Course "The Power of Polynomials and How To Use Them ", JASS 2007

GCD and factorization of multivariate polynomials

Rosa Freund
Computer Science Department TU München

March 23, 2007

Definition 1

Let R be a ring. $R\left[x_{1}, \ldots, x_{k}\right]=R[\mathbf{x}]$ is the set of all multivariate polynomials over R. We write $a(x) \in R[\mathbf{x}]$ as

$$
a(x)=\sum_{e \in \mathbb{N}^{k}} a_{e} \mathbf{x}^{e}
$$

To work with multivariate polynomials, we need some basic arithmetic concepts such as an ordering.

Definition 2

Lexicographical ordering: Let $d, e \in \mathbb{N}^{k}$ be two exponent vectors. Let $j<k$ be the smallest integer such that $d_{j} \neq e_{j}$. Define an ordering as follows:
$d<e$ if $d_{j}<e_{j}$
$d>e$ if $d_{j}>e_{j}$
The coefficient of the first term of a lexicographically ordered polynomial is called leading coefficient and denoted by Icoeff $(a(x))$.

Example 3

The following polynomial $\in \mathbb{Z}[x, y, z]$ is arranged in
lexicographically decreasing order:
$A(x)=2 x^{3} y^{3} z^{7}+3 x^{3} y^{2} z^{8}-5 x^{2} y^{7}+z^{3}$

Definition 2

Lexicographical ordering: Let $d, e \in \mathbb{N}^{k}$ be two exponent vectors. Let $j<k$ be the smallest integer such that $d_{j} \neq e_{j}$. Define an ordering as follows:
$d<e$ if $d_{j}<e_{j}$
$d>e$ if $d_{j}>e_{j}$
The coefficient of the first term of a lexicographically ordered polynomial is called leading coefficient and denoted by Icoeff $(a(x))$.

Example 3

The following polynomial $\in \mathbb{Z}[x, y, z]$ is arranged in
lexicographically decreasing order:
$A(x)=2 x^{3} y^{3} z^{7}+3 x^{3} y^{2} z^{8}-5 x^{2} y^{7}+z^{3}$

Definition 4

The degree vector $\delta(A(x))$ of a multivariate polynomial is the exponent vector of its leading term. The total degree of a multivariate polynomial is the maximum degree of any of its summands. The degree of a summand is the sum of all exponents of its terms.

Problem of Euclidean Algorithm with polynomials: Growth of Remainders, even when adjusted to work only in rings.
Consider the following example:

Example 5

Let $A(x), B(x) \in \mathbb{Z}[x]$ be defined as

$$
\begin{gathered}
A(x)=x^{8}+x^{6}-3 x^{4}-3 x^{3}+x^{2}+2 x-5 \\
B(x)=3 x^{6}+5 x^{4}-4 x^{2}-9 x+21
\end{gathered}
$$

Running the Euclidean algorithm in \mathbb{Q} yields the following remainder sequence:

$$
\begin{aligned}
& R_{2}(x)=-\frac{5}{9} x^{4}+\frac{1}{9} x^{2}-\frac{1}{3} \\
& R_{3}(x)=-\frac{117}{25} x^{2}-9 x+\frac{411}{25} \\
& R_{4}(x)=\frac{233150}{19773} x-\frac{102500}{6591} \\
& R_{5}(x)=-\frac{1288744821}{543589225}
\end{aligned}
$$

Since $R_{5}(x)$ is a unit in \mathbb{Q}, A and B are relatively prime.

Algorithm MGCD works as follows:

- Use ring homomorphisms to map polynomials from D to simpler UFDs D^{\prime}
- Solve for GCD in new UFD (e.g. by Euclidean Algorithm)
- It can be shown that $\operatorname{deg}(G C D$ in $D) \leq \operatorname{deg}\left(G C D\right.$ in $\left.D^{\prime}\right)$. We thus have an upper bound for the degree of the GCD in D.
- Information loss is compensated by using several different homomorphisms
- Multivariate polynomials are handled recursively by viewing $R\left[x_{1}, \ldots, x_{k}\right]$ as $R\left[x_{1}, \ldots, x_{k-1}\right]\left[x_{k}\right]$

Algorithm MGCD works as follows:

