Course "Polynomials: Their Power and How to Use Them", JASS'07

Differential Polynomials

Stephan Ritscher

Fakultät für Informatik TU München

March 22, 2007

Stephan Ritscher: Differential Polynomials

Differential Polynomial Ideals - TOC

Algebraic Aspects

Definitions Nonrecursive Ideals Reduction

Differential Polynomial Ideals - TOC

Algebraic Aspects

Definitions Nonrecursive Ideals Reduction

Geometric Ascpects

Manifolds Algebraic Representation

Differential Polynomial Ideals - TOC

Algebraic Aspects

Definitions Nonrecursive Ideals Reduction

Geometric Ascpects

Manifolds Algebraic Representation

Conclusion

Differential Ring

Definition 1 (Differential Ring)

Differential Ring

Definition 1 (Differential Ring)

$$\blacktriangleright \ \delta_i(ab) = (\delta_i a)b + a(\delta_i b)$$

Differential Ring

Definition 1 (Differential Ring)

•
$$\delta_i(ab) = (\delta_i a)b + a(\delta_i b)$$

$$\blacktriangleright \delta_i(a+b) = \delta_i a + \delta_i b$$

Differential Ring

Definition 1 (Differential Ring)

$$\bullet \ \delta_i(ab) = (\delta_i a)b + a(\delta_i b)$$

$$\triangleright \ \delta_i(a+b) = \delta_i a + \delta_i b$$

$$\blacktriangleright \ \delta_i \delta_j = \delta_j \delta_i$$

Differential Ring

Definition 1 (Differential Ring)

A differential ring R is a ring with differential operators $\Delta = \{\delta_1, \dots, \delta_m\}$ and for all i, j:

$$\blacktriangleright \ \delta_i(ab) = (\delta_i a)b + a(\delta_i b)$$

$$\triangleright \ \delta_i(a+b) = \delta_i a + \delta_i b$$

$$\blacktriangleright \ \delta_i \delta_j = \delta_j \delta_i$$

 Θ denotes the free abelian monoid generated by $\Delta,$ alias $\Delta^*,$ members of Θ are called *derivations*.

Differential Ideal

Definition 2 (Differential Ideal)

An *differential ideal I* is a ideal of *R* with $\forall \delta \in \Delta : \delta I \subset I$. We write:

[S] differential ideal generated by set S

 $\{S\}$ perfect differential ideal generated by set S

Example

Example 3 (Differential Ideal)

Members of the differential ideal I generated by x^2 over $F\{x\}$ with $\Delta = \{d\}$ $(x_{(k)} := d^k x)$:

Example

Example 3 (Differential Ideal)

Members of the differential ideal *I* generated by x^2 over $F\{x\}$ with $\Delta = \{d\} (x_{(k)} := d^k x):$ 1. fx^2 for $f \in F\{x\}$

Example

Example 3 (Differential Ideal)

Members of the differential ideal *I* generated by x^2 over $F\{x\}$ with $\Delta = \{d\} \ (x_{(k)} := d^k x):$ 1. fx^2 for $f \in F\{x\}$ 2. $fx_{(1)}x$

Example

Example 3 (Differential Ideal)

Members of the differential ideal *I* generated by x^2 over $F\{x\}$ with $\Delta = \{d\} (x_{(k)} := d^k x)$:

- 1. fx^2 for $f \in F\{x\}$
- 2. $f_{x(1)}x$
- 3. $f(x_{(2)}x + (x_{(1)})^2)$ and therefore $f(x_{(1)})^2x$

Example

Example 3 (Differential Ideal)

Members of the differential ideal *I* generated by x^2 over $F\{x\}$ with $\Delta = \{d\} \ (x_{(k)} := d^k x)$:

- 1. fx^2 for $f \in F\{x\}$
- 2. $f_{x(1)}x$
- 3. $f(x_{(2)}x + (x_{(1)})^2)$ and therefore $f(x_{(1)})^2x$
- 4. $f(2x_{(1)}x_{(2)}x + (x_{(1)})^3)$ and therefore $f(x_{(1)})^3$

Example

Example 3 (Differential Ideal)

Members of the differential ideal I generated by x^2 over $F\{x\}$ with $\Delta = \{d\}$ ($x_{(k)} := d^k x$):

- 1. fx^2 for $f \in F\{x\}$
- 2. $f_{x(1)}x$
- 3. $f(x_{(2)}x + (x_{(1)})^2)$ and therefore $f(x_{(1)})^2x$
- 4. $f(2x_{(1)}x_{(2)}x + (x_{(1)})^3)$ and therefore $f(x_{(1)})^3$
- 5. $f(x_{(k)})^s$ for some s > 1

Example

Example 3 (Differential Ideal)

Members of the differential ideal *I* generated by x^2 over $F\{x\}$ with $\Delta = \{d\} (x_{(k)} := d^k x)$:

1. fx^2 for $f \in F\{x\}$

2.
$$f_{x(1)}x$$

3.
$$f(x_{(2)}x + (x_{(1)})^2)$$
 and therefore $f(x_{(1)})^2x$

4.
$$f(2x_{(1)}x_{(2)}x + (x_{(1)})^3)$$
 and therefore $f(x_{(1)})^3$

5.
$$f(x_{(k)})^{s}$$
 for some $s > 1$
6. ...

