Cryptography and Elliptic curves

Inna Lukyanenko

March 26, 2007

Outline

(1) Introduction to Cryptography
(2) Digital Signatures
(3) Finite fields
(4) Elliptic curves
(5) ECDSA

Terminology

Cryptography (from Greek "hidden" and "write") is the study of message secrecy
Modern meaning: a branch of the mathematical study of information and especially its transmission from place to place

Terminology

Cryptography (from Greek "hidden" and "write") is the study of message secrecy
Modern meaning: a branch of the mathematical study of information and especially its transmission from place to place The primary purpose was confidentiality

Terminology

Cryptography (from Greek "hidden" and "write") is the study of message secrecy
Modern meaning: a branch of the mathematical study of information and especially its transmission from place to place The primary purpose was confidentiality

The cipher consists of two algorithms:

- Encryption is the process of converting ordinary information (plaintext) into a ciphertext
- Decryption is the reverse process

Terminology

Cryptography (from Greek "hidden" and "write") is the study of message secrecy
Modern meaning: a branch of the mathematical study of information and especially its transmission from place to place The primary purpose was confidentiality

The cipher consists of two algorithms:

- Encryption is the process of converting ordinary information (plaintext) into a ciphertext
- Decryption is the reverse process

A key is a secret parameter for the cipher algorithm

Modern cryptography

Modern cryptography

Symmetric-key cryptography (until 1976):

- a single (secret) key for both encryption and decryption

Modern cryptography

Symmetric-key cryptography (until 1976):

- a single (secret) key for both encryption and decryption
- a significant drawback: it requires the prior agreement about the key, using a secure channel

Modern cryptography

Symmetric-key cryptography (until 1976):

- a single (secret) key for both encryption and decryption
- a significant drawback: it requires the prior agreement about the key, using a secure channel

Public-key cryptography (invented in 1976 by W.Diffie and M.Hellman):

Modern cryptography

Symmetric-key cryptography (until 1976):

- a single (secret) key for both encryption and decryption
- a significant drawback: it requires the prior agreement about the key, using a secure channel

Public-key cryptography (invented in 1976 by W.Diffie and M.Hellman):

- two different, but mathematically related keys
- public - for encryption, private - for decryption

Modern cryptography

Symmetric-key cryptography (until 1976):

- a single (secret) key for both encryption and decryption
- a significant drawback: it requires the prior agreement about the key, using a secure channel

Public-key cryptography (invented in 1976 by W.Diffie and M.Hellman):

- two different, but mathematically related keys
- public - for encryption, private - for decryption
- private key cannot be practically derived from public key

Public-key cryptography

Public-key cryptography

- Public-key encryption: a message is encrypted with users public key, but cannot be decrypted without the corresponding private key \Rightarrow Confidentiality

Public-key cryptography

- Public-key encryption: a message is encrypted with users public key, but cannot be decrypted without the corresponding private key \Rightarrow Confidentiality
- Digital signatures: a message is signed with users private key, but can be verified by anyone who has access to the users public key \Rightarrow Authenticity

Public-key cryptography

- Public-key encryption: a message is encrypted with users public key, but cannot be decrypted without the corresponding private key \Rightarrow Confidentiality
- Digital signatures: a message is signed with users private key, but can be verified by anyone who has access to the users public key \Rightarrow Authenticity

The main idea: security is based on the computational complexity of "hard" problems:

Public-key cryptography

- Public-key encryption: a message is encrypted with users public key, but cannot be decrypted without the corresponding private key \Rightarrow Confidentiality
- Digital signatures: a message is signed with users private key, but can be verified by anyone who has access to the users public key \Rightarrow Authenticity

The main idea: security is based on the computational complexity of "hard" problems:

- integer factorization problem
- discrete logarithm problem

Overview of Digital Signatures

Overview of Digital Signatures

- RSA was invented in 1978 by Ronald Rivest, Adi Shamir and Leonard Adleman and its security is based on the integer factorization problem.

Overview of Digital Signatures

- RSA was invented in 1978 by Ronald Rivest, Adi Shamir and Leonard Adleman and its security is based on the integer factorization problem.
- DSA (Digital Signature Algorithm) was developed in 1991 and is related to the discrete logarithm problem

Overview of Digital Signatures

- RSA was invented in 1978 by Ronald Rivest, Adi Shamir and Leonard Adleman and its security is based on the integer factorization problem.
- DSA (Digital Signature Algorithm) was developed in 1991 and is related to the discrete logarithm problem
- ECDSA (Elliptic Curve Digital Signature Algorithm) is a modification of DSA involving elliptic curve groups, which was proposed in 1992 by Scott Vanstone. It provides smaller key sizes for the same security level and that's why it has become the most popular digital signature.

Description

Description

- A key generation algorithm $G \Rightarrow$ a key pair ($P K, S K$), where $P K$ is a public key and $S K$ is a secret key

Description

- A key generation algorithm $G \Rightarrow$ a key pair (PK, SK), where $P K$ is a public key and $S K$ is a secret key
- A signing algorithm $S \Rightarrow$ a signature $\sigma=S(m, S K)$, where m is the original message

Description

- A key generation algorithm $G \Rightarrow$ a key pair ($P K, S K$), where $P K$ is a public key and $S K$ is a secret key
- A signing algorithm $S \Rightarrow$ a signature $\sigma=S(m, S K)$, where m is the original message
- A verifying algorithm $V \Rightarrow V(m, P K, \sigma)=y e s / n o$

Description

- A key generation algorithm $G \Rightarrow$ a key pair (PK, SK), where $P K$ is a public key and $S K$ is a secret key
- A signing algorithm $S \Rightarrow$ a signature $\sigma=S(m, S K)$, where m is the original message
- A verifying algorithm $V \Rightarrow V(m, P K, \sigma)=y e s / n o$

Remark: Public-key systems are computationally expensive \Rightarrow in practice, a message is hashed (using a cryptographic hash function) and the smaller "hash value" is signed \Rightarrow a receiver computes the hash of the message himself and verifies it.

One-way function

One-way function

Definition

A one-way function is a function that is easy to compute, but hard to invert ("easy" = in probabilistic polynomial time)

One-way function

Definition

A one-way function is a function that is easy to compute, but hard to invert ("easy" = in probabilistic polynomial time)

Definition

A trapdoor one-way function is hard to invert without knowing some secret information - a trapdoor

One-way function

Definition

A one-way function is a function that is easy to compute, but hard to invert ("easy" = in probabilistic polynomial time)

Definition

A trapdoor one-way function is hard to invert without knowing some secret information - a trapdoor

Remark: The existence of such functions is an open question!

