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Terminology

Cryptography (from Greek ”hidden” and ”write”) is the study of
message secrecy
Modern meaning: a branch of the mathematical study of
information and especially its transmission from place to place

The primary purpose was confidentiality

The cipher consists of two algorithms:

Encryption is the process of converting ordinary information
(plaintext) into a ciphertext

Decryption is the reverse process

A key is a secret parameter for the cipher algorithm
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Modern cryptography

Symmetric-key cryptography (until 1976):

a single (secret) key for both encryption and decryption

a significant drawback : it requires the prior agreement
about the key, using a secure channel

Public-key cryptography (invented in 1976 by W.Diffie and
M.Hellman):

two different, but mathematically related keys

public - for encryption, private - for decryption

private key cannot be practically derived from public key
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Public-key cryptography

Public-key encryption: a message is encrypted with users
public key, but cannot be decrypted without the corresponding
private key ⇒ Confidentiality

Digital signatures: a message is signed with users private
key, but can be verified by anyone who has access to the users
public key ⇒ Authenticity

The main idea: security is based on the computational complexity
of ”hard” problems:

integer factorization problem

discrete logarithm problem
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Overview of Digital Signatures

RSA was invented in 1978 by Ronald Rivest, Adi Shamir and
Leonard Adleman and its security is based on the integer
factorization problem.

DSA (Digital Signature Algorithm) was developed in 1991
and is related to the discrete logarithm problem

ECDSA (Elliptic Curve Digital Signature Algorithm) is a
modification of DSA involving elliptic curve groups, which was
proposed in 1992 by Scott Vanstone. It provides smaller key
sizes for the same security level and that’s why it has become
the most popular digital signature.
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Description

A key generation algorithm G ⇒ a key pair (PK ,SK ),
where PK is a public key and SK is a secret key

A signing algorithm S ⇒ a signature σ = S(m,SK ),
where m is the original message

A verifying algorithm V ⇒ V (m,PK , σ) = yes/no

Remark: Public-key systems are computationally expensive ⇒
in practice, a message is hashed (using a cryptographic hash
function) and the smaller ”hash value” is signed ⇒ a receiver
computes the hash of the message himself and verifies it.
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One-way function

Definition

A one-way function is a function that is easy to compute, but
hard to invert (”easy” = in probabilistic polynomial time)

Definition

A trapdoor one-way function is hard to invert without knowing
some secret information - a trapdoor

Remark: The existence of such functions is an open question!
Candidates:

a product of two large primes (RSA)

an exponentiation in the finite field (DSA, ECDSA)
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Discrete Logarithm

(G , ·) is a finite multiplicative group (For DSA: G = Z∗p)
g ∈ G of order n ⇒ 〈g〉 = {g i : 0 ≤ i ≤ n − 1}
is a cyclic subgroup of order n

Definition

Discrete logarithm problem (DLP): y ∈ 〈g〉
Find a unique integer x , 0 ≤ x ≤ n − 1 : y = g x ⇒ x = loggy
It is the inverse operation to discrete exponentiation

Remark: No efficient algorithm for computing discrete logarithms
is known ⇒ discrete exponentiation is a candidate for one-way
function
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DSA (Digital Signature Algorithm)

Domain parameters generation:

Select a 160-bit prime q and 1024-bit prime p: q|p − 1

Select h ∈ Z∗p, compute g = h(p−1)/q mod p (until g 6= 1)
⇒ g is a generator of a cyclic subgroup of order q in Z∗p
(p, q, g) are domain parameters

Key generation:

Select a random integer 1 ≤ x ≤ q − 1 ⇒ x is a private key

Compute y = g x mod p ⇒ y is a public key
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DSA Signature generation

Select a random integer 1 ≤ k ≤ q − 1

Compute e = HASH(m), where HASH is a
cryptographic hash function, such as SHA− 1

Compute r = (gk mod p) mod q

Compute s = (k−1(e + xr)) mod q,

Go to step 1 if r = 0 or s = 0

(r , s) is a signature for the message m
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DSA Signature verification:

Verify that 1 ≤ r , s ≤ q − 1

Compute e = HASH(m)

Compute w = s−1 mod q

Compute u1 = (ew) mod q

Compute u2 = (rw) mod q

Compute v = (gu1yu2 mod p) mod q

Accept the signature ⇔ v = r
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DSA Correctness

g = h(p−1)/q mod p ⇒ gq ≡ h(p−1) ≡ 1 mod p

(Fermat’s little theorem) ⇒ g has order q

s = k−1(e + xr) mod q ⇒

k ≡ (e + xr)s−1 ≡ (e + xr)w mod q ⇒

gk ≡ g ewg xrw ≡ g ewy rw ≡ gu1yu2 mod p ⇒

r = (gk mod p) mod q = (gu1yu2 mod p) mod q = v

The algorithm always accepts the true signatures
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Finite fields

Definition

A finite field is a finite set of elements F with ” + ” and ” · ”
The order of F is the number of its elements

Theorem

∃ a finite field of order q ⇔ q = pm , where p is prime,
and this field is essentially unique ⇒ it is denoted by Fq

p is called a characteristic of Fq

m is called the extension degree of Fq

For elliptic curve cryptography we need one of two cases:
q = p , where p is an odd prime, or q = 2m
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The finite field Fp

The finite field Fp, called a prime field, is the set of integers
{0, 1, 2, ..., p − 1} with the following operations:

Addition: a, b ∈ Fp ⇒ a + b = r , where r = (a + b) mod p,
0 ≤ r ≤ p − 1

Multiplication: a, b ∈ Fp ⇒ a · b = s, where s = a · b mod p,
0 ≤ s ≤ p − 1

Inversion: a ∈ Fp, a 6= 0 ⇒ ∃ a−1 ∈ Fp : a · a−1 = 1

15 / 38



Introduction to Cryptography Digital Signatures Finite fields Elliptic curves ECDSA

The finite field Fp

The finite field Fp, called a prime field, is the set of integers
{0, 1, 2, ..., p − 1} with the following operations:

Addition: a, b ∈ Fp ⇒ a + b = r , where r = (a + b) mod p,
0 ≤ r ≤ p − 1

Multiplication: a, b ∈ Fp ⇒ a · b = s, where s = a · b mod p,
0 ≤ s ≤ p − 1

Inversion: a ∈ Fp, a 6= 0 ⇒ ∃ a−1 ∈ Fp : a · a−1 = 1

15 / 38



Introduction to Cryptography Digital Signatures Finite fields Elliptic curves ECDSA

The finite field F2m

The finite field F2m , called a binary finite field, is a vector space
of dimension m over the field F2 = {0, 1}

⇒ ∃ a basis {α0, α1, ..., αm−1} ∈ F2m : ∀α ∈ F2m

α = a0α0 + a1α1 + ... + am−1αm−1, where ai ∈ {0, 1}

α ↔ (a0a1...am−1)

Remark: We are interested in two kinds of bases:
polynomial bases and normal bases
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Polynomial basis representation

Definition

The reduction polynomial is an irreducible polynomial of deg m
over F2: f (x) = xm + fm−1x

m−1 + ... + f2x
2 + f1x + f0,

where fi ∈ {0, 1} for i = 0,m − 1

Field elements:

F2m = {a(x) = am−1x
m−1 + ... + a1x + a0 : ai ∈ {0, 1}}

F2m = {(am−1...a1a0) : ai ∈ {0, 1}}

Identities: (1) = (00...01) (0) = (00...00)
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Field operations

Addition: a = (am−1...a1a0), b = (bm−1...b1b0) ∈ F2m

⇒ a + b = c = (cm−1...c1c0), where ci = (ai + bi ) mod 2

Multiplication: a = (am−1...a1a0), b = (bm−1...b1b0) ∈ F2m

⇒ a · b = r = (rm−1...r1r0),
where r(x) = a(x) · b(x) mod f (x) over F2

Inversion: a = (am−1...a1a0) ∈ F2m , a 6= 0
⇒ ∃ ! a−1 ∈ F2m : a · a−1 = 1
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Normal basis representation

Definition

A normal basis of F2m over F2 is a basis of the form
{β, β2, β22

, ..., β2m−1}, where β ∈ F2m

Field elements:

F2m = {a =
m−1∑
i=0

aiβ
2i

: ai ∈ {0, 1}}

F2m = {(a0a1...am−1) : ai ∈ {0, 1}}

Identities: (1) = (11...11) (0) = (00...00)
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Field operations

Addition: a = (a0a1...am−1), b = (b0b1...bm−1) ∈ F2m

⇒ a + b = c = (c0c1...cm−1), where ci = (ai + bi ) mod 2

Squaring: a = (a0a1...am−1) ∈ F2m

a2 =
m−1∑
i=0

aiβ
2i+1

=
m−1∑
i=0

ai−1β
2i

= (am−1a0a1...am−2)

Multiplication: with use of Gaussian normal basis (GNB)

Inversion: a ∈ F2m , a 6= 0 ⇒ ∃ ! a−1 ∈ F2m : a · a−1 = 1
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Elliptic curves over Fp

Definition

Let p > 3 be a prime number, a, b ∈ Fp: 4a3 + 27b2 6= 0 mod p
E (Fp) = {(x , y) ∈ Fp × Fp : y2 = x3 + ax + b } ∪
∪ {O − point at infinity} is an elliptic curve over Fp

Remark: The requirement 4a3 + 27b2 6= 0 means that the curve is
non-singular, i.e. has no cusps and self-intersections
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Group law (Geometric description)

Point addition P + Q + R = O
Point doubling P + 2Q = O

Remark: Together with this addition operation a set E (Fp) forms
a group with O serving as identity
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Group law (Analitic description)

P +O = O + P = P ∀P ∈ E (Fp)

P = (x , y) ∈ E (Fp) ⇒ −P = (x ,−y) ∈ E (Fp)

P = (x1, y1),Q = (x2, y2) ∈ E (Fp): P 6= ±Q
⇒ P + Q = (x3, y3):

x3 =

(
y2 − y1

x2 − x1

)2

− x1 − x2,

y3 =

(
y2 − y1

x2 − x1

)
(x1 − x3)− y1

P = (x1, y1) ∈ E (Fp): P 6= −P ⇒ 2P = (x3, y3):

x3 =

(
3x2

1 + a

2y1

)2

− 2x1, y3 =

(
3x2

1 + a

2y1

)
(x1 − x3)− y1
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Elliptic curves over F2m

Definition

a, b ∈ F2m , b 6= 0 ⇒ an elliptic curve over F2m

E (F2m) = {(x , y) ∈ F2m × F2m : y2 + xy = x3 + ax2 + b } ∪
∪ {O − point at infinity}

Remark: The geometric description of an addition operation is
similar to the case of E (Fp)

Together with this addition operation a set E (F2m) forms
a group with O serving as identity
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Group law (Analitic description)

P +O = O + P = P ∀P ∈ E (F2m)

P = (x , y) ∈ E (F2m) ⇒ −P = (x , x + y) ∈ E (F2m)

P = (x1, y1),Q = (x2, y2) ∈ E (F2m): P 6= ±Q
⇒ P + Q = (x3, y3):

x3 =

(
y1 + y2

x1 + x2

)2

+
y1 + y2

x1 + x2
+ x1 + x2 + a,

y3 =

(
y1 + y2

x1 + x2

)
(x1 + x3) + x3 + y1

P = (x1, y1) ∈ E (F2m): P 6= −P ⇒ 2P = (x3, y3):

x3 = x2
1 +

b

x2
1

, y3 = x2
1 +

(
x1 +

y1

x1

)
x3 + x3
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Basic facts

E (Fq) with the defined addition operation forms a group with
point at infinity O serving as identity

Hasse’s theorem:

#E (Fq) = q + 1− t, where |t| ≤ 2
√

q

#E (Fq) is called the order, t is the trace of an elliptic curve

E (Fq) ∼= Zn1 × Zn2 , where n2|n1 and n2|q − 1

If n2 = 1 ⇒ E (Fq) ∼= Zn is cyclic of order n = n1 ⇒

∃ a generator G ∈ E (Fq): E (Fq) = {kG : 0 ≤ k ≤ n − 1}
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ECDLP

∀G ∈ E (Fq) of prime order n generates a cyclic subgroup

(O,G , 2G , 3G , ..., (n − 1)G ) ⇔ (e, g , g2, g3, ..., g (n−1))

where g is an integer modulo prime n

Definition

Elliptic curve discrete logarithm problem (ECDLP):
Find k for given points G and kG , where 0 ≤ k ≤ n − 1
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ECDSA

The discrete logarithm problem on elliptic curve groups is
believed to be more difficult than the corresponding problem
in the multiplicative group of the underlying finite field.

The keys can be chosen much shorter for a comparable level
of security

As for other popular public-key cryptosystems,
no mathematical proof of difficulty has been published

It was accepted in 1999 as an ANSI (American National
Standarts Institute) standard
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Domain parameters

The domain parameters are: an elliptic curve E (Fq) of
characteristic p and a base point G ∈ E (Fq)

a field size q = p or 2m

the representation FR of Fq

a, b ∈ Fq, which define the equation of EC:{
y2 = x3 + ax + b in the case p > 3

y2 + xy = x3 + ax2 + b in the case p = 2

a generator G = (xG , yG ) ∈ E (Fq) of prime order

the order n of G is a large prime and n > 4
√

q

the cofactor h = #E (Fq)/n (h ≤ 4)
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Domain parameters generation

The order of the curve should be divisible by a large prime n

One should avoid ”weak” curves: for example,
E (F2m) with non prime m or #E (Fq) = q

A curve can be selected verifiably at random:
The parameters of the curve a and b are the outputs of the
one-way cryptographic hash function, such as SHA− 1

Other methods:
Complex multiplication method
Koblitz curves
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Domain parameters validation

One should always validate domain parameters before use

to prevent the insertion of invalid domain parameters

to detect coding and transmission errors

Hasse’s theorem: (
√

q − 1)2 ≤ #E (Fq) ≤ (
√

q + 1)2

n > 4
√

q ⇒ E (Fq) has a unique subgroup of order n

(
√

q + 1)2 − (
√

q − 1)2 = 4
√

q ⇒

∃ a unique h : (
√

q − 1)2 ≤ nh ≤ (
√

q + 1)2
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Key generation

(q,FR, a, b,G , n, h) are the domain parameters

Key generation:

Select a random integer 1 ≤ d ≤ n − 1 ⇒ d is a private key

Compute Q = dG ⇒ Q is a public key

Public key validation:

Q 6= O
xQ , yQ ∈ Fq with corresponding representation

Q ∈ E (Fq), where E (Fq) is defined by a and b

nQ = O
⇒ Q is valid, otherwise - invalid
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Signature generation

d is a private key, Q is a public key

Select a random integer 1 ≤ k ≤ n − 1

Compute e = HASH(m)

Compute r = x1 mod n, where (x1, y1) = kG

Compute s = k−1(e + dr) mod n

Go to step 1 if r = 0 or s = 0

(r , s) is a signature for the message m
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Signature verification

Verify that 1 ≤ r , s ≤ n − 1

Compute e = HASH(m)

Compute w = s−1 mod n

Compute u1 = (ew) mod n

Compute u2 = (rw) mod n

Compute (x1, y1) = u1G + u2Q

Accept the signature ⇔ x1 = r mod n
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ECDSA Correctness

The algorithm always accepts the true signatures:

If a signature (r , s) on a message m was indeed generated

using a secret key d ⇒ s = k−1(e + dr) mod n

⇒ k ≡ (e + dr)s−1 ≡ (e + dr)w ≡ u1 + du2 mod n

⇒ u1G + u2Q = (u1 + du2)G = kG ⇒ r = v
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Comparing DSA and ECDSA

The basic multiplicative group:

The subgroup of order q of Z∗p generated by g →

The subgroup of order n of E (Fq) generated by G

The construction of r:

r = (gk mod p) mod q →

r = x1 mod n, where (x1, y1) = kG
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Not included

Security

Known attacks

Implementation

Interoperability

ECDSA standarts

Recommended elliptic curves
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Thank you for your attention!

D. Johnson, A. Menezes, S. Vanstone: The Elliptic Curve
Digital Signature Algorithm (ECDSA). 2001
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