Notation

$F\{X\}$	differential polynomials over field F with variables X
lm(f)	leading monomial of <i>f</i>
lc(f)	leading coefficient of f
lt(f)	= lc(f)lm(f) leading term of f
$\theta x = x_{(\theta)}$	derivation $ heta \in \Theta$ of variable x
$\operatorname{ord}(\delta^{\alpha} x)$	$=\sum_{i=1}^{n} \alpha_i$ order of $\delta^{\alpha} x$
$deg(v^eta)$	$=\sum_{i=1}^reta_i$ degree of $m{v}^eta$, $\delta^lpha\in\Theta$
$wt(v^eta)$	$=\sum_{i=1}^reta_i { m ord}(v_i)$ weight of v^eta

Nonrecursive Ideals

Example 4 Consider over $\mathbb{Z}\{x\}$ with $\Delta = \{d\}$: $f_i = (d^i x)^2$ for $i \ge 0$ and $I_k = [f_0, \dots, f_k]$. Then: $I_0 \subsetneq I_1 \subsetneq \dots$

Nonrecursive Ideals

Example 4 Consider over $\mathbb{Z}{x}$ with $\Delta = {d}$: $f_i = (d^i x)^2$ for $i \ge 0$ and $I_k = [f_0, \dots, f_k]$. Then: $I_0 \subsetneq I_1 \subsetneq \dots$

Nonrecursive Ideals

Example 4 Consider over $\mathbb{Z}{x}$ with $\Delta = {d}$: $f_i = (d^i x)^2$ for $i \ge 0$ and $I_k = [f_0, \dots, f_k]$. Then: $I_0 \subsetneq I_1 \subsetneq \dots$

Proof.

 deg(f_i) = 2, wt(f_i) = 2i ⇒ d^jf_i is homogeneous of degree 2 and isobaric of weight 2i + j

Nonrecursive Ideals

Example 4 Consider over $\mathbb{Z}\{x\}$ with $\Delta = \{d\}$: $f_i = (d^i x)^2$ for $i \ge 0$ and $I_k = [f_0, \dots, f_k]$. Then: $I_0 \subsetneq I_1 \subsetneq \dots$

- ▶ deg(f_i) = 2, wt(f_i) = 2i ⇒ d^jf_i is homogeneous of degree 2 and isobaric of weight 2i + j
- Assume $f_n = \sum_{i=0}^{n-1} \sum_{j=0}^{k_i} \alpha_{i,j} d^j(f_i)$

Nonrecursive Ideals

Example 4 Consider over $\mathbb{Z}{x}$ with $\Delta = {d}$: $f_i = (d^i x)^2$ for $i \ge 0$ and $I_k = [f_0, \dots, f_k]$. Then: $I_0 \subsetneq I_1 \subsetneq \dots$

- deg(f_i) = 2, wt(f_i) = 2i ⇒ d^jf_i is homogeneous of degree 2 and isobaric of weight 2i + j
- Assume $f_n = \sum_{i=0}^{n-1} \sum_{j=0}^{k_i} \alpha_{i,j} d^j(f_i)$
- If deg(α_{i,j}) ≥ 1, these terms must cancel (deg(f_n) = 2, derivatives of f_i are homogeneous).

Nonrecursive Ideals

Example 4 Consider over $\mathbb{Z}{x}$ with $\Delta = {d}$: $f_i = (d^i x)^2$ for $i \ge 0$ and $I_k = [f_0, \dots, f_k]$. Then: $I_0 \subsetneq I_1 \subsetneq \dots$

- ▶ deg(f_i) = 2, wt(f_i) = 2i ⇒ d^jf_i is homogeneous of degree 2 and isobaric of weight 2i + j
- Assume $f_n = \sum_{i=0}^{n-1} \sum_{j=0}^{k_i} \alpha_{i,j} d^j(f_i)$
- If deg(α_{i,j}) ≥ 1, these terms must cancel (deg(f_n) = 2, derivatives of f_i are homogeneous).
- \Rightarrow WLOG: $\alpha_{i,j} \in \mathbb{Z}$

Nonrecursive Ideals

Example 4 Consider over $\mathbb{Z}\{x\}$ with $\Delta = \{d\}$: $f_i = (d^i x)^2$ for $i \ge 0$ and $I_k = [f_0, \dots, f_k]$. Then: $I_0 \subsetneq I_1 \subsetneq \dots$

Proof.

- deg(f_i) = 2, wt(f_i) = 2i ⇒ d^jf_i is homogeneous of degree 2 and isobaric of weight 2i + j
- Assume $f_n = \sum_{i=0}^{n-1} \sum_{j=0}^{k_i} \alpha_{i,j} d^j(f_i)$
- If deg(α_{i,j}) ≥ 1, these terms must cancel (deg(f_n) = 2, derivatives of f_i are homogeneous).
- \Rightarrow WLOG: $\alpha_{i,j} \in \mathbb{Z}$

• $\alpha_{i,j} = 0$ for $j \neq 2n - 2i$ (wt(f_n) = 2n, $d^j f_i$ are isobaric).