One-way function

Definition

A one-way function is a function that is easy to compute, but hard to invert ("easy" = in probabilistic polynomial time)

Definition

A trapdoor one-way function is hard to invert without knowing some secret information - a trapdoor

Remark: The existence of such functions is an open question! Candidates:

- a product of two large primes (RSA)
- an exponentiation in the finite field (DSA, ECDSA)

Discrete Logarithm

Discrete Logarithm

(G, \cdot) is a finite multiplicative group (For DSA: $G=\mathbb{Z}_{p}^{*}$)

Discrete Logarithm

(G, \cdot) is a finite multiplicative group (For DSA: $G=\mathbb{Z}_{p}^{*}$) $g \in G$ of order $n \Rightarrow\langle g\rangle=\left\{g^{i}: 0 \leq i \leq n-1\right\}$ is a cyclic subgroup of order n

Discrete Logarithm

(G, \cdot) is a finite multiplicative group (For DSA: $G=\mathbb{Z}_{p}^{*}$) $g \in G$ of order $n \Rightarrow\langle g\rangle=\left\{g^{i}: 0 \leq i \leq n-1\right\}$
is a cyclic subgroup of order n

Definition

Discrete logarithm problem (DLP): $y \in\langle g\rangle$
Find a unique integer $x, 0 \leq x \leq n-1: y=g^{x}$

Discrete Logarithm

(G, \cdot) is a finite multiplicative group (For DSA: $G=\mathbb{Z}_{p}^{*}$)
$g \in G$ of order $n \Rightarrow\langle g\rangle=\left\{g^{i}: 0 \leq i \leq n-1\right\}$
is a cyclic subgroup of order n

Definition

Discrete logarithm problem (DLP): $y \in\langle g\rangle$
Find a unique integer $x, 0 \leq x \leq n-1: y=g^{x} \Rightarrow \mathbf{x}=\log _{g} y$
It is the inverse operation to discrete exponentiation

Discrete Logarithm

(G, \cdot) is a finite multiplicative group (For DSA: $G=\mathbb{Z}_{p}^{*}$)
$g \in G$ of order $n \Rightarrow\langle g\rangle=\left\{g^{i}: 0 \leq i \leq n-1\right\}$
is a cyclic subgroup of order n

Definition

Discrete logarithm problem (DLP): $y \in\langle g\rangle$
Find a unique integer $x, 0 \leq x \leq n-1: y=g^{x} \Rightarrow \mathbf{x}=\log _{g} y$
It is the inverse operation to discrete exponentiation

Remark: No efficient algorithm for computing discrete logarithms is known \Rightarrow discrete exponentiation is a candidate for one-way function

DSA (Digital Signature Algorithm)

DSA (Digital Signature Algorithm)

Domain parameters generation:

DSA (Digital Signature Algorithm)

Domain parameters generation:

- Select a 160-bit prime q and 1024-bit prime $p: q \mid p-1$

DSA (Digital Signature Algorithm)

Domain parameters generation:

- Select a 160-bit prime q and 1024-bit prime $p: q \mid p-1$
- Select $h \in \mathbb{Z}_{p}^{*}$

DSA (Digital Signature Algorithm)

Domain parameters generation:

- Select a 160-bit prime q and 1024-bit prime $p: q \mid p-1$
- Select $h \in \mathbb{Z}_{p}^{*}$, compute $g=h^{(p-1) / q} \bmod p($ until $g \neq 1)$

DSA (Digital Signature Algorithm)

Domain parameters generation:

- Select a 160-bit prime q and 1024-bit prime $p: q \mid p-1$
- Select $h \in \mathbb{Z}_{p}^{*}$, compute $g=h^{(p-1) / q} \bmod p($ until $g \neq 1)$ $\Rightarrow g$ is a generator of a cyclic subgroup of order q in \mathbb{Z}_{p}^{*}

DSA (Digital Signature Algorithm)

Domain parameters generation:

- Select a 160-bit prime q and 1024-bit prime $p: q \mid p-1$
- Select $h \in \mathbb{Z}_{p}^{*}$, compute $g=h^{(p-1) / q} \bmod p(u n t i l ~ g \neq 1)$ $\Rightarrow g$ is a generator of a cyclic subgroup of order q in \mathbb{Z}_{p}^{*}
- (p, q, g) are domain parameters

DSA (Digital Signature Algorithm)

Domain parameters generation:

- Select a 160-bit prime q and 1024-bit prime $p: q \mid p-1$
- Select $h \in \mathbb{Z}_{p}^{*}$, compute $g=h^{(p-1) / q} \bmod p($ until $g \neq 1)$ $\Rightarrow g$ is a generator of a cyclic subgroup of order q in \mathbb{Z}_{p}^{*}
- (p, q, g) are domain parameters

Key generation:

DSA (Digital Signature Algorithm)

Domain parameters generation:

- Select a 160-bit prime q and 1024-bit prime $p: q \mid p-1$
- Select $h \in \mathbb{Z}_{p}^{*}$, compute $g=h^{(p-1) / q} \bmod p($ until $g \neq 1)$ $\Rightarrow g$ is a generator of a cyclic subgroup of order q in \mathbb{Z}_{p}^{*}
- (p, q, g) are domain parameters

Key generation:

- Select a random integer $1 \leq x \leq q-1 \Rightarrow x$ is a private key

DSA (Digital Signature Algorithm)

Domain parameters generation:

- Select a 160-bit prime q and 1024-bit prime $p: q \mid p-1$
- Select $h \in \mathbb{Z}_{p}^{*}$, compute $g=h^{(p-1) / q} \bmod p($ until $g \neq 1)$ $\Rightarrow g$ is a generator of a cyclic subgroup of order q in \mathbb{Z}_{p}^{*}
- (p, q, g) are domain parameters

Key generation:

- Select a random integer $1 \leq x \leq q-1 \Rightarrow x$ is a private key
- Compute $y=g^{x} \bmod p \Rightarrow y$ is a public key

DSA Signature generation

DSA Signature generation

- Select a random integer $1 \leq k \leq q-1$

DSA Signature generation

- Select a random integer $1 \leq k \leq q-1$
- Compute $e=\operatorname{HASH}(m)$, where HASH is a cryptographic hash function, such as $S H A-1$

DSA Signature generation

- Select a random integer $1 \leq k \leq q-1$
- Compute $e=\operatorname{HASH}(m)$, where HASH is a cryptographic hash function, such as $S H A-1$
- Compute $r=\left(g^{k} \bmod p\right) \bmod q$
- Compute $s=\left(k^{-1}(e+x r)\right) \bmod q$,

DSA Signature generation

- Select a random integer $1 \leq k \leq q-1$
- Compute $e=\operatorname{HASH}(m)$, where HASH is a cryptographic hash function, such as $S H A-1$
- Compute $r=\left(g^{k} \bmod p\right) \bmod q$
- Compute $s=\left(k^{-1}(e+x r)\right) \bmod q$,
- Go to step 1 if $r=0$ or $s=0$

DSA Signature generation

- Select a random integer $1 \leq k \leq q-1$
- Compute $e=\operatorname{HASH}(m)$, where HASH is a cryptographic hash function, such as $S H A-1$
- Compute $r=\left(g^{k} \bmod p\right) \bmod q$
- Compute $s=\left(k^{-1}(e+x r)\right) \bmod q$,
- Go to step 1 if $r=0$ or $s=0$
- (r, s) is a signature for the message m

DSA Signature verification:

DSA Signature verification:

- Verify that $1 \leq r, s \leq q-1$

DSA Signature verification:

- Verify that $1 \leq r, s \leq q-1$
- Compute $e=\operatorname{HASH}(m)$

DSA Signature verification:

- Verify that $1 \leq r, s \leq q-1$
- Compute $e=\operatorname{HASH}(m)$
- Compute $w=s^{-1} \bmod q$

DSA Signature verification:

- Verify that $1 \leq r, s \leq q-1$
- Compute $e=\operatorname{HASH}(m)$
- Compute $w=s^{-1} \bmod q$
- Compute $u_{1}=(e w) \bmod q$
- Compute $u_{2}=(r w) \bmod q$
- Compute $v=\left(g^{u_{1}} y^{u_{2}} \bmod p\right) \bmod q$

DSA Signature verification:

