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Definitions

Differential Ring

Definition 1 (Differential Ring)

A differential ring R is a ring with differential operators
∆ = {δ1, . . . , δm} and for all i , j :

I δi (ab) = (δia)b + a(δib)

I δi (a + b) = δia + δib

I δiδj = δjδi

Θ denotes the free abelian monoid generated by ∆, alias ∆∗,
members of Θ are called derivations.
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Definitions

Differential Ideal

Definition 2 (Differential Ideal)

An differential ideal I is a ideal of R with ∀δ ∈ ∆ : δI ⊂ I . We
write:
[S ] differential ideal generated by set S
{S} perfect differential ideal generated by set S

Stephan Ritscher: Differential Polynomials 4/ 30
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Definitions

Example

Example 3 (Differential Ideal)

Members of the differential ideal I generated by x2 over F{x} with
∆ = {d} (x(k) := dkx):

1. fx2 for f ∈ F{x}
2. fx(1)x

3. f (x(2)x + (x(1))
2) and therefore f (x(1))

2x

4. f (2x(1)x(2)x + (x(1))
3) and therefore f (x(1))

3

5. f (x(k))
s for some s > 1

6. . . .

Stephan Ritscher: Differential Polynomials 5/ 30



Algebraic Aspects Geometric Ascpects Conclusion

Definitions

Example

Example 3 (Differential Ideal)

Members of the differential ideal I generated by x2 over F{x} with
∆ = {d} (x(k) := dkx):

1. fx2 for f ∈ F{x}

2. fx(1)x

3. f (x(2)x + (x(1))
2) and therefore f (x(1))

2x

4. f (2x(1)x(2)x + (x(1))
3) and therefore f (x(1))

3

5. f (x(k))
s for some s > 1

6. . . .

Stephan Ritscher: Differential Polynomials 5/ 30



Algebraic Aspects Geometric Ascpects Conclusion

Definitions

Example

Example 3 (Differential Ideal)

Members of the differential ideal I generated by x2 over F{x} with
∆ = {d} (x(k) := dkx):

1. fx2 for f ∈ F{x}
2. fx(1)x

3. f (x(2)x + (x(1))
2) and therefore f (x(1))

2x

4. f (2x(1)x(2)x + (x(1))
3) and therefore f (x(1))

3

5. f (x(k))
s for some s > 1

6. . . .

Stephan Ritscher: Differential Polynomials 5/ 30



Algebraic Aspects Geometric Ascpects Conclusion

Definitions

Example

Example 3 (Differential Ideal)

Members of the differential ideal I generated by x2 over F{x} with
∆ = {d} (x(k) := dkx):

1. fx2 for f ∈ F{x}
2. fx(1)x

3. f (x(2)x + (x(1))
2) and therefore f (x(1))

2x

4. f (2x(1)x(2)x + (x(1))
3) and therefore f (x(1))

3

5. f (x(k))
s for some s > 1

6. . . .

Stephan Ritscher: Differential Polynomials 5/ 30



Algebraic Aspects Geometric Ascpects Conclusion

Definitions

Example

Example 3 (Differential Ideal)

Members of the differential ideal I generated by x2 over F{x} with
∆ = {d} (x(k) := dkx):

1. fx2 for f ∈ F{x}
2. fx(1)x

3. f (x(2)x + (x(1))
2) and therefore f (x(1))

2x

4. f (2x(1)x(2)x + (x(1))
3) and therefore f (x(1))

3

5. f (x(k))
s for some s > 1

6. . . .

Stephan Ritscher: Differential Polynomials 5/ 30



Algebraic Aspects Geometric Ascpects Conclusion

Definitions

Example

Example 3 (Differential Ideal)

Members of the differential ideal I generated by x2 over F{x} with
∆ = {d} (x(k) := dkx):

1. fx2 for f ∈ F{x}
2. fx(1)x

3. f (x(2)x + (x(1))
2) and therefore f (x(1))

2x

4. f (2x(1)x(2)x + (x(1))
3) and therefore f (x(1))

3

5. f (x(k))
s for some s > 1

6. . . .

Stephan Ritscher: Differential Polynomials 5/ 30



Algebraic Aspects Geometric Ascpects Conclusion

Definitions

Example

Example 3 (Differential Ideal)

Members of the differential ideal I generated by x2 over F{x} with
∆ = {d} (x(k) := dkx):

1. fx2 for f ∈ F{x}
2. fx(1)x

3. f (x(2)x + (x(1))
2) and therefore f (x(1))

2x

4. f (2x(1)x(2)x + (x(1))
3) and therefore f (x(1))

3

5. f (x(k))
s for some s > 1

6. . . .