Stephan Ritscher: Differential Polynomials

Nonrecursive Ideals (2)

Example 5 Consider over $\mathbb{Z}{x}$ with $\Delta = {d}$: $f_i = (d^i x)^2$ for $i \ge 0$ and $I_k = [f_0, \dots, f_k]$. Then: $I_0 \subsetneq I_1 \subsetneq \dots$

Nonrecursive Ideals (2)

Example 5 Consider over $\mathbb{Z}{x}$ with $\Delta = {d}$: $f_i = (d^i x)^2$ for $i \ge 0$ and $I_k = [f_0, \dots, f_k]$. Then: $I_0 \subsetneq I_1 \subsetneq \dots$

Nonrecursive Ideals (2)

Example 5 Consider over $\mathbb{Z}{x}$ with $\Delta = {d}$: $f_i = (d^i x)^2$ for $i \ge 0$ and $I_k = [f_0, \dots, f_k]$. Then: $I_0 \subsetneq I_1 \subsetneq \dots$

$$\Rightarrow f_n = c_0 d^{2n} f_0 + c_1 d^{(2n-2)} f_1 + \ldots + c_{n-1} d^2 f_{n-1} \text{ for } c_i \in \mathbb{Z}$$

Nonrecursive Ideals (2)

Example 5 Consider over $\mathbb{Z}\{x\}$ with $\Delta = \{d\}$: $f_i = (d^i x)^2$ for $i \ge 0$ and $I_k = [f_0, \dots, f_k]$. Then: $I_0 \subsetneq I_1 \subsetneq \dots$

$$\Rightarrow f_n = c_0 d^{2n} f_0 + c_1 d^{(2n-2)} f_1 + \ldots + c_{n-1} d^2 f_{n-1} \text{ for } c_i \in \mathbb{Z}$$

$$\bullet d^{2n} f_0 \text{ contains the monomial } x_{(2n)} x \Rightarrow c_0 = 0$$

Nonrecursive Ideals (2)

Example 5 Consider over $\mathbb{Z}{x}$ with $\Delta = {d}$: $f_i = (d^i x)^2$ for $i \ge 0$ and $I_k = [f_0, \dots, f_k]$. Then: $I_0 \subsetneq I_1 \subsetneq \dots$

Proof.

$$\Rightarrow f_n = c_0 d^{2n} f_0 + c_1 d^{(2n-2)} f_1 + \ldots + c_{n-1} d^2 f_{n-1}$$
 for $c_i \in \mathbb{Z}$

• $d^{2n}f_0$ contains the monomial $x_{(2n)}x \Rightarrow c_0 = 0$

• Analogous reasoning for $d^{2n-2i}f_i$ yields $c_i = 0$

Nonrecursive Ideals (2)

Example 5 Consider over $\mathbb{Z}{x}$ with $\Delta = {d}$: $f_i = (d^i x)^2$ for $i \ge 0$ and $I_k = [f_0, \dots, f_k]$. Then: $I_0 \subsetneq I_1 \subsetneq \dots$

$$\Rightarrow f_n = c_0 d^{2n} f_0 + c_1 d^{(2n-2)} f_1 + \ldots + c_{n-1} d^2 f_{n-1}$$
 for $c_i \in \mathbb{Z}$

- $d^{2n}f_0$ contains the monomial $x_{(2n)}x \Rightarrow c_0 = 0$
- Analogous reasoning for $d^{2n-2i}f_i$ yields $c_i = 0$
- Contradiction: $f_n \neq 0$

Nonrecursive Ideals (3)

Example 6 Let $S \subset \mathbb{N}_0$ and $I_S = [\{f_i : i \in S\}]$. Then

 $f_i \in I_S \Leftrightarrow i \in S$

So for a nonrecursive set $S \subset \mathbb{N}_0$ there is no algorithm to decide if a given differential polynomial g is in I_S .

Algebraic Aspects	
0000	
000	
00000000000	

Reduction

Admissible Orderings

Definition 7 (Ranking)

Let < be a total ordering on the set ΘX of differential variables.

Admissible Orderings

Definition 7 (Ranking)

Let < be a total ordering on the set ΘX of differential variables.

▶ $v < w \Rightarrow \theta v < \theta w$ for all $v, w \in \Theta X, \theta \in \Theta$

Admissible Orderings

Definition 7 (Ranking)

Let < be a total ordering on the set ΘX of differential variables.

- ▶ $v < w \Rightarrow \theta v < \theta w$ for all $v, w \in \Theta X, \theta \in \Theta$
- ► $v \leq \theta v$ for $v \in \Theta X$, $\theta \in \Theta$

Admissible Orderings

Definition 7 (Ranking)

Let < be a total ordering on the set ΘX of differential variables.