- Verify that $1 \leq r, s \leq q-1$
- Compute $e=\operatorname{HASH}(m)$
- Compute $w=s^{-1} \bmod q$
- Compute $u_{1}=(e w) \bmod q$
- Compute $u_{2}=(r w) \bmod q$
- Compute $v=\left(g^{u_{1}} y^{u_{2}} \bmod p\right) \bmod q$
- Accept the signature $\Leftrightarrow v=r$

DSA Correctness

DSA Correctness

$$
g=h^{(p-1) / q} \bmod p
$$

DSA Correctness

$$
g=h^{(p-1) / q} \bmod p \Rightarrow g^{q} \equiv h^{(p-1)} \equiv 1 \bmod p
$$

(Fermat's little theorem)

DSA Correctness

$$
g=h^{(p-1) / q} \bmod p \Rightarrow g^{q} \equiv h^{(p-1)} \equiv 1 \bmod p
$$

(Fermat's little theorem) $\Rightarrow g$ has order q

DSA Correctness

$$
g=h^{(p-1) / q} \bmod p \Rightarrow g^{q} \equiv h^{(p-1)} \equiv 1 \bmod p
$$

(Fermat's little theorem) $\Rightarrow g$ has order q
$s=k^{-1}(e+x r) \bmod q$

DSA Correctness

$$
g=h^{(p-1) / q} \bmod p \Rightarrow g^{q} \equiv h^{(p-1)} \equiv 1 \bmod p
$$

(Fermat's little theorem) $\Rightarrow g$ has order q
$s=k^{-1}(e+x r) \bmod q \Rightarrow$
$k \equiv(e+x r) s^{-1} \equiv(e+x r) w \bmod q$

DSA Correctness

$g=h^{(p-1) / q} \bmod p \Rightarrow g^{q} \equiv h^{(p-1)} \equiv 1 \bmod p$
(Fermat's little theorem) $\Rightarrow g$ has order q
$s=k^{-1}(e+x r) \bmod q \Rightarrow$
$k \equiv(e+x r) s^{-1} \equiv(e+x r) w \bmod q \Rightarrow$
$g^{k} \equiv g^{e w} g^{x r w} \equiv g^{e w} y^{r w} \equiv g^{u_{1}} y^{u_{2}} \bmod p$

DSA Correctness

$g=h^{(p-1) / q} \bmod p \Rightarrow g^{q} \equiv h^{(p-1)} \equiv 1 \bmod p$
(Fermat's little theorem) $\Rightarrow g$ has order q
$s=k^{-1}(e+x r) \bmod q \Rightarrow$
$k \equiv(e+x r) s^{-1} \equiv(e+x r) w \bmod q \Rightarrow$
$g^{k} \equiv g^{e w} g^{x r w} \equiv g^{e w} y^{r w} \equiv g^{u_{1}} y^{u_{2}} \bmod p \Rightarrow$

$$
r=\left(g^{k} \bmod p\right) \bmod q=\left(g^{u_{1}} y^{\Lambda_{2}} \bmod p\right) \bmod q=v
$$

The algorithm always accepts the true signatures

Finite fields

Finite fields

Definition

A finite field is a finite set of elements F with " + " and "." The order of F is the number of its elements

Finite fields

Definition

A finite field is a finite set of elements F with " +" and "." The order of F is the number of its elements

Theorem

\exists a finite field of order $q \Leftrightarrow q=p^{m}$, where p is prime, and this field is essentially unique \Rightarrow it is denoted by \mathbb{F}_{q}

Finite fields

Definition

A finite field is a finite set of elements F with " +" and "." The order of F is the number of its elements

Theorem

\exists a finite field of order $q \Leftrightarrow q=p^{m}$, where p is prime, and this field is essentially unique \Rightarrow it is denoted by \mathbb{F}_{q}
p is called a characteristic of \mathbb{F}_{q} m is called the extension degree of \mathbb{F}_{q}

Finite fields

Definition

A finite field is a finite set of elements F with " +" and "." The order of F is the number of its elements

Theorem

\exists a finite field of order $q \Leftrightarrow q=p^{m}$, where p is prime, and this field is essentially unique \Rightarrow it is denoted by \mathbb{F}_{q}
p is called a characteristic of \mathbb{F}_{q} m is called the extension degree of \mathbb{F}_{q}

For elliptic curve cryptography we need one of two cases:
$q=p$, where p is an odd prime, or $q=2^{m}$

The finite field \mathbb{F}_{p}

The finite field \mathbb{F}_{p}, called a prime field, is the set of integers $\{0,1,2, \ldots, p-1\}$ with the following operations:

The finite field \mathbb{F}_{p}

The finite field \mathbb{F}_{p}, called a prime field, is the set of integers $\{0,1,2, \ldots, p-1\}$ with the following operations:

- Addition: $a, b \in \mathbb{F}_{p} \Rightarrow a+b=r$, where $r=(a+b) \bmod p$, $0 \leq r \leq p-1$
- Multiplication: $a, b \in \mathbb{F}_{p} \Rightarrow a \cdot b=s$, where $s=a \cdot b \bmod p$, $0 \leq s \leq p-1$
- Inversion: $a \in \mathbb{F}_{p}, a \neq 0 \Rightarrow \exists a^{-1} \in \mathbb{F}_{p}: a \cdot a^{-1}=1$

The finite field $\mathbb{F}_{2 m}$

The finite field $\mathbb{F}_{2^{m}}$, called a binary finite field, is a vector space of dimension m over the field $\mathbb{F}_{2}=\{0,1\}$

The finite field $\mathbb{F}_{2^{m}}$

The finite field $\mathbb{F}_{2^{m}}$, called a binary finite field, is a vector space of dimension m over the field $\mathbb{F}_{2}=\{0,1\}$
$\Rightarrow \exists$ a basis $\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{m-1}\right\} \in \mathbb{F}_{2^{m}}: \forall \alpha \in \mathbb{F}_{2^{m}}$
$\alpha=a_{0} \alpha_{0}+a_{1} \alpha_{1}+\ldots+a_{m-1} \alpha_{m-1}$, where $a_{i} \in\{0,1\}$

The finite field $\mathbb{F}_{2^{m}}$

The finite field $\mathbb{F}_{2^{m}}$, called a binary finite field, is a vector space of dimension m over the field $\mathbb{F}_{2}=\{0,1\}$
$\Rightarrow \exists$ a basis $\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{m-1}\right\} \in \mathbb{F}_{2^{m}}: \forall \alpha \in \mathbb{F}_{2^{m}}$
$\alpha=a_{0} \alpha_{0}+a_{1} \alpha_{1}+\ldots+a_{m-1} \alpha_{m-1}$, where $a_{i} \in\{0,1\}$

$$
\alpha \leftrightarrow\left(a_{0} a_{1} \ldots a_{m-1}\right)
$$

The finite field $\mathbb{F}_{2^{2}}$

The finite field $\mathbb{F}_{2^{m}}$, called a binary finite field, is a vector space of dimension m over the field $\mathbb{F}_{2}=\{0,1\}$
$\Rightarrow \exists$ a basis $\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{m-1}\right\} \in \mathbb{F}_{2^{m}}: \forall \alpha \in \mathbb{F}_{2^{m}}$
$\alpha=a_{0} \alpha_{0}+a_{1} \alpha_{1}+\ldots+a_{m-1} \alpha_{m-1}$, where $a_{i} \in\{0,1\}$

$$
\alpha \leftrightarrow\left(a_{0} a_{1} \ldots a_{m-1}\right)
$$

Remark: We are interested in two kinds of bases: polynomial bases and normal bases