Stephan Ritscher: Differential Polynomials 5/ 30



Algebraic Aspects Geometric Ascpects Conclusion

Definitions

Notation

F{X} differential polynomials over field F with variables X
lm(f ) leading monomial of f
lc(f ) leading coefficient of f
lt(f ) = lc(f )lm(f ) leading term of f
θx = x(θ) derivation θ ∈ Θ of variable x
ord(δαx) =

∑n
i=1 αi order of δαx

deg(vβ) =
∑r

i=1 βi degree of vβ, δα ∈ Θ
wt(vβ) =

∑r
i=1 βiord(vi ) weight of vβ

Stephan Ritscher: Differential Polynomials 6/ 30
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Nonrecursive Ideals

Nonrecursive Ideals

Example 4

Consider over Z{x} with ∆ = {d}:
fi = (d ix)2 for i ≥ 0 and Ik = [f0, . . . , fk ].
Then: I0 ( I1 ( . . .

Proof.

I deg(fi ) = 2,wt(fi ) = 2i ⇒ d j fi is homogeneous of degree 2
and isobaric of weight 2i + j

I Assume fn =
∑n−1

i=0

∑ki
j=0 αi ,jd

j(fi )

I If deg(αi ,j) ≥ 1, these terms must cancel
(deg(fn) = 2, derivatives of fi are homogeneous).

⇒ WLOG: αi ,j ∈ Z
I αi ,j = 0 for j 6= 2n − 2i (wt(fn) = 2n, d j fi are isobaric).

Stephan Ritscher: Differential Polynomials 7/ 30
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Nonrecursive Ideals

Nonrecursive Ideals (2)

Example 5

Consider over Z{x} with ∆ = {d}:
fi = (d ix)2 for i ≥ 0 and Ik = [f0, . . . , fk ].
Then: I0 ( I1 ( . . .

Proof.

⇒ fn = c0d
2nf0 + c1d

(2n−2)f1 + . . . + cn−1d
2fn−1 for ci ∈ Z

I d2nf0 contains the monomial x(2n)x ⇒ c0 = 0

I Analogous reasoning for d2n−2i fi yields ci = 0

I Contradiction: fn 6= 0
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Nonrecursive Ideals

Nonrecursive Ideals (3)

Example 6

Let S ⊂ N0 and IS = [{fi : i ∈ S}]. Then

fi ∈ IS ⇔ i ∈ S

So for a nonrecursive set S ⊂ N0 there is no algorithm to decide if
a given differential polynomial g is in IS .
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Reduction

Admissible Orderings

Definition 7 (Ranking)

Let < be a total ordering on the set ΘX of differential variables.

I v < w ⇒ θv < θw for all v ,w ∈ ΘX , θ ∈ Θ

I v ≤ θv for v ∈ ΘX , θ ∈ Θ

I Then < is called ranking of ΘX .

Definition 8 (Admissible Ordering)

Let < be a total ordering on the set M of monomials of F{X}.
< is called admissible iff

1. The restriction of < to ΘX is a ranking.

2. 1 ≤ f for all f ∈ M

3. f < g ⇒ hf < hg for all f , g , h ∈ M
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Reduction

Examples of Rankings

X = {x1, . . . , xn} with x1 < . . . < xn.

Example 9 (Lexicographic Ranking on ΘX )

Consider a monomial ordering < on the differential operators Θ.
Then the lexicographic ranking is given by θxi < ηxk iff i < k or
i = k and θ < η.

Example 10 (Derivation Ranking on ΘX )

Consider a monomial ordering < on the differential operators Θ.
Then the derivation ranking is given by θxi < ηxk iff θ < η or
θ = η and i < k.

I For |X | = |∆| = 1 there is only one ranking: x(i) < x(i+1)

Stephan Ritscher: Differential Polynomials 11/ 30
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Example 10 (Derivation Ranking on ΘX )

Consider a monomial ordering < on the differential operators Θ.
Then the derivation ranking is given by θxi < ηxk iff θ < η or
θ = η and i < k.

I For |X | = |∆| = 1 there is only one ranking: x(i) < x(i+1)
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Reduction

Examples of Admissible Orderings

f =
∏r

i=1 vαi
i with v1 > . . . > vr .

g =
∏s

i=1 wβi
i with w1 > . . . > ws .

Example 11 (Lexicographic Ordering on M)

Given an ranking on ΘX .
f <lex g iff ∃k ≤ r , s : vi = wi for i < k and vk < wk or vk = wk

and αi < βi or vi = wi for i ≤ r and r < s.