- ▶ $v < w \Rightarrow \theta v < \theta w$ for all $v, w \in \Theta X, \theta \in \Theta$
- ▶ $v \leq \theta v$ for $v \in \Theta X$, $\theta \in \Theta$
- Then < is called *ranking* of ΘX .
Admissible Orderings

Definition 7 (Ranking)

Let < be a total ordering on the set ΘX of differential variables.

▶ $v < w \Rightarrow \theta v < \theta w$ for all $v, w \in \Theta X, \theta \in \Theta$

•
$$v \leq \theta v$$
 for $v \in \Theta X$, $\theta \in \Theta$

• Then < is called *ranking* of ΘX .

Definition 8 (Admissible Ordering)

Let < be a total ordering on the set M of monomials of $F\{X\}$. < is called *admissible* iff

Admissible Orderings

Definition 7 (Ranking)

Let < be a total ordering on the set ΘX of differential variables.

▶ $v < w \Rightarrow \theta v < \theta w$ for all $v, w \in \Theta X, \theta \in \Theta$

•
$$v \leq \theta v$$
 for $v \in \Theta X$, $\theta \in \Theta$

• Then < is called *ranking* of ΘX .

Definition 8 (Admissible Ordering)

Let < be a total ordering on the set M of monomials of $F\{X\}$. < is called *admissible* iff

1. The restriction of < to ΘX is a ranking.

Admissible Orderings

Definition 7 (Ranking)

Let < be a total ordering on the set ΘX of differential variables.

▶ $v < w \Rightarrow \theta v < \theta w$ for all $v, w \in \Theta X, \theta \in \Theta$

•
$$v \leq \theta v$$
 for $v \in \Theta X$, $\theta \in \Theta$

• Then < is called *ranking* of ΘX .

Definition 8 (Admissible Ordering)

Let < be a total ordering on the set M of monomials of $F\{X\}$. < is called *admissible* iff

- 1. The restriction of < to ΘX is a ranking.
- 2. $1 \le f$ for all $f \in M$

Admissible Orderings

Definition 7 (Ranking)

Let < be a total ordering on the set ΘX of differential variables.

▶ $v < w \Rightarrow \theta v < \theta w$ for all $v, w \in \Theta X, \theta \in \Theta$

•
$$v \leq \theta v$$
 for $v \in \Theta X$, $\theta \in \Theta$

• Then < is called *ranking* of ΘX .

Definition 8 (Admissible Ordering)

Let < be a total ordering on the set M of monomials of $F\{X\}$. < is called *admissible* iff

- 1. The restriction of < to ΘX is a ranking.
- 2. $1 \le f$ for all $f \in M$
- 3. $f < g \Rightarrow hf < hg$ for all $f, g, h \in M$

Examples of Rankings

$$X = \{x_1, ..., x_n\}$$
 with $x_1 < ... < x_n$.

Example 9 (Lexicographic Ranking on ΘX)

Consider a monomial ordering < on the differential operators Θ . Then the *lexicographic ranking* is given by $\theta x_i < \eta x_k$ iff i < k or i = k and $\theta < \eta$.

Examples of Rankings

$$X = \{x_1, ..., x_n\}$$
 with $x_1 < ... < x_n$.

Example 9 (Lexicographic Ranking on ΘX)

Consider a monomial ordering < on the differential operators Θ . Then the *lexicographic ranking* is given by $\theta x_i < \eta x_k$ iff i < k or i = k and $\theta < \eta$.

Example 10 (Derivation Ranking on ΘX)

Consider a monomial ordering < on the differential operators Θ . Then the *derivation ranking* is given by $\theta x_i < \eta x_k$ iff $\theta < \eta$ or $\theta = \eta$ and i < k.

Examples of Rankings

$$X = \{x_1, ..., x_n\}$$
 with $x_1 < ... < x_n$.

Example 9 (Lexicographic Ranking on ΘX)

Consider a monomial ordering < on the differential operators Θ . Then the *lexicographic ranking* is given by $\theta x_i < \eta x_k$ iff i < k or i = k and $\theta < \eta$.

Example 10 (Derivation Ranking on ΘX)

Consider a monomial ordering < on the differential operators Θ . Then the *derivation ranking* is given by $\theta x_i < \eta x_k$ iff $\theta < \eta$ or $\theta = \eta$ and i < k.

► For $|X| = |\Delta| = 1$ there is only one ranking: $x_{(i)} < x_{(i+1)}$

Examples of Admissible Orderings

$$f = \prod_{i=1}^{r} v_i^{\alpha_i} \text{ with } v_1 > \ldots > v_r.$$

$$g = \prod_{i=1}^{s} w_i^{\beta_i} \text{ with } w_1 > \ldots > w_s.$$

Example 11 (Lexicographic Ordering on M)

Given an ranking on ΘX .

 $f <_{lex} g$ iff $\exists k \leq r, s : v_i = w_i$ for i < k and $v_k < w_k$ or $v_k = w_k$ and $\alpha_i < \beta_i$ or $v_i = w_i$ for $i \leq r$ and r < s.