Polynomial basis representation

Definition

The reduction polynomial is an irreducible polynomial of deg m over $\mathbb{F}_{2}: f(x)=x^{m}+f_{m-1} x^{m-1}+\ldots+f_{2} x^{2}+f_{1} x+f_{0}$, where $f_{i} \in\{0,1\}$ for $i=\overline{0, m-1}$

Polynomial basis representation

Definition

The reduction polynomial is an irreducible polynomial of deg m over $\mathbb{F}_{2}: f(x)=x^{m}+f_{m-1} x^{m-1}+\ldots+f_{2} x^{2}+f_{1} x+f_{0}$, where $f_{i} \in\{0,1\}$ for $i=\overline{0, m-1}$

Field elements:

$$
\mathbb{F}_{2^{m}}=\left\{a(x)=a_{m-1} x^{m-1}+\ldots+a_{1} x+a_{0}: a_{i} \in\{0,1\}\right\}
$$

Polynomial basis representation

Definition

The reduction polynomial is an irreducible polynomial of deg m over $\mathbb{F}_{2}: f(x)=x^{m}+f_{m-1} x^{m-1}+\ldots+f_{2} x^{2}+f_{1} x+f_{0}$, where $f_{i} \in\{0,1\}$ for $i=\overline{0, m-1}$

Field elements:

$$
\begin{gathered}
\mathbb{F}_{2^{m}}=\left\{a(x)=a_{m-1} x^{m-1}+\ldots+a_{1} x+a_{0}: a_{i} \in\{0,1\}\right\} \\
\mathbb{F}_{2^{m}}=\left\{\left(a_{m-1} \ldots a_{1} a_{0}\right): a_{i} \in\{0,1\}\right\}
\end{gathered}
$$

Polynomial basis representation

Definition

The reduction polynomial is an irreducible polynomial of deg m over $\mathbb{F}_{2}: f(x)=x^{m}+f_{m-1} x^{m-1}+\ldots+f_{2} x^{2}+f_{1} x+f_{0}$, where $f_{i} \in\{0,1\}$ for $i=\overline{0, m-1}$

Field elements:

$$
\begin{gathered}
\mathbb{F}_{2^{m}}=\left\{a(x)=a_{m-1} x^{m-1}+\ldots+a_{1} x+a_{0}: a_{i} \in\{0,1\}\right\} \\
\mathbb{F}_{2^{m}}=\left\{\left(a_{m-1} \ldots a_{1} a_{0}\right): a_{i} \in\{0,1\}\right\}
\end{gathered}
$$

Identities:
$(1)=(00 \ldots 01)$
$(0)=(00 \ldots 00)$

Field operations

Field operations

- Addition: $a=\left(a_{m-1} \ldots a_{1} a_{0}\right), b=\left(b_{m-1} \ldots b_{1} b_{0}\right) \in \mathbb{F}_{2^{m}}$ $\Rightarrow a+b=c=\left(c_{m-1} \ldots c_{1} c_{0}\right)$, where $c_{i}=\left(a_{i}+b_{i}\right) \bmod 2$

Field operations

- Addition: $a=\left(a_{m-1} \ldots a_{1} a_{0}\right), b=\left(b_{m-1} \ldots b_{1} b_{0}\right) \in \mathbb{F}_{2^{m}}$ $\Rightarrow a+b=c=\left(c_{m-1} \ldots c_{1} c_{0}\right)$, where $c_{i}=\left(a_{i}+b_{i}\right) \bmod 2$
- Multiplication: $a=\left(a_{m-1} \ldots a_{1} a_{0}\right), b=\left(b_{m-1} \ldots b_{1} b_{0}\right) \in \mathbb{F}_{2^{m}}$ $\Rightarrow a \cdot b=r=\left(r_{m-1} \ldots r_{1} r_{0}\right)$, where $r(x)=a(x) \cdot b(x) \bmod f(x)$ over \mathbb{F}_{2}

Field operations

- Addition: $a=\left(a_{m-1} \ldots a_{1} a_{0}\right), b=\left(b_{m-1} \ldots b_{1} b_{0}\right) \in \mathbb{F}_{2^{m}}$ $\Rightarrow a+b=c=\left(c_{m-1} \ldots c_{1} c_{0}\right)$, where $c_{i}=\left(a_{i}+b_{i}\right) \bmod 2$
- Multiplication: $a=\left(a_{m-1} \ldots a_{1} a_{0}\right), b=\left(b_{m-1} \ldots b_{1} b_{0}\right) \in \mathbb{F}_{2^{m}}$ $\Rightarrow a \cdot b=r=\left(r_{m-1} \ldots r_{1} r_{0}\right)$, where $r(x)=a(x) \cdot b(x) \bmod f(x)$ over \mathbb{F}_{2}
- Inversion: $a=\left(a_{m-1} \ldots a_{1} a_{0}\right) \in \mathbb{F}_{2^{m},} a \neq 0$
$\Rightarrow \exists!a^{-1} \in \mathbb{F}_{2^{m}}: a \cdot a^{-1}=1$

Normal basis representation

Definition

A normal basis of $\mathbb{F}_{2^{m}}$ over \mathbb{F}_{2} is a basis of the form $\left\{\beta, \beta^{2}, \beta^{2^{2}}, \ldots, \beta^{2^{m-1}}\right\}$, where $\beta \in \mathbb{F}_{2^{m}}$

Normal basis representation

Definition

A normal basis of $\mathbb{F}_{2^{m}}$ over \mathbb{F}_{2} is a basis of the form $\left\{\beta, \beta^{2}, \beta^{2^{2}}, \ldots, \beta^{2^{m-1}}\right\}$, where $\beta \in \mathbb{F}_{2^{m}}$

Field elements:

$$
\mathbb{F}_{2^{m}}=\left\{a=\sum_{i=0}^{m-1} a_{i} \beta^{2^{i}}: a_{i} \in\{0,1\}\right\}
$$

Normal basis representation

Definition

A normal basis of $\mathbb{F}_{2^{m}}$ over \mathbb{F}_{2} is a basis of the form $\left\{\beta, \beta^{2}, \beta^{2^{2}}, \ldots, \beta^{2^{m-1}}\right\}$, where $\beta \in \mathbb{F}_{2^{m}}$

Field elements:

$$
\begin{aligned}
& \mathbb{F}_{2^{m}}=\left\{a=\sum_{i=0}^{m-1} a_{i} \beta^{2^{i}}: a_{i} \in\{0,1\}\right\} \\
& \mathbb{F}_{2^{m}}=\left\{\left(a_{0} a_{1} \ldots a_{m-1}\right): a_{i} \in\{0,1\}\right\}
\end{aligned}
$$

Normal basis representation

Definition

A normal basis of $\mathbb{F}_{2^{m}}$ over \mathbb{F}_{2} is a basis of the form $\left\{\beta, \beta^{2}, \beta^{2^{2}}, \ldots, \beta^{2^{m-1}}\right\}$, where $\beta \in \mathbb{F}_{2^{m}}$

Field elements:

$$
\begin{aligned}
& \mathbb{F}_{2^{m}}=\left\{a=\sum_{i=0}^{m-1} a_{i} \beta^{2^{i}}: a_{i} \in\{0,1\}\right\} \\
& \mathbb{F}_{2^{m}}=\left\{\left(a_{0} a_{1} \ldots a_{m-1}\right): a_{i} \in\{0,1\}\right\}
\end{aligned}
$$