- Use ring homomorphisms to map polynomials from D to simpler UFDs D^{\prime}
- Solve for GCD in new UFD (e.g. by Euclidean Algorithm)
- It can be shown that $\operatorname{deg}(G C D$ in $D) \leq \operatorname{deg}\left(G C D\right.$ in $\left.D^{\prime}\right)$. We thus have an upper bound for the degree of the GCD in D.
- Information loss is compensated by using several different homomorphisms
- Multivariate polynomials are handled recursively by viewing $R\left[x_{1}, \ldots, x_{k}\right]$ as $R\left[x_{1}, \ldots, x_{k-1}\right]\left[x_{k}\right]$

Algorithm MGCD works as follows:

- Use ring homomorphisms to map polynomials from D to simpler UFDs D^{\prime}
- Solve for GCD in new UFD (e.g. by Euclidean Algorithm)
- It can be shown that $\operatorname{deg}(G C D$ in $D) \leq \operatorname{deg}\left(G C D\right.$ in $\left.D^{\prime}\right)$. We thus have an upper bound for the degree of the GCD in D.
- Information loss is compensated by using several different homomorphisms
- Multivariate polynomials are handled recursively by viewing $R\left[x_{1}, \ldots, x_{k}\right]$ as $R\left[x_{1}, \ldots, x_{k-1}\right]\left[x_{k}\right]$

Algorithm MGCD works as follows:

- Use ring homomorphisms to map polynomials from D to simpler UFDs D^{\prime}
- Solve for GCD in new UFD (e.g. by Euclidean Algorithm)
- It can be shown that $\operatorname{deg}(G C D$ in $D) \leq \operatorname{deg}\left(G C D\right.$ in $\left.D^{\prime}\right)$. We thus have an upper bound for the degree of the GCD in D.
- Information loss is compensated by using several different homomorphisms
- Multivariate polynomials are handled recursively by viewing $R\left[x_{1}, \ldots, x_{k}\right]$ as $R\left[x_{1}, \ldots, x_{k-1}\right]\left[x_{k}\right]$

Algorithm MGCD works as follows:

- Use ring homomorphisms to map polynomials from D to simpler UFDs D^{\prime}
- Solve for GCD in new UFD (e.g. by Euclidean Algorithm)
- It can be shown that $\operatorname{deg}(G C D$ in $D) \leq \operatorname{deg}\left(G C D\right.$ in $\left.D^{\prime}\right)$. We thus have an upper bound for the degree of the GCD in D.
- Information loss is compensated by using several different homomorphisms
- Multivariate polynomials are handled recursively by viewing $R\left[x_{1}, \ldots, x_{k}\right]$ as $R\left[x_{1}, \ldots, x_{k-1}\right]\left[x_{k}\right]$

Modular GCD algorithm MGCD

Input: $A, B \in \mathbb{Z}\left[x_{1}, \ldots, x_{k}\right]$

Example 6

Consider the following polynomials $\in \mathbb{Z}[x, y, z]$: $A(x, y, z)=9 x^{5}+2 x^{4} y z-189 x^{3} y^{2} z+117 x^{3} y z^{2}+3 x^{3}-$
$42 x^{2} y^{4} z^{2}+26 x^{2} y^{2} z^{3}+18 x^{2}-63 x y^{3} z+39 x y z^{2}+4 x y z+6$
$B(x, y, z)=$
$6 x^{6}-126 x^{4} y^{3} z+78 x^{4} y z^{2}+x^{4} y+x^{4} z+13 x^{3}-21 x^{2} y^{4} z-$
$21 x^{2} y^{3} z^{2}+13 x^{2} y^{2} z^{2}+13 x^{2} y z^{3}-21 x y^{3} z+13 x y z^{2}+2 x y+2 x z+2$
Use 3 moduli in which to work: 11,13 and 17 .

In \mathbb{Z}_{11} we now work with the polynomials
$A_{11}(x, y, z)=-2 x^{5}+2 x^{4} y z-2 x^{3} y^{2} z-4 x^{3} y z^{2}+3 x^{3}+$
$2 x^{2} y^{4} z^{2}+4 x^{2} y^{2} z^{3}-4 x^{2}+3 x y^{3} z-5 x y z^{2}+4 x y z-5$ and $B_{11}(x, y, z)=-5 x^{6}-5 x^{4} y^{3} z+x^{4} y z^{2}+x^{4} y+x^{4} z+2 x^{3}+x^{2} y^{4} z+$ $x^{2} y^{3} z^{2}+2 x^{2} y^{2} z^{2}+2 x^{2} y z^{3}+x y^{3} z+2 x y z^{2}+2 x y+2 x z+2$
Now evaluate polynomials at four arbitrary points and compute GCD recursively.