Examples of Admissible Orderings

$$f = \prod_{i=1}^{r} v_i^{\alpha_i} \text{ with } v_1 > \ldots > v_r.$$

$$g = \prod_{i=1}^{s} w_i^{\beta_i} \text{ with } w_1 > \ldots > w_s.$$

Example 11 (Lexicographic Ordering on M)

Given an ranking on ΘX .

 $f <_{lex} g$ iff $\exists k \leq r, s : v_i = w_i$ for i < k and $v_k < w_k$ or $v_k = w_k$ and $\alpha_i < \beta_i$ or $v_i = w_i$ for $i \leq r$ and r < s.

Example 12 (Graded (by Degree) Reverse Lexicographic Ordering on M)

Given an ranking on ΘX .

 $f <_{degrevlex} g$ iff $\deg(f) < \deg(g)$ or $\deg(f) = \deg(g)$ and $f <_{revlex} g$.

Reduction

Definition 13 f is reduced by g to h iff $\exists \theta \in \Theta, m \in M$ such that $\operatorname{Im}(f) = \operatorname{Im}(m\theta g)$ and $h = f - \frac{\operatorname{lc}(f)}{\operatorname{Ic}(g)}m\theta g$. f is reducable by g, iff there is an h such that f is reduced by g to h.

Reduction Algorithm

Monoideals and Standard Bases

Definition 14 (Monoideal)

 $E \subset M$ is called a *monoideal* iff $ME \subset E$ and $Im(\Delta E) \subset E$.

Monoideals and Standard Bases

Definition 14 (Monoideal)

 $E \subset M$ is called a *monoideal* iff $ME \subset E$ and $Im(\Delta E) \subset E$.

Definition 15 (Standard Basis)

 $G \subset I$ is called a *standard basis* iff Im(G) generates Im(I) as monoideal.

Example 16 (Monoideal - Lexicographic Ordering) Members of the monoideal *I* generated by x^2 over $F\{x\}$ with $\Delta = \{d\}$ using lexicographic ordering $(x_{(k)} := d^k x)$:

Example 16 (Monoideal - Lexicographic Ordering) Members of the monoideal *I* generated by x^2 over $F\{x\}$ with $\Delta = \{d\}$ using lexicographic ordering $(x_{(k)} := d^k x)$: 1. mx^2 for $m \in M$

Example 16 (Monoideal - Lexicographic Ordering) Members of the monoideal *I* generated by x^2 over $F\{x\}$ with $\Delta = \{d\}$ using lexicographic ordering $(x_{(k)} := d^k x)$: 1. mx^2 for $m \in M$

2. $mx_{(1)}x$

Example 16 (Monoideal - Lexicographic Ordering) Members of the monoideal *I* generated by x^2 over $F\{x\}$ with

- $\Delta = \{d\}$ using lexicographic ordering $(x_{(k)} := d^k x)$:
 - 1. mx^2 for $m \in M$
 - 2. $mx_{(1)}x$
 - 3. $mx_{(2)}x$

Example 16 (Monoideal - Lexicographic Ordering)

- 1. mx^2 for $m \in M$
- 2. $mx_{(1)}x$
- 3. $mx_{(2)}x$
- 4. $mx_{(k)}x$

Example 16 (Monoideal - Lexicographic Ordering) Members of the monoideal I generated by x^2 over $F\{x\}$ with

 $\Delta = \{d\}$ using lexicographic ordering $(x_{(k)} := d^k x)$:

- 1. mx^2 for $m \in M$
- 2. $mx_{(1)}x$
- 3. $mx_{(2)}x$
- 4. $mx_{(k)}x$
- 5. BUT $(x_{(k)})^r \notin I$

Example 17 (Monoideal - Graded Reverse Lexicographic Ordering)

Example 17 (Monoideal - Graded Reverse Lexicographic Ordering)

Example 17 (Monoideal - Graded Reverse Lexicographic Ordering)

1.
$$mx^2$$
 for $m \in M$

2.
$$mx_{(1)}x$$

Example 17 (Monoideal - Graded Reverse Lexicographic Ordering)

- 1. mx^2 for $m \in M$
- 2. $mx_{(1)}x$
- 3. $m(x_{(1)})^2$

Example 17 (Monoideal - Graded Reverse Lexicographic Ordering)

- 1. mx^2 for $m \in M$
- 2. $mx_{(1)}x$
- 3. $m(x_{(1)})^2$
- 4. $mx_{(1)}x_{(2)}$

Example 17 (Monoideal - Graded Reverse Lexicographic Ordering)

- 1. mx^2 for $m \in M$
- 2. $mx_{(1)}x$
- 3. $m(x_{(1)})^2$
- 4. $mx_{(1)}x_{(2)}$
- 5. $m(x_{(2)})^2$

Example 17 (Monoideal - Graded Reverse Lexicographic Ordering)

- 1. mx^2 for $m \in M$
- 2. $mx_{(1)}x$
- 3. $m(x_{(1)})^2$
- 4. $mx_{(1)}x_{(2)}$
- 5. $m(x_{(2)})^2$
- 6. $mx_{(k)}x_{(k+1)}$