Identities:

$$
(1)=(11 \ldots 11) \quad(0)=(00 \ldots 00)
$$

Field operations

- Addition: $a=\left(a_{0} a_{1} \ldots a_{m-1}\right), b=\left(b_{0} b_{1} \ldots b_{m-1}\right) \in \mathbb{F}_{2^{m}}$ $\Rightarrow a+b=c=\left(c_{0} c_{1} \ldots c_{m-1}\right)$, where $c_{i}=\left(a_{i}+b_{i}\right) \bmod 2$

Field operations

- Addition: $a=\left(a_{0} a_{1} \ldots a_{m-1}\right), b=\left(b_{0} b_{1} \ldots b_{m-1}\right) \in \mathbb{F}_{2^{m}}$ $\Rightarrow a+b=c=\left(c_{0} c_{1} \ldots c_{m-1}\right)$, where $c_{i}=\left(a_{i}+b_{i}\right) \bmod 2$
- Squaring: $a=\left(a_{0} a_{1} \ldots a_{m-1}\right) \in \mathbb{F}_{2^{m}}$

Field operations

- Addition: $a=\left(a_{0} a_{1} \ldots a_{m-1}\right), b=\left(b_{0} b_{1} \ldots b_{m-1}\right) \in \mathbb{F}_{2^{m}}$ $\Rightarrow a+b=c=\left(c_{0} c_{1} \ldots c_{m-1}\right)$, where $c_{i}=\left(a_{i}+b_{i}\right) \bmod 2$
- Squaring: $a=\left(a_{0} a_{1} \ldots a_{m-1}\right) \in \mathbb{F}_{2^{m}}$

$$
a^{2}=\sum_{i=0}^{m-1} a_{i} \beta^{2^{i+1}}=\sum_{i=0}^{m-1} a_{i-1} \beta^{2^{i}}=\left(a_{m-1} a_{0} a_{1} \ldots a_{m-2}\right)
$$

Field operations

- Addition: $a=\left(a_{0} a_{1} \ldots a_{m-1}\right), b=\left(b_{0} b_{1} \ldots b_{m-1}\right) \in \mathbb{F}_{2^{m}}$ $\Rightarrow a+b=c=\left(c_{0} c_{1} \ldots c_{m-1}\right)$, where $c_{i}=\left(a_{i}+b_{i}\right) \bmod 2$
- Squaring: $a=\left(a_{0} a_{1} \ldots a_{m-1}\right) \in \mathbb{F}_{2^{m}}$

$$
a^{2}=\sum_{i=0}^{m-1} a_{i} \beta^{2^{i+1}}=\sum_{i=0}^{m-1} a_{i-1} \beta^{2^{i}}=\left(a_{m-1} a_{0} a_{1} \ldots a_{m-2}\right)
$$

- Multiplication: with use of Gaussian normal basis (GNB)
- Inversion: $a \in \mathbb{F}_{2^{m}}, a \neq 0 \Rightarrow \exists!a^{-1} \in \mathbb{F}_{2^{m}}: a \cdot a^{-1}=1$

Elliptic curves over \mathbb{F}_{p}

Elliptic curves over \mathbb{F}_{p}

Definition

Let $p>3$ be a prime number, $a, b \in \mathbb{F}_{p}: 4 a^{3}+27 b^{2} \neq 0 \bmod p$ $E\left(\mathbb{F}_{p}\right)=\left\{(x, y) \in \mathbb{F}_{p} \times \mathbb{F}_{p}: y^{2}=x^{3}+a x+b\right\} \cup$
$\cup\{\mathcal{O}$ - point at infinity $\}$ is an elliptic curve over \mathbb{F}_{p}

Elliptic curves over \mathbb{F}_{p}

Definition

Let $p>3$ be a prime number, $a, b \in \mathbb{F}_{p}: 4 a^{3}+27 b^{2} \neq 0 \bmod p$ $E\left(\mathbb{F}_{p}\right)=\left\{(x, y) \in \mathbb{F}_{p} \times \mathbb{F}_{p}: y^{2}=x^{3}+a x+b\right\} \cup$
$\cup\{\mathcal{O}$ - point at infinity $\}$ is an elliptic curve over \mathbb{F}_{p}
Remark: The requirement $4 a^{3}+27 b^{2} \neq 0$ means that the curve is non-singular, i.e. has no cusps and self-intersections

Elliptic curves over \mathbb{F}_{p}

Definition

Let $p>3$ be a prime number, $a, b \in \mathbb{F}_{p}: 4 a^{3}+27 b^{2} \neq 0 \bmod p$ $E\left(\mathbb{F}_{p}\right)=\left\{(x, y) \in \mathbb{F}_{p} \times \mathbb{F}_{p}: y^{2}=x^{3}+a x+b\right\} \cup$ $\cup\{\mathcal{O}$ - point at infinity $\}$ is an elliptic curve over \mathbb{F}_{p}

Remark: The requirement $4 a^{3}+27 b^{2} \neq 0$ means that the curve is non-singular, i.e. has no cusps and self-intersections

Group law (Geometric description)

- Point addition $P+Q+R=\mathcal{O}$
- Point doubling $P+2 Q=\mathcal{O}$

Group law (Geometric description)

- Point addition $P+Q+R=\mathcal{O}$
- Point doubling $P+2 Q=\mathcal{O}$

$P+Q+R=0$

$P+Q+Q=0$

Group law (Geometric description)

- Point addition $P+Q+R=\mathcal{O}$
- Point doubling $P+2 Q=\mathcal{O}$

$P+Q+R=0$

$P+Q+Q=0$

Remark: Together with this addition operation a set $E\left(\mathbb{F}_{p}\right)$ forms a group with \mathcal{O} serving as identity

Group law (Analitic description)

- $P+\mathcal{O}=\mathcal{O}+P=P \quad \forall P \in E\left(\mathbb{F}_{p}\right)$
- $P=(x, y) \in E\left(\mathbb{F}_{p}\right) \Rightarrow-P=(x,-y) \in E\left(\mathbb{F}_{p}\right)$
- $P=\left(x_{1}, y_{1}\right), Q=\left(x_{2}, y_{2}\right) \in E\left(\mathbb{F}_{p}\right): P \neq \pm Q$
$\Rightarrow P+Q=\left(x_{3}, y_{3}\right):$

$$
\left\{\begin{array}{c}
x_{3}=\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)^{2}-x_{1}-x_{2}, \\
y_{3}=\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)\left(x_{1}-x_{3}\right)-y_{1}
\end{array}\right.
$$

- $P=\left(x_{1}, y_{1}\right) \in E\left(\mathbb{F}_{p}\right): P \neq-P \Rightarrow 2 P=\left(x_{3}, y_{3}\right)$:

$$
x_{3}=\left(\frac{3 x_{1}^{2}+a}{2 y_{1}}\right)^{2}-2 x_{1}, \quad y_{3}=\left(\frac{3 x_{1}^{2}+a}{2 y_{1}}\right)\left(x_{1}-x_{3}\right)-y_{1}
$$

Elliptic curves over $\mathbb{F}_{2}{ }^{m}$

Definition

$a, b \in \mathbb{F}_{2^{m}}, b \neq 0 \Rightarrow$ an elliptic curve over $\mathbb{F}_{2^{m}}$
$E\left(\mathbb{F}_{2^{m}}\right)=\left\{(x, y) \in \mathbb{F}_{2^{m}} \times \mathbb{F}_{2^{m}}: y^{2}+x y=x^{3}+a x^{2}+b\right\} \cup$
$\cup\{\mathcal{O}-$ point at infinity $\}$