Problems with MGCD:

- Need to throw away "unlucky homomorphisms"
- Number of domains which have to be used is exponential in the number of variables of the polynomials.
- Ineffective, when the polynomials have a "sparse" rather than a "dense" structure
- Hence: Especially useless for multivariate polynomials!

Problems with MGCD:

- Need to throw away "unlucky homomorphisms"
- Number of domains which have to be used is exponential in the number of variables of the polynomials.
- Ineffective, when the polynomials have a "sparse" rather than a "dense" structure
- Hence: Especially useless for multivariate polynomials!

Problems with MGCD:

- Need to throw away "unlucky homomorphisms"
- Number of domains which have to be used is exponential in the number of variables of the polynomials.
- Ineffective, when the polynomials have a "sparse" rather than a "dense" structure
- Hence: Especially useless for multivariate polynomials!

Problems with MGCD:

- Need to throw away "unlucky homomorphisms"
- Number of domains which have to be used is exponential in the number of variables of the polynomials.
- Ineffective, when the polynomials have a "sparse" rather than a "dense" structure
- Hence: Especially useless for multivariate polynomials!

Algorithm SparseMod (Zippel, 1979) works as follows:

- Constructs alternating sequence of dense and sparse interpolations

Algorithm EZ-GCD (Moses, Yun 1973) works as follows:

- Uses Hensel's lemma to reduce polynomials to a univariate representation, determine GCD in simpler domain
- Requires just one homomorphism for each variable
- As with MGCD, relatively prime polynomials are discovered quickly

Algorithm EZ-GCD (Moses, Yun 1973) works as follows:

- Uses Hensel's lemma to reduce polynomials to a univariate representation, determine GCD in simpler domain
- Requires just one homomorphism for each variable
- As with MGCD, relatively prime polynomials are discovered quickly

Algorithm EZ-GCD (Moses, Yun 1973) works as follows:

- Uses Hensel's lemma to reduce polynomials to a univariate representation, determine GCD in simpler domain
- Requires just one homomorphism for each variable
- As with MGCD, relatively prime polynomials are discovered quickly

Extended Zassenhaus GCD algorithm EZ-GCD

 Input: $A, B \in \mathbb{Z}[\mathbf{x}]$Multivariate factoring problems over \mathbb{Z} can be reduced to univariate factoring problems modulo a prime

Definition 7
$a(x) \in R[x]$ is called square-free if it has no repeated factors.
Definition 8
The square-free factorization of $a(x)$ is $a(x)=\prod_{i=1}^{k} a_{i}(x)^{i}$, where each $a_{i}(x)$ is square-free, and $\operatorname{GCD}\left(a_{i}(x), a_{j}(x)\right)=1$ for $i \neq j$.

Multivariate factoring problems over \mathbb{Z} can be reduced to univariate factoring problems modulo a prime

Definition 7
$a(x) \in R[x]$ is called square-free if it has no repeated factors.
Definition 8
The square-free factorization of $a(x)$ is $a(x)=\prod_{i=1}^{k} a_{i}(x)^{i}$, where each $a_{i}(x)$ is square-free, and $\operatorname{GCD}\left(a_{i}(x), a_{j}(x)\right)=1$ for $i \neq j$.

Algorithm SquareFree determines the square-free factorization of a polynomial $a(x) \in R[x]$, R UFD with $\operatorname{char}(R)=0$ Improvement by Yun (19??): One more differentiation than SquareFree, but much simpler GCD calculations.
Similar algorithm determines square-free factorization over finite fields GF(q)

Algorithm by Berlekamp (1967) works as follows: Factors polynomials in $G F(q)[x]$ where $q=p^{m}$

Berlekamp's Factoring Algorithm

 Input: $A, B \in \mathbb{Z}[\mathbf{x}]$Multivariate Factoring: Accomplished by factoring of univariate polynomials over a finite field and Hensel liftings.