Example 17 (Monoideal - Graded Reverse Lexicographic Ordering)

- 1. mx^2 for $m \in M$
- 2. $mx_{(1)}x$
- 3. $m(x_{(1)})^2$
- 4. $mx_{(1)}x_{(2)}$
- 5. $m(x_{(2)})^2$
- 6. $mx_{(k)}x_{(k+1)}$
- 7. $mx_{(k)}^2$

Membership Problem

Theorem 18 Let G be a set of polynomials, I a differential ideal. Then the following propositions are equivalent:

Membership Problem

Theorem 18 Let G be a set of polynomials, I a differential ideal. Then the following propositions are equivalent:

1. G is a standard basis of I.

Membership Problem

Theorem 18

Let G be a set of polynomials, I a differential ideal. Then the following propositions are equivalent:

- 1. G is a standard basis of I.
- 2. For $f \in F\{X\}$ yields: $f \in I \Leftrightarrow f$ is reduced to 0 by G.

Membership Problem

Theorem 18

Let G be a set of polynomials, I a differential ideal. Then the following propositions are equivalent:

- 1. G is a standard basis of I.
- 2. For $f \in F\{X\}$ yields: $f \in I \Leftrightarrow f$ is reduced to 0 by G.

Proof:

⇒ Let $0 \neq f \in I$. Then f is reducible by G and the reduction $h \in I$, Im(h) < Im(f).

Membership Problem

Theorem 18

Let G be a set of polynomials, I a differential ideal. Then the following propositions are equivalent:

- 1. G is a standard basis of I.
- 2. For $f \in F\{X\}$ yields: $f \in I \Leftrightarrow f$ is reduced to 0 by G.

- ⇒ Let $0 \neq f \in I$. Then f is reducible by G and the reduction $h \in I$, Im(h) < Im(f).
- $\Leftarrow g \in G \Rightarrow g \text{ is reduced to 0 by } G \Rightarrow G \subset I$ $f \in I \Rightarrow f \text{ is reduced to 0 by } G \Rightarrow \operatorname{Im} I \subset \operatorname{Im}(M \ominus G)$

Infinite Standard Bases

Example 19 Remember $I = [x^2]$ over $F\{x\}$ with $\Delta = \{d\}$. Then for every $r \ge 0$ there is an q > 1 such that $(x_{(r)})^q \in I$.

Infinite Standard Bases

Example 19

Remember $I = [x^2]$ over $F\{x\}$ with $\Delta = \{d\}$. Then for every $r \ge 0$ there is an q > 1 such that $(x_{(r)})^q \in I$.

► LEX: $\operatorname{Im}(d(\prod_{i=1}^{r} v_{i}^{\alpha_{i}})) = d(v_{1})v_{1}^{\alpha_{1}-1}\prod_{i=2}^{r} v_{i}^{\alpha_{i}}$ if $v_{1} > \ldots > v_{r}$. Therefore $(x_{(r)})^{s}$ for every $r \ge 0$ for some s > 0 is in every standard basis (\rightarrow infinite).

Infinite Standard Bases

Example 19

Remember $I = [x^2]$ over $F\{x\}$ with $\Delta = \{d\}$. Then for every

- $r \geq 0$ there is an q > 1 such that $(x_{(r)})^q \in I$.
 - ► LEX: $\operatorname{Im}(d(\prod_{i=1}^{r} v_{i}^{\alpha_{i}})) = d(v_{1})v_{1}^{\alpha_{1}-1}\prod_{i=2}^{r} v_{i}^{\alpha_{i}}$ if $v_{1} > \ldots > v_{r}$. Therefore $(x_{(r)})^{s}$ for every $r \ge 0$ for some s > 0 is in every standard basis (\rightarrow infinite).
 - DEGREVLEX: x^2 is a standard basis.

Algebraic Aspects
0000
000
0000000000
Reduction

Infinite Standard Bases (2)

Example 20

Conjecture: There is no finite standard basis for $[x_{(1)}x]$ for no monomial ordering.
Algebraic Aspects
0000
000
0000000000
Reduction

Example 20

Conjecture: There is no finite standard basis for $[x_{(1)}x]$ for no monomial ordering.

Lemma 21 The families of monomials

belong to the ideal $[x_{(1)}x]$.

Algebraic Aspects	
0000	
0000000000	
Reduction	

Example 20

Conjecture: There is no finite standard basis for $[x_{(1)}x]$ for no monomial ordering.

Lemma 21 The families of monomials 1. $x^r x_{(r)}$ for $r \ge 1$

```
belong to the ideal [x_{(1)}x].
```

Algebraic Aspects
0000
000
0000000000
Reduction

Example 20

Conjecture: There is no finite standard basis for $[x_{(1)}x]$ for no monomial ordering.

Lemma 21 The families of monomials 1. $x^r x_{(r)}$ for $r \ge 1$

2. $x_{(r)}^{t_r}$ for $r \ge 1$ and some $t_r \ge r+2$

```
belong to the ideal [x_{(1)}x].
```

Algebraic Aspects
0000
000
0000000000
Reduction

Example 20

Conjecture: There is no finite standard basis for $[x_{(1)}x]$ for no monomial ordering.

Lemma 21 The families of monomials

1.
$$x^{r}x_{(r)}$$
 for $r \ge 1$
2. $x_{(r)}^{t_{r}}$ for $r \ge 1$ and some $t_{r} \ge r + 2$
3. $x_{(r)}^{2}x_{(r+2)}^{2}\cdots x_{(r+2k_{r})}^{2}$ for $r \ge 0$ and some k_{r}

belong to the ideal $[x_{(1)}x]$.

Algebraic Aspects
0000
000
0000000000
Reduction

Example 20

Conjecture: There is no finite standard basis for $[x_{(1)}x]$ for no monomial ordering.

Lemma 21 The families of monomials

1.
$$x^{r}x_{(r)}$$
 for $r \ge 1$
2. $x_{(r)}^{t_{r}}$ for $r \ge 1$ and some $t_{r} \ge r + 2$
3. $x_{(r)}^{2}x_{(r+2)}^{2}\cdots x_{(r+2k_{r})}^{2}$ for $r \ge 0$ and some k_{r}
4. $x_{(r)}^{2}x_{(r+3)}^{2}\cdots x_{(r+3l_{r})}^{2}$ for $r \ge 0$ and some $l_{r} \ge 2r - 1$
belong to the ideal $[x_{(1)}x]$.

Manifolds

We choose e.g. F as set of all meromorphic functions.

Definition 22

Let Σ be a system of differential polynomials over $F\{x_1, \ldots, x_n\}$, F_1 an extension of F.

If $Y = (y_1, \ldots, y_n) \in F_1^n$ such that for all $f \in \Sigma$ $f(y_1, \ldots, y_n) = 0$, then Y is a zero of Σ . The set of all zeros of Σ (for all possible extentions of F) is called *manifold*.

Unions of Manifolds

▶ Let M_1, M_2 be the manifolds of Σ_1, Σ_2 . If $M_1 \cap M_2 \neq \emptyset$ then $M_1 \cap M_2$ is the manifold of $\Sigma_1 + \Sigma_2$. $M_1 \cup M_2$ is the manifold of $\{AB : A \in \Sigma_1, B \in \Sigma_2\}$.

Unions of Manifolds

- ▶ Let M_1, M_2 be the manifolds of Σ_1, Σ_2 . If $M_1 \cap M_2 \neq \emptyset$ then $M_1 \cap M_2$ is the manifold of $\Sigma_1 + \Sigma_2$. $M_1 \cup M_2$ is the manifold of $\{AB : A \in \Sigma_1, B \in \Sigma_2\}$.
- M is called *reducible* if it is union of two manifolds M₁, M₂ ≠ M.

Unions of Manifolds

- ▶ Let M_1, M_2 be the manifolds of Σ_1, Σ_2 . If $M_1 \cap M_2 \neq \emptyset$ then $M_1 \cap M_2$ is the manifold of $\Sigma_1 + \Sigma_2$. $M_1 \cup M_2$ is the manifold of $\{AB : A \in \Sigma_1, B \in \Sigma_2\}$.
- M is called *reducible* if it is union of two manifolds M₁, M₂ ≠ M.
- Otherwise it is called *irreducible*.

Irreducible Manifolds

Lemma 23 M is irreducible \Leftrightarrow (AB vanishes over $M \Rightarrow A$ or B vanishes over M)

Irreducible Manifolds

Lemma 23 M is irreducible \Leftrightarrow (AB vanishes over $M \Rightarrow A$ or B vanishes over M) Proof.

Irreducible Manifolds

Lemma 23 M is irreducible \Leftrightarrow (AB vanishes over $M \Rightarrow A$ or B vanishes over M) Proof.

⇒ Assume $\exists A, B$ such that AB vanishes over M, but A, B don't. Then the manifolds of $\Sigma + A$, $\Sigma + B$ are proper parts of M, their union is M.

Irreducible Manifolds

Lemma 23 M is irreducible \Leftrightarrow (AB vanishes over $M \Rightarrow A$ or B vanishes over M) Proof.

- ⇒ Assume $\exists A, B$ such that AB vanishes over M, but A, B don't. Then the manifolds of $\Sigma + A$, $\Sigma + B$ are proper parts of M, their union is M.
- $\leftarrow \text{ Let } M \text{ be proper union of } M_1, M_2 \text{ with systems } \Sigma_1, \Sigma_2. \text{ Then } \\ \exists A_i \in \Sigma_i \text{ be differential polynomials that do not vanish over } \\ M. A_1A_2 \text{ vanishes over } M. \end{cases}$

Irreducible Manifolds

Lemma 23 M is irreducible \Leftrightarrow (AB vanishes over $M \Rightarrow A$ or B vanishes over M) Proof.

- ⇒ Assume $\exists A, B$ such that AB vanishes over M, but A, B don't. Then the manifolds of $\Sigma + A$, $\Sigma + B$ are proper parts of M, their union is M.
- $\leftarrow \text{ Let } M \text{ be proper union of } M_1, M_2 \text{ with systems } \Sigma_1, \Sigma_2. \text{ Then } \\ \exists A_i \in \Sigma_i \text{ be differential polynomials that do not vanish over } \\ M. A_1A_2 \text{ vanishes over } M.$

I.e. irreducible manifolds correspond to prime ideals.

Decomposition

Theorem 24

Every manifold is the union of a finite number of irreducible manifolds.

Decomposition (2)

Consider differential polynomials over $F\{x\}$ with $\Delta = \{d\}$ and F the meromorphic functions:

Example 25 Let $\Sigma = [f]$ with $f = x_{(1)}^2 - 4x$. Then $df = 2x_{(1)}(x_{(2)} - 2)$.

Decomposition (2)

Consider differential polynomials over $F\{x\}$ with $\Delta = \{d\}$ and F the meromorphic functions:

Example 25

Let
$$\Sigma = [f]$$
 with $f = x_{(1)}^2 - 4x$. Then $df = 2x_{(1)}(x_{(2)} - 2)$.

► x₍₁₎ = 0 has the solution x(t) = c. Looking at f, only c = 0 is valid.

Decomposition (2)

Consider differential polynomials over $F\{x\}$ with $\Delta = \{d\}$ and F the meromorphic functions:

Example 25

Let
$$\Sigma = [f]$$
 with $f = x_{(1)}^2 - 4x$. Then $df = 2x_{(1)}(x_{(2)} - 2)$.

► x₍₁₎ = 0 has the solution x(t) = c. Looking at f, only c = 0 is valid.

•
$$x_{(2)} - 2 = 0$$
 has the solution $x(t) = (t+b)^2 + c$. Again $c = 0$.

Decomposition (2)

Consider differential polynomials over $F\{x\}$ with $\Delta = \{d\}$ and F the meromorphic functions:

Example 25

Let
$$\Sigma = [f]$$
 with $f = x_{(1)}^2 - 4x$. Then $df = 2x_{(1)}(x_{(2)} - 2)$.

- ► x₍₁₎ = 0 has the solution x(t) = c. Looking at f, only c = 0 is valid.
- ► $x_{(2)} 2 = 0$ has the solution $x(t) = (t+b)^2 + c$. Again c = 0.
- There are no other solutions.

The Theorem of Zeros

Theorem 26 Let $\Sigma = [f_1, ..., f_k]$ with manifold M. If g vanishes over M then $g^s \in \Sigma$ for some $s \in \mathbb{N}_0$.

The Theorem of Zeros

Theorem 26 Let $\Sigma = [f_1, \ldots, f_k]$ with manifold M. If g vanishes over M then $g^s \in \Sigma$ for some $s \in \mathbb{N}_0$.

► So the manifolds are represented by perfect ideals.

The Ritt-Braudenbush Theorem

Theorem 27 Every perfect differential ideal has a finite basis.

Membership Test for Perfect Differential Ideals/Manifolds

Let Σ be a finite system of differential polynomials. Question: Is $f \in {\Sigma}$?

 Resolve Σ into prime ideals (resp. the corresponding manifold into irreducible manifolds).

Membership Test for Perfect Differential Ideals/Manifolds

Let Σ be a finite system of differential polynomials. Question: Is $f \in {\Sigma}$?

- Resolve Σ into prime ideals (resp. the corresponding manifold into irreducible manifolds).
- *f* must be member of each of these prime ideals.

Membership Test for Perfect Differential Ideals/Manifolds

Let Σ be a finite system of differential polynomials. Question: Is $f \in {\Sigma}$?

- Resolve Σ into prime ideals (resp. the corresponding manifold into irreducible manifolds).
- *f* must be member of each of these prime ideals.
- Test if the remainder of f with respect to the characteristic sets of the prime ideals is zero.

 Differential polynomials can be used to model differential equation systems.

- Differential polynomials can be used to model differential equation systems.
- There are many problems in contrast to algebraic polynomials (no finite (standard) bases, monomial ideals depend on ordering).

- Differential polynomials can be used to model differential equation systems.
- There are many problems in contrast to algebraic polynomials (no finite (standard) bases, monomial ideals depend on ordering).
- Manifolds (solutions) correspond to perfect ideals, that are easier to handle.

- Differential polynomials can be used to model differential equation systems.
- There are many problems in contrast to algebraic polynomials (no finite (standard) bases, monomial ideals depend on ordering).
- Manifolds (solutions) correspond to perfect ideals, that are easier to handle.
- ► For some important problems (finite) algorithms exist.

Thank you for the attention

G. Gallo, B. Mishra, and F. Ollivier.
Some constructions in rings of differential polynomials.
Lecture Notes In Computer Science, 539, 1994.
F. Ollivier.
Standard bases of differential ideals.
Lecture Notes In Computer Science, 508, 1990.
J. Ritt.
Differential Algebra.
 AMS, 1950.
A. I. Zobnin.
On standard bases in rings of differential polynomials.
Journal of Mathematical Sciences, 135(5), 2006.