Elliptic curves over $\mathbb{F}_{2^{m}}$

Definition

$a, b \in \mathbb{F}_{2^{m}}, b \neq 0 \Rightarrow$ an elliptic curve over $\mathbb{F}_{2^{m}}$
$E\left(\mathbb{F}_{2^{m}}\right)=\left\{(x, y) \in \mathbb{F}_{2^{m}} \times \mathbb{F}_{2^{m}}: y^{2}+x y=x^{3}+a x^{2}+b\right\} \cup$
$\cup\{\mathcal{O}-$ point at infinity $\}$

Remark: The geometric description of an addition operation is similar to the case of $E\left(\mathbb{F}_{p}\right)$

Together with this addition operation a set $E\left(\mathbb{F}_{2^{m}}\right)$ forms a group with \mathcal{O} serving as identity

Group law (Analitic description)

- $P+\mathcal{O}=\mathcal{O}+P=P \quad \forall P \in E\left(\mathbb{F}_{2^{m}}\right)$
- $P=(x, y) \in E\left(\mathbb{F}_{2^{m}}\right) \Rightarrow-P=(x, x+y) \in E\left(\mathbb{F}_{2^{m}}\right)$
- $P=\left(x_{1}, y_{1}\right), Q=\left(x_{2}, y_{2}\right) \in E\left(\mathbb{F}_{2^{m}}\right): P \neq \pm Q$
$\Rightarrow P+Q=\left(x_{3}, y_{3}\right)$:

$$
\left\{\begin{array}{r}
x_{3}=\left(\frac{y_{1}+y_{2}}{x_{1}+x_{2}}\right)^{2}+\frac{y_{1}+y_{2}}{x_{1}+x_{2}}+x_{1}+x_{2}+a, \\
y_{3}=\left(\frac{y_{1}+y_{2}}{x_{1}+x_{2}}\right)\left(x_{1}+x_{3}\right)+x_{3}+y_{1}
\end{array}\right.
$$

- $P=\left(x_{1}, y_{1}\right) \in E\left(\mathbb{F}_{2^{m}}\right): P \neq-P \Rightarrow 2 P=\left(x_{3}, y_{3}\right)$:

$$
x_{3}=x_{1}^{2}+\frac{b}{x_{1}^{2}}, \quad y_{3}=x_{1}^{2}+\left(x_{1}+\frac{y_{1}}{x_{1}}\right) x_{3}+x_{3}
$$

Basic facts

Basic facts

- $E\left(\mathbb{F}_{q}\right)$ with the defined addition operation forms a group with point at infinity \mathcal{O} serving as identity

Basic facts

- $E\left(\mathbb{F}_{q}\right)$ with the defined addition operation forms a group with point at infinity \mathcal{O} serving as identity
- Hasse's theorem:

$$
\# E\left(\mathbb{F}_{q}\right)=q+1-t, \text { where }|t| \leq 2 \sqrt{q}
$$

$\# E\left(\mathbb{F}_{q}\right)$ is called the order, t is the trace of an elliptic curve

Basic facts

- $E\left(\mathbb{F}_{q}\right)$ with the defined addition operation forms a group with point at infinity \mathcal{O} serving as identity
- Hasse's theorem:

$$
\# E\left(\mathbb{F}_{q}\right)=q+1-t, \text { where }|t| \leq 2 \sqrt{q}
$$

$\# E\left(\mathbb{F}_{q}\right)$ is called the order, t is the trace of an elliptic curve

- $E\left(\mathbb{F}_{q}\right) \cong \mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}}$, where $n_{2} \mid n_{1}$ and $n_{2} \mid q-1$

Basic facts

- $E\left(\mathbb{F}_{q}\right)$ with the defined addition operation forms a group with point at infinity \mathcal{O} serving as identity
- Hasse's theorem:

$$
\# E\left(\mathbb{F}_{q}\right)=q+1-t, \text { where }|t| \leq 2 \sqrt{q}
$$

$\# E\left(\mathbb{F}_{q}\right)$ is called the order, t is the trace of an elliptic curve

- $E\left(\mathbb{F}_{q}\right) \cong \mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}}$, where $n_{2} \mid n_{1}$ and $n_{2} \mid q-1$
- If $n_{2}=1 \Rightarrow E\left(\mathbb{F}_{q}\right) \cong \mathbb{Z}_{n}$ is cyclic of order $n=n_{1}$

Basic facts

- $E\left(\mathbb{F}_{q}\right)$ with the defined addition operation forms a group with point at infinity \mathcal{O} serving as identity
- Hasse's theorem:

$$
\# E\left(\mathbb{F}_{q}\right)=q+1-t, \text { where }|t| \leq 2 \sqrt{q}
$$

$\# E\left(\mathbb{F}_{q}\right)$ is called the order, t is the trace of an elliptic curve

- $E\left(\mathbb{F}_{q}\right) \cong \mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}}$, where $n_{2} \mid n_{1}$ and $n_{2} \mid q-1$
- If $n_{2}=1 \Rightarrow E\left(\mathbb{F}_{q}\right) \cong \mathbb{Z}_{n}$ is cyclic of order $n=n_{1} \Rightarrow$
\exists a generator $G \in E\left(\mathbb{F}_{q}\right): E\left(\mathbb{F}_{q}\right)=\{k G: 0 \leq k \leq n-1\}$

ECDLP

$\forall G \in E\left(\mathbb{F}_{q}\right)$ of prime order n generates a cyclic subgroup

$$
(\mathcal{O}, G, 2 G, 3 G, \ldots,(n-1) G) \Leftrightarrow\left(e, g, g^{2}, g^{3}, \ldots, g^{(n-1)}\right)
$$

where g is an integer modulo prime n

ECDLP

$\forall G \in E\left(\mathbb{F}_{q}\right)$ of prime order n generates a cyclic subgroup

$$
(\mathcal{O}, G, 2 G, 3 G, \ldots,(n-1) G) \Leftrightarrow\left(e, g, g^{2}, g^{3}, \ldots, g^{(n-1)}\right)
$$

where g is an integer modulo prime n

Definition

Elliptic curve discrete logarithm problem (ECDLP):
Find k for given points G and $k G$, where $0 \leq k \leq n-1$

```
ECDSA
```


ECDSA

ECDSA

- The discrete logarithm problem on elliptic curve groups is believed to be more difficult than the corresponding problem in the multiplicative group of the underlying finite field.

