will almost never yield zero. It determines
the GCD using probabilistic techniques, and by constructing alternating sequences of
dense and sparse interpolations. A dense interpolation assumes that all coefficients of the
polynomial of degree n are unknown. It therefore requires n + 1 evaluation points to
determine the polynomial. We assume that the coefficients which are zero in one dense
interpolation are probably zero in all cases.
In contrast, a sparse interpolation assumes only t unknown coefficients where t << n. It
can be computed with t + 1 evaluation points.
We will illustrate this technique with an example from [3]

5

Example: Let G, A, B ∈ Z[x, y] be defined as follows:

G(x, y) = x2 + 3y3x + 35

A(x, y) = (y + 1)G = (y + 1)x2 + (3y4 + 3y3)x + 35y + 35

B(x, y) = (x + 1)G = x3 + (3y3 + 1)x2 + (3y3 + 35)x + 35

We work in Z11 and compute the first GCD image using dense interpolation:

1. Compute degree bound on y: dy = deg(GCD(A(1, y), B(1, y)) mod 11) = 3

2. Evaluate at four random points (this is the dense interpolation) for y and compute
univariate GCD images in Z11 using Euclidean algorithm:

g1 = GCD(A(x, 2), B(x, 2)) mod 11 = x2 + 2x + 2

g2 = GCD(A(x, 4), B(x, 4)) mod 11 = x2 + 5x + 2

g3 = GCD(A(x, 5), B(x, 5)) mod 11 = x2 + x + 2

g4 = GCD(A(x, 6), B(x, 6)) mod 11 = x2 + 10x + 2

3. Interpolate in y to construct the first bivariate image modulo 11:

G1 = x2 + 3y3x + 2

Now we work in Z13 to compute a second GCD using sparse interpolation:

4. Assume the form of the GCD and substitute variables:

H = x2 + αy3x + β

5. Evaluate at y = 8 (sparse interpolation):

H(x, 9) mod 13 = x2 + 5αx + β

GCD(A(x, 8), B(x, 8)) mod 13 = x2 + 2x + 9

6. Equate the coefficients and solve in Z13

α = 3, β = 9

7. Substitute this back in H to get second bivariate image:

G2 = x2 + 3y3x + 9

8. Finally, apply CRA to G1, G2 to reconstruct coefficients in Z:

x2 + 3y3x + 35

This is just an example illustrating how the algorithm works. For the complete algo-
rithm and detailed discussion see chapter 7 of [1] and [2].

6

2.3 EZ-GCD

Another GCD algorithm better suited for multivariate polynomials is the Extended Zassen-
haus Algorithm (EZ-GCD). It was developed by Moses and Yun in 1973 ([4]) and named
after Zassenhaus to honour his work in number theory. Again, multivariate polynomi-
als are reduced to a univariate representation, the GCD is then determined in a simpler
domain. Hensel’s Lemma is used repeatedly to lift the results up to the multivariate
domain. As with the MGCD, relatively prime polynomials are discovered quickly.
Algorithm: Extended Zassenhaus GCD algorithm EZ-GCD
Input: A, B ∈ Z[x, y1, . . . , yk]
Output: GCD(A, B)

1. Viewing A, B as polynomials with coefficients from Z[y1, . . . , yk] compute content,
primitive part, lcoeff

2. Choose valid evaluation prime (p so that lcoe f f 6= 0 mod p)

3. Choose an evaluation point b = (b1, . . . , bk), 0 ≤ bi < p

4. Compute A(b) mod p and B(b) mod p and their GCD g1. If deg(g1) = 0 then
GCD(A, B) = GCD(cont(A), cont(B)).

5. To check the answer, we choose second prime and evaluation point and compute
second GCD g2. If their degrees are not equal, throw the result with bigger degree
away. Repeat until we have two GCD candidates with equal degrees in Zp[x]

6. Construct candidates for cofactors

7. Use Hensel liftings to lift factorisations in Zp[x] up to Z[x, y1, . . . , yk]

8. Check if result is indeed a GCD in Z[x, y1, . . . , yk]

Numerous improvements of the EZ-GCD Algorithm have been published, for some
details see [1] and [5].

3 Factorisation

3.1 Introduction

Multivariate factorisation problems over Z can also be reduced to univariate problems
modulo a prime. At first we look at an easy algorithm which calculates square-free fac-
tors of a polynomial. This algorithm can be applied by other factorisation algorithms,
and the square-free decomposition used to find the ”proper” factorisation.

Definition 5 A primitive polynomial a(x) ∈ R[x] is called square-free if it has no repeated
factors.

Definition 6 The square-free factorisation of a(x) is a(x) = ∏
k
i=1 ai(x)i, where each ai(x) is

square-free, and GCD(ai(x), aj(x)) = 1 for i 6= j.

Theorem 1 Let a(x) ∈ R[x], R UFD with char(R) = 0.
Then a(x) has repeated factors iff GCD(a(x), a′(x)) 6= 1.

This result can be used to determine the square-free factorisation.

Let a(x) = ∏
k
i=1 ai(x)i be the square-free factorisation of a. Taking the derivative, we

have

a′(x) =
k

∑
i=1

a1(x) · · · ai−1(x) · i · ai(x)(i−1)a′i(x)ai+1(x)i+1 · · · ak(x)k

7

Let

c(x) := GCD(a, a′) =
k

∏
i=2

ai(x)i−1

and
w(x) := a(x)/c(x) = a1(x)a2(x) · · · ak(x)

Then w(x) is the product of the square-free factors without their multiplicities. We
now calculate

y(x) := GCD(c(x), w(x))

Note that a1(x) = w(x)/y(x) gives us the first factor.
We can now use these equations recursively to compute all square-free factors. This al-
gorithm is called SquareFree.
It can be modified to work with polynomials over GF(q).
A little better, however, is the algorithm Yun’s Square-Free Factorisation. It calculates one
additional differentiation, but manages to avoid the repeated GCD calculation of Square-
Free.
Berlekamp’s Algorithm factorises univariate polynomials over the Galois Field GF(q).
Multivariate factorisation can, similar to GCDs, be accomplished by factorising univari-
ate polynomials over a finite field and Hensel liftings. A discussion of this can be found
in [1], chapter 8. A paper which explores multivariate factorisation in greater detail is
[6].

References

[1] K Geddes, S Czapor, G Labahn: Algorithms for Computer Algebra, 1992

[2] R Zippel: Probabilistic Algorithms for Sparse Polynomials, 1979

[3] J de Kleine, M Monagan, A Wittkopf: The Non-Monic Case in the Sparse Modular
GCD Algorithm, 2005

[4] J Moses, D Yun: The EZ GCD Algorithm, 1973

[5] P Wang: The EEZ-GCD Algorithm, 1980

[6] D Musser: Multivariate Polynomial Factorization, 1975

[7] E Berlekamp: Factoring Polynomials Over Finite Fields, 1967

8

	Introduction
	Euclidean Algorithm
	Multivariate polynomials

	GCD
	MGCD
	SparseMod
	EZ-GCD

	Factorisation
	Introduction