Example 12 (Graded (by Degree) Reverse Lexicographic
Ordering on M)

Given an ranking on ΘX .
f <degrevlex g iff deg(f ) < deg(g) or deg(f ) = deg(g) and
f <revlex g .
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Reduction

Definition 13
f is reduced by g to h iff ∃θ ∈ Θ,m ∈ M such that

lm(f ) = lm(mθg) and h = f − lc(f )

lc(g)
mθg .

f is reducable by g , iff there is an h such that f is reduced by g to
h.

Stephan Ritscher: Differential Polynomials 13/ 30



Algebraic Aspects Geometric Ascpects Conclusion

Reduction

Reduction Algorithm

Procedure: Reduce(f , g)
if (deg(lm(f )) < deg(lm(g)) || wt(lm(f )) < wt(lm(g)))

return f ;
if (lm(g)|lm(f ))

return Reduce(f − (lt(f )/lt(g)) ∗ g, g);
for (i = 1; i <= m; i++) {

t = Reduce(f , δig);
if (t != f ) return Reduce(t, g);

}
return f ;
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Monoideals and Standard Bases

Definition 14 (Monoideal)

E ⊂ M is called a monoideal iff ME ⊂ E and lm(∆E ) ⊂ E .

Definition 15 (Standard Basis)

G ⊂ I is called a standard basis iff lm(G ) generates lm(I ) as
monoideal.

Stephan Ritscher: Differential Polynomials 15/ 30



Algebraic Aspects Geometric Ascpects Conclusion

Reduction

Monoideals and Standard Bases

Definition 14 (Monoideal)

E ⊂ M is called a monoideal iff ME ⊂ E and lm(∆E ) ⊂ E .

Definition 15 (Standard Basis)

G ⊂ I is called a standard basis iff lm(G ) generates lm(I ) as
monoideal.

Stephan Ritscher: Differential Polynomials 15/ 30



Algebraic Aspects Geometric Ascpects Conclusion

Reduction

Examples

Example 16 (Monoideal - Lexicographic Ordering)

Members of the monoideal I generated by x2 over F{x} with
∆ = {d} using lexicographic ordering (x(k) := dkx):

1. mx2 for m ∈ M

2. mx(1)x

3. mx(2)x

4. mx(k)x

5. BUT (x(k))
r /∈ I
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Examples (2)

Example 17 (Monoideal - Graded Reverse Lexicographic
Ordering)

Members of the monoideal I generated by x2 over F{x} with
∆ = {′} using graded lexicographic ordering (x(k) := dkx):

1. mx2 for m ∈ M

2. mx(1)x

3. m(x(1))
2

4. mx(1)x(2)

5. m(x(2))
2

6. mx(k)x(k+1)

7. mx2
(k)
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Membership Problem

Theorem 18
Let G be a set of polynomials, I a differential ideal. Then the
following propositions are equivalent:

1. G is a standard basis of I .

2. For f ∈ F{X} yields: f ∈ I ⇔ f is reduced to 0 by G.

Proof:

⇒ Let 0 6= f ∈ I . Then f is reducible by G and the reduction
h ∈ I , lm(h) < lm(f ).

⇐ g ∈ G ⇒ g is reduced to 0 by G ⇒ G ⊂ I
f ∈ I ⇒ f is reduced to 0 by G ⇒ lmI ⊂ lm(MΘG )
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Infinite Standard Bases

Example 19

Remember I = [x2] over F{x} with ∆ = {d}. Then for every
r ≥ 0 there is an q > 1 such that (x(r))

q ∈ I .

I LEX: lm(d(
∏r

i=1 vαi
i )) = d(v1)v

α1−1
1

∏r
i=2 vαi

i if
v1 > . . . > vr .
Therefore (x(r))

s for every r ≥ 0 for some s > 0 is in every
standard basis (→ infinite).

I DEGREVLEX: x2 is a standard basis.

Stephan Ritscher: Differential Polynomials 19/ 30



Algebraic Aspects Geometric Ascpects Conclusion

Reduction

Infinite Standard Bases

Example 19

Remember I = [x2] over F{x} with ∆ = {d}. Then for every
r ≥ 0 there is an q > 1 such that (x(r))

q ∈ I .

I LEX: lm(d(
∏r

i=1 vαi
i )) = d(v1)v

α1−1
1

∏r
i=2 vαi

i if
v1 > . . . > vr .
Therefore (x(r))

s for every r ≥ 0 for some s > 0 is in every
standard basis (→ infinite).

I DEGREