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Abstract

This article gives an brief introduction into differential polynomials, ideals and manifolds
and their correlations. Some examples for bad behaviour (in comparison to algebraic polyno-
mials) are given.
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1 Algebraic Aspects

1.1 Definitions

Definition 1.1 (Differential Ring) A differential ring R is a ring with differential opera-
tors ∆ = {δ1, . . . , δm} and for all i, j:

• δi(ab) = (δia)b + a(δib)

• δi(a + b) = δia + δib

• δiδj = δjδi

Θ = ∆∗ is called the free abelian monoid of derivations.

Example 1.2 • Let R be an arbitrary ring and δ(x) = 0 for x ∈ R. Then R is a differ-
ential ring with ∆ = {δ}.

• Consider the polynomials over a ring R with variables θxi for θ ∈ Θ and i ∈ {1, . . . , n}.
They form an differential ring denoted by R{X} = R{x1, . . . , xn}.
The degree deg(f) for a monomial f =

∏s
i=1 vαi

i is defined as in the algebraic case:
deg(f) =

∑s
i=1 αi where vi = θixi with θi ∈ Θ, i ∈ {1, . . . , n}

On the other hand one defines the order of a variable v to be the number of differentiations
contained in v, so ord(δαx) =

∑n
i=1 αi with multiindex α.

To combine these two, one defines the weight wt(f) =
∑r

i=1 βiord(vi).

Definition 1.3 (Differential Ideal) An differential ideal I is a ideal of R with ∀δ ∈ ∆ :
δI ⊂ I.
The differential ideal generated by a set G is denoted by [G].

Example 1.4 (Differential Ideal) The following polynomials are members of the differen-
tial ideal I generated by x2 over F{x} with ∆ = {d} (x(k) := dkx):
(You obtain them by differentiating x2 (xp for the general case) and then cancelling terms by
linear combinations.)

1. fx2 for f ∈ F{x}
2. fx(1)x

3. f(x(2)x + (x(1))2) and therefore f(x(1))2x

4. f(2x(1)x(2)x + (x(1))3) and therefore f(x(1))3

5. f(x(k))s for some s > 1

6. . . .

1.2 Nonrecursive Ideals

Example 1.5 Consider over Z{x} with ∆ = {d} the functions
fi = (dix)2 for i ≥ 0 and Ik = [f0, . . . , fk] Then I claim: I0 ( I1 ( . . .

Proof First note that deg(fi) = 2,wt(fi) = 2i.
If we differentiate a monomial, all resulting terms have the same degree as the original mono-
mial. Therefore djfi is homogeneous of degree 2. The weight of the terms increases by one
per differentiation and therefore djfi is isobaric of weight 2i + j.
Now assume fn ∈ In−1, this means fn =

∑n−1
i=0

∑ki
j=0 αi,jd

j(fi).
If deg(αi,j) ≥ 1 for some i, j, these terms must cancel because deg(fn) = 2 and the derivatives
of fi are homogeneous. So we can assume that αi,j ∈ Z.
Analogously we can assume αi,j = 0 for j 6= 2n−2i because wt(fn) = 2n and djfi are isobaric
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of weight 2i + j.
So the equation simplifies to fn = c0d

2nf0 + c1d
(2n−2)f1 + . . . + cn−1d

2fn−1 for ci ∈ Z.
d2nf0 contains the monomial x(2n)x. No other term contains an x (that is not derivated).
So c0 must be zero. For analogous reasons also ci must be 0. But fn 6= 0, so we have a
contradiction. tu

Example 1.6 Let S ⊂ N0 and IS = [{fi : i ∈ S}]. Then

fi ∈ IS ⇔ i ∈ S

. (This follows from a proof similar to the one above.) So for a nonrecursive set S ⊂ N0 there
is no algorithm to decide if a given differential polynomial g is in IS.

This means that we have to consider nice ideals if we want to do calculaions, e.g. recursively
generated or even finitely generated ideals.

1.3 Reduction

Definition 1.7 (Ranking) Let < be a total ordering on the set ΘX of differential variables
which fulfills the following properties:

• v < w ⇒ θv < θw for all v, w ∈ ΘX, θ ∈ Θ

• v ≤ θv for v ∈ ΘX

Then < is called ranking of ΘX.

Now let be X = {x1, . . . , xn} with x1 < . . . < xn.

Example 1.8 (Lexicographic Ranking on ΘX) Consider a monomial ordering < on the
differential operators Θ. Then the lexicographic ordering is given by θxi < ηxk iff i < k or
i = k and θ < η.

Example 1.9 (Derivation Ranking on ΘX) Consider a monomial ordering < on the dif-
ferential operators Θ. Then the derivation ordering is given by θxi < ηxk iff θ < η or θ = η
and i < k.

For |X| = |∆| = 1 there is only one ranking: x(i) < x(i+1)

Definition 1.10 (Admissible Ordering) Let < be a total ordering on the set M of mono-
mials of F{X}. Then < is called admissible iff

1. The restriction of < to ΘX is a ranking.

2. 1 ≤ f for all f ∈ M

3. f < g ⇒ hf < hg for all f, g, h ∈ M

Let be f =
∏r

i=1 vαi
i with v1 > . . . > vr and g =

∏s
i=1 wβi

i with w1 > . . . > ws.

Example 1.11 (Lexicographic Ordering on M) Given an ranking on ΘX.
f <lex g iff ∃k ≤ r, s : vi = wi for i < k and vk < wk or vk = wk and αi < βi or vi = wi for
i ≤ r and r < s.

Example 1.12 (Graded (by Degree) Reverse Lexicographic Ordering on M) Given
an ranking on ΘX.
f <degrevlex g iff deg(f) < deg(g) or deg(f) = deg(g) and f <revlex g.
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Definition 1.13 Let f ∈ R{X} be an differential polynomial and fix a monomial ordering.
Then lm(f) denotes the leading monomial of f with respect to the monomial ordering. lc(f)
denotes the leading coefficient of f and lt(f) = lc(f)lm(f) the leading term of f .

Definition 1.14 f is reduced by g to h iff ∃θ ∈ Θ,m ∈ M such that lm(f) = mlm(θg) and

h = f − lc(f)

lc(g)
mθg.

f is reducable by g, iff there is an h such that f is reduced by g to h.

Procedure : Reduce ( f , g , r = 1)

i f ( deg ( lm( f ) ) < deg ( lm( g ) ) | | wt( lm( f ) ) < wt( lm( g ) ) )
re turn f ;

i f ( lm( g ) | lm( f ) )
re turn Reduce ( f − ( l t ( f )/ l t ( g ) )∗ g , g ) ;

f o r ( i = r ; i <= m; i++) {
t = Reduce ( f , d e l t a ( g , i ) , i ) ;
i f ( t != f ) re turn Reduce ( t , g ) ;

}
re turn f ;

This procedure terminates. On every recursive call either f is reduced and therefore the
leading monomial gets smaller or g is derivated (delta(g, i)) and therefore the weight of g
increases. So after a finite number of calls Reduce terminates.
The returned polynomial cannot be reduced by g further because in Reduce the recuction
with respect to all derivatives of g (which have no bigger weight or degree than f) is tried.
This process can - as in the algebraic case - be generalized to a reduction by several poly-
nomials, but in general the remainder of the reduction is dependent on the order of these
polynomials.

Definition 1.15 (Monoideal) E ⊂ M is called a monoideal iff ME ⊂ E and lm(∆E) ⊂ E.

Please note that in contrast to the algebraic case the definition of the monoideal needs an
monomial ordering and is highly dependend on this (as we will see in the examples).

Definition 1.16 (Standard Basis) G ⊂ I is called a standard basis iff lm(G) generates
lm(I) as monoideal.

We now will investigate the monoideals generated by the polynomial x2, for which we
already considered the differential ideal.

Example 1.17 (Monoideal - Lexicographic Ordering) The following monomials are mem-
bers of the monoideal I generated by x2 over F{x} with ∆ = {d} using lexicographic ordering
(x(k) := dkx):

1. mx2 for m ∈ M

2. mx(1)x

3. mx(2)x

4. mx(k)x

5. BUT (x(k))r /∈ I

Example 1.18 (Monoideal - Graded Reverse Lexicographic Ordering) The following
monomials are members of the monoideal I generated by x2 over F{x} with ∆ = {′} using
graded lexicographic ordering (x(k) := dkx):
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1. mx2 for m ∈ M

2. mx(1)x

3. m(x(1))2

4. mx(1)x(2)

5. m(x(2))2

6. mx(k)x(k+1)

7. mx2
(k)

Theorem 1 Let G be a set of polynomials, I a differential ideal. Then the following propo-
sitions are equivalent:

1. G is a standard basis of I.

2. For f ∈ F{X} yields: f ∈ I ⇔ f is reduced to 0 by G.

Proof

⇒ Let 0 6= f ∈ I. Then f is reducible by G because the leading monomial of f is in
the monoideal generated by I and therefore also in the monoideal generated by G. The
reduction of f is h ∈ I. Therefore h is reducible again until h = 0. The process terminates
because the leading monomial of the polynomial gets smaller in each reduction.

⇐ Let g ∈ G. Then obviously g is reduced to 0 by G and therefore G ⊂ I.
Let f ∈ I. Then f is reduced to 0 by G by definition and therefore lmI ⊂ lm(MΘlm(G))
(otherwise reduction would fail).

tu

Example 1.19 Remember I = [x2] over F{x} with ∆ = {′}. Then for every r ≥ 0 there is
an q > 1 such that (x(r))q ∈ I.

• LEX: lm(d(
∏r

i=1 vαi
i )) = d(v1)vα1−1

1

∏r
i=2 vαi

i if v1 > . . . > vr.
Therefore (x(r))s for every r ≥ 0 for some s > 0 is in every standard basis (→ infinite).

• DEGREVLEX: x2 is a standard basis.

Example 1.20 Conjecture: There is no finite standard basis for [xx′] for no monomial or-
dering.

Lemma 1.21 The families of monomials

1. xrx(r) for r ≥ 1

2. xtr
(r) for r ≥ 1 and some tr ≥ r + 2

3. x2
(r)x

2
(r+2) · · ·x(r+2kr) for r ≥ 0 and some kr

4. x2
(r)x

2
(r+3) · · ·x(r+3lr) for r ≥ 0 and some lr ≥ 2r − 1

belong to the ideal [xx′].

This lemma (without proof) implies that all mentioned families of monomials have to be in
the monoideal generated by the standard basis.
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2 Geometric Ascpects

2.1 Manifolds

We choose e.g. F as set of all meromorphic function.

Definition 2.1 Let Σ be a system of differential polynomials over F{x1, . . . , xn}, F1 an ex-
tension of F .
If Y = (y1, . . . , yn) ∈ Fn

1 such that for all f ∈ Σ f(y1, . . . , yn) = 0, then Y is a zero of Σ. The
set of all zeros of Σ (for all possible extentions of F ) is called manifold.

• Let M1,M2 be the manifolds of Σ1,Σ2. If M1 ∩M2 6= ∅ then M1 ∩M2 is the manifold
of Σ1 + Σ2. M1 ∪M2 is the manifold of {AB : A ∈ Σ1, B ∈ Σ2}.

• M is called reducible if it is union of two manifolds M1,M2 6= M .

• Otherwise it is called irreducible.

Lemma 2.2 M is irreducible ⇔
(AB vanishes over M ⇒ A or B vanishes over M)

Proof

⇒ Assume ∃A,B such that AB vanishes over M , but A, B don’t. Then the manifolds of
Σ + A, Σ + B are proper parts of M , their union is M .

⇐ Let M be proper union of M1,M2 with systems Σ1,Σ2. Then ∃Ai ∈ Σi be differential
polynomials that do not vanish over M . A1A2 vanishes over M .

tu

Theorem 2 Every manifold is the union of a finite number of irreducible manifolds.

Consider differential polynomials over F{x} with ∆ = {d} and F the meromorphic func-
tions:

Example 2.3 Let Σ = {f} with f = x2
(1) − 4x. Then df = 2x(1)(x(2) − 2).

• x(1) = 0 has the solution x(t) = c. Looking at f , only c = 0 is valid.

• x(2) − 2 = 0 has the solution x(t) = (x + b)2 + c. Again c = 0.

• There are no other solutions.

2.2 Algebraic Representation

Theorem 3 Let Σ = [f1, . . . , fk] with manifold M . If g vanishes over M then gs ∈ Σ for
some s ∈ N0.

So the manifolds are represented by perfect ideals.

Theorem 4 Every perfect differential ideal has a finite basis.

Let Σ be a finite system of differential polynomials.
Question: Is f ∈ Σ?

• Resolve Σ into prime ideals.

• f must be member of each of these prime ideals.

• Test if the remainder of f with respect to the characteristic sets of the prime ideals is
zero.
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3 Conclusion

We have seen that differential polynomials can be used to model differential equation systems.
There are many problems in contrast to algebraic polynomials. E.g. there are differential
ideals that have no finite (even no recursive) basis and there are finitely generated ideals
that have (presumably) no finite standard basis. The difficulties that arise when trying to
find standard bases are also caused by the fact that differential monomial ideals depend on
ordering.
We saw that manifolds (solutions of differential equation systems) correspond to perfect ideals,
that are easier to handle than general differential ideals.
To conclude we remember that for some important problems finite algorithms exist, e.g. for
the reduction with respect to a finite basis and the membership test for perfect ideals.
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