ECDSA

- The discrete logarithm problem on elliptic curve groups is believed to be more difficult than the corresponding problem in the multiplicative group of the underlying finite field.
- The keys can be chosen much shorter for a comparable level of security

ECDSA

- The discrete logarithm problem on elliptic curve groups is believed to be more difficult than the corresponding problem in the multiplicative group of the underlying finite field.
- The keys can be chosen much shorter for a comparable level of security
- As for other popular public-key cryptosystems, no mathematical proof of difficulty has been published

ECDSA

- The discrete logarithm problem on elliptic curve groups is believed to be more difficult than the corresponding problem in the multiplicative group of the underlying finite field.
- The keys can be chosen much shorter for a comparable level of security
- As for other popular public-key cryptosystems, no mathematical proof of difficulty has been published
- It was accepted in 1999 as an ANSI (American National Standarts Institute) standard

Domain parameters

The domain parameters are: an elliptic curve $E\left(\mathbb{F}_{q}\right)$ of characteristic p and a base point $G \in E\left(\mathbb{F}_{q}\right)$

Domain parameters

The domain parameters are: an elliptic curve $E\left(\mathbb{F}_{q}\right)$ of characteristic p and a base point $G \in E\left(\mathbb{F}_{q}\right)$

- a field size $q=p$ or 2^{m}

Domain parameters

The domain parameters are: an elliptic curve $E\left(\mathbb{F}_{q}\right)$ of characteristic p and a base point $G \in E\left(\mathbb{F}_{q}\right)$

- a field size $q=p$ or 2^{m}
- the representation $F R$ of \mathbb{F}_{q}

Domain parameters

The domain parameters are: an elliptic curve $E\left(\mathbb{F}_{q}\right)$ of characteristic p and a base point $G \in E\left(\mathbb{F}_{q}\right)$

- a field size $q=p$ or 2^{m}
- the representation $F R$ of \mathbb{F}_{q}
- $a, b \in \mathbb{F}_{q}$, which define the equation of EC :

$$
\begin{cases}y^{2}=x^{3}+a x+b & \text { in the case } p>3 \\ y^{2}+x y=x^{3}+a x^{2}+b & \text { in the case } p=2\end{cases}
$$

Domain parameters

The domain parameters are: an elliptic curve $E\left(\mathbb{F}_{q}\right)$ of characteristic p and a base point $G \in E\left(\mathbb{F}_{q}\right)$

- a field size $q=p$ or 2^{m}
- the representation $F R$ of \mathbb{F}_{q}
- $a, b \in \mathbb{F}_{q}$, which define the equation of EC :

$$
\begin{cases}y^{2}=x^{3}+a x+b & \text { in the case } p>3 \\ y^{2}+x y=x^{3}+a x^{2}+b & \text { in the case } p=2\end{cases}
$$

- a generator $G=\left(x_{G}, y_{G}\right) \in E\left(\mathbb{F}_{q}\right)$ of prime order

Domain parameters

The domain parameters are: an elliptic curve $E\left(\mathbb{F}_{q}\right)$ of characteristic p and a base point $G \in E\left(\mathbb{F}_{q}\right)$

- a field size $q=p$ or 2^{m}
- the representation $F R$ of \mathbb{F}_{q}
- $a, b \in \mathbb{F}_{q}$, which define the equation of EC :

$$
\begin{cases}y^{2}=x^{3}+a x+b & \text { in the case } p>3 \\ y^{2}+x y=x^{3}+a x^{2}+b & \text { in the case } p=2\end{cases}
$$

- a generator $G=\left(x_{G}, y_{G}\right) \in E\left(\mathbb{F}_{q}\right)$ of prime order
- the order n of G is a large prime and $n>4 \sqrt{q}$

Domain parameters

The domain parameters are: an elliptic curve $E\left(\mathbb{F}_{q}\right)$ of characteristic p and a base point $G \in E\left(\mathbb{F}_{q}\right)$

- a field size $q=p$ or 2^{m}
- the representation $F R$ of \mathbb{F}_{q}
- $a, b \in \mathbb{F}_{q}$, which define the equation of EC :

$$
\begin{cases}y^{2}=x^{3}+a x+b & \text { in the case } p>3 \\ y^{2}+x y=x^{3}+a x^{2}+b & \text { in the case } p=2\end{cases}
$$

- a generator $G=\left(x_{G}, y_{G}\right) \in E\left(\mathbb{F}_{q}\right)$ of prime order
- the order n of G is a large prime and $n>4 \sqrt{q}$
- the cofactor $h=\# E\left(\mathbb{F}_{q}\right) / n \quad(h \leq 4)$

Domain parameters generation

Domain parameters generation

- The order of the curve should be divisible by a large prime n

Domain parameters generation

- The order of the curve should be divisible by a large prime n
- One should avoid "weak" curves: for example, $E\left(\mathbb{F}_{2^{m}}\right)$ with non prime m or $\# E\left(\mathbb{F}_{q}\right)=q$

Domain parameters generation

- The order of the curve should be divisible by a large prime n
- One should avoid "weak" curves: for example, $E\left(\mathbb{F}_{2^{m}}\right)$ with non prime m or $\# E\left(\mathbb{F}_{q}\right)=q$
- A curve can be selected verifiably at random: The parameters of the curve a and b are the outputs of the one-way cryptographic hash function, such as SHA - 1

Domain parameters generation

- The order of the curve should be divisible by a large prime n
- One should avoid "weak" curves: for example, $E\left(\mathbb{F}_{2^{m}}\right)$ with non prime m or $\# E\left(\mathbb{F}_{q}\right)=q$
- A curve can be selected verifiably at random: The parameters of the curve a and b are the outputs of the one-way cryptographic hash function, such as SHA - 1
- Other methods:
- Complex multiplication method
- Koblitz curves

Domain parameters validation

One should always validate domain parameters before use

Domain parameters validation

One should always validate domain parameters before use

- to prevent the insertion of invalid domain parameters

Domain parameters validation

One should always validate domain parameters before use

- to prevent the insertion of invalid domain parameters
- to detect coding and transmission errors

Domain parameters validation

One should always validate domain parameters before use

- to prevent the insertion of invalid domain parameters
- to detect coding and transmission errors

Hasse's theorem: $(\sqrt{q}-1)^{2} \leq \# E\left(\mathbb{F}_{q}\right) \leq(\sqrt{q}+1)^{2}$

Domain parameters validation

One should always validate domain parameters before use

- to prevent the insertion of invalid domain parameters
- to detect coding and transmission errors

Hasse's theorem: $(\sqrt{q}-1)^{2} \leq \# E\left(\mathbb{F}_{q}\right) \leq(\sqrt{q}+1)^{2}$
$n>4 \sqrt{q}$

Domain parameters validation

One should always validate domain parameters before use

- to prevent the insertion of invalid domain parameters
- to detect coding and transmission errors

Hasse's theorem: $(\sqrt{q}-1)^{2} \leq \# E\left(\mathbb{F}_{q}\right) \leq(\sqrt{q}+1)^{2}$
$n>4 \sqrt{q} \Rightarrow E\left(\mathbb{F}_{q}\right)$ has a unique subgroup of order n

Domain parameters validation

One should always validate domain parameters before use

- to prevent the insertion of invalid domain parameters
- to detect coding and transmission errors

Hasse's theorem: $(\sqrt{q}-1)^{2} \leq \# E\left(\mathbb{F}_{q}\right) \leq(\sqrt{q}+1)^{2}$
$n>4 \sqrt{q} \Rightarrow E\left(\mathbb{F}_{q}\right)$ has a unique subgroup of order n
$(\sqrt{q}+1)^{2}-(\sqrt{q}-1)^{2}=4 \sqrt{q}$

Domain parameters validation

One should always validate domain parameters before use

- to prevent the insertion of invalid domain parameters
- to detect coding and transmission errors

Hasse's theorem: $(\sqrt{q}-1)^{2} \leq \# E\left(\mathbb{F}_{q}\right) \leq(\sqrt{q}+1)^{2}$
$n>4 \sqrt{q} \Rightarrow E\left(\mathbb{F}_{q}\right)$ has a unique subgroup of order n
$(\sqrt{q}+1)^{2}-(\sqrt{q}-1)^{2}=4 \sqrt{q} \Rightarrow$
\exists a unique $h: \quad(\sqrt{q}-1)^{2} \leq n h \leq(\sqrt{q}+1)^{2}$

Key generation

$(q, F R, a, b, G, n, h)$ are the domain parameters

Key generation

$(q, F R, a, b, G, n, h)$ are the domain parameters
Key generation:

Key generation

$(q, F R, a, b, G, n, h)$ are the domain parameters

Key generation:

- Select a random integer $1 \leq d \leq n-1 \Rightarrow d$ is a private key

Key generation

$(q, F R, a, b, G, n, h)$ are the domain parameters
Key generation:

- Select a random integer $1 \leq d \leq n-1 \Rightarrow d$ is a private key
- Compute $Q=d G \Rightarrow Q$ is a public key

Key generation

$(q, F R, a, b, G, n, h)$ are the domain parameters

Key generation:

- Select a random integer $1 \leq d \leq n-1 \Rightarrow d$ is a private key
- Compute $Q=d G \Rightarrow Q$ is a public key

Public key validation:

Key generation

$(q, F R, a, b, G, n, h)$ are the domain parameters
Key generation:

- Select a random integer $1 \leq d \leq n-1 \Rightarrow d$ is a private key
- Compute $Q=d G \Rightarrow Q$ is a public key

Public key validation:

- $Q \neq \mathcal{O}$
- $x_{Q}, y_{Q} \in \mathbb{F}_{q}$ with corresponding representation
- $Q \in E\left(\mathbb{F}_{q}\right)$, where $E\left(\mathbb{F}_{q}\right)$ is defined by a and b
- $n Q=\mathcal{O}$

Key generation

$(q, F R, a, b, G, n, h)$ are the domain parameters
Key generation:

- Select a random integer $1 \leq d \leq n-1 \Rightarrow d$ is a private key
- Compute $Q=d G \Rightarrow Q$ is a public key

Public key validation:

- $Q \neq \mathcal{O}$
- $x_{Q}, y_{Q} \in \mathbb{F}_{q}$ with corresponding representation
- $Q \in E\left(\mathbb{F}_{q}\right)$, where $E\left(\mathbb{F}_{q}\right)$ is defined by a and b
- $n Q=\mathcal{O}$
- $\Rightarrow Q$ is valid, otherwise - invalid

Signature generation

d is a private key, Q is a public key

Signature generation

d is a private key, Q is a public key

- Select a random integer $1 \leq k \leq n-1$

Signature generation

d is a private key, Q is a public key

- Select a random integer $1 \leq k \leq n-1$
- Compute $e=\operatorname{HASH}(m)$

Signature generation

d is a private key, Q is a public key

- Select a random integer $1 \leq k \leq n-1$
- Compute $e=\operatorname{HASH}(m)$
- Compute $r=x_{1} \bmod n$, where $\left(x_{1}, y_{1}\right)=k G$
- Compute $s=k^{-1}(e+d r) \bmod n$

Signature generation

d is a private key, Q is a public key

- Select a random integer $1 \leq k \leq n-1$
- Compute $e=\operatorname{HASH}(m)$
- Compute $r=x_{1} \bmod n$, where $\left(x_{1}, y_{1}\right)=k G$
- Compute $s=k^{-1}(e+d r) \bmod n$
- Go to step 1 if $r=0$ or $s=0$

Signature generation

d is a private key, Q is a public key

- Select a random integer $1 \leq k \leq n-1$
- Compute $e=\operatorname{HASH}(m)$
- Compute $r=x_{1} \bmod n$, where $\left(x_{1}, y_{1}\right)=k G$
- Compute $s=k^{-1}(e+d r) \bmod n$
- Go to step 1 if $r=0$ or $s=0$
- (r, s) is a signature for the message m

Signature verification

Signature verification

- Verify that $1 \leq r, s \leq n-1$

Signature verification

- Verify that $1 \leq r, s \leq n-1$
- Compute $e=\operatorname{HASH}(m)$

Signature verification

- Verify that $1 \leq r, s \leq n-1$
- Compute $e=\operatorname{HASH}(m)$
- Compute $w=s^{-1} \bmod n$

Signature verification

- Verify that $1 \leq r, s \leq n-1$
- Compute $e=\operatorname{HASH}(m)$
- Compute $w=s^{-1} \bmod n$
- Compute $u_{1}=(e w) \bmod n$
- Compute $u_{2}=(r w) \bmod n$
- Compute $\left(x_{1}, y_{1}\right)=u_{1} G+u_{2} Q$

Signature verification

- Verify that $1 \leq r, s \leq n-1$
- Compute $e=\operatorname{HASH}(m)$
- Compute $w=s^{-1} \bmod n$
- Compute $u_{1}=(e w) \bmod n$
- Compute $u_{2}=(r w) \bmod n$
- Compute $\left(x_{1}, y_{1}\right)=u_{1} G+u_{2} Q$
- Accept the signature $\Leftrightarrow x_{1}=r \bmod n$

ECDSA Correctness

The algorithm always accepts the true signatures:

ECDSA Correctness

The algorithm always accepts the true signatures:

If a signature (r, s) on a message m was indeed generated
using a secret key $d \Rightarrow s=k^{-1}(e+d r) \bmod n$

ECDSA Correctness

The algorithm always accepts the true signatures:

If a signature (r, s) on a message m was indeed generated
using a secret key $d \Rightarrow s=k^{-1}(e+d r) \bmod n$
$\Rightarrow k \equiv(e+d r) s^{-1} \equiv(e+d r) w \equiv u_{1}+d u_{2} \bmod n$

ECDSA Correctness

The algorithm always accepts the true signatures:
If a signature (r, s) on a message m was indeed generated
using a secret key $d \Rightarrow s=k^{-1}(e+d r) \bmod n$
$\Rightarrow k \equiv(e+d r) s^{-1} \equiv(e+d r) w \equiv u_{1}+d u_{2} \bmod n$
$\Rightarrow u_{1} G+u_{2} Q=\left(u_{1}+d u_{2}\right) G=k G \quad \Rightarrow \quad r=v$

Comparing DSA and ECDSA

Comparing DSA and ECDSA

- The basic multiplicative group:

The subgroup of order q of \mathbb{Z}_{p}^{*} generated by $g \rightarrow$
The subgroup of order n of $E\left(\mathbb{F}_{q}\right)$ generated by G

Comparing DSA and ECDSA

- The basic multiplicative group:

The subgroup of order q of \mathbb{Z}_{p}^{*} generated by $g \rightarrow$
The subgroup of order n of $E\left(\mathbb{F}_{q}\right)$ generated by G

- The construction of r :

Comparing DSA and ECDSA

- The basic multiplicative group:

The subgroup of order q of \mathbb{Z}_{p}^{*} generated by $g \rightarrow$
The subgroup of order n of $E\left(\mathbb{F}_{q}\right)$ generated by G

- The construction of r :
$r=\left(g^{k} \bmod p\right) \bmod q$

Comparing DSA and ECDSA

- The basic multiplicative group:

The subgroup of order q of \mathbb{Z}_{p}^{*} generated by $g \rightarrow$
The subgroup of order n of $E\left(\mathbb{F}_{q}\right)$ generated by G

- The construction of r :
$r=\left(g^{k} \bmod p\right) \bmod q \rightarrow$
$r=x_{1} \bmod n$, where $\left(x_{1}, y_{1}\right)=k G$

Not included

- Security
- Known attacks
- Implementation
- Interoperability
- ECDSA standarts
- Recommended elliptic curves

Thank you for your attention!

D. Johnson, A. Menezes, S. Vanstone: The Elliptic Curve Digital Signature Algorithm (ECDSA). 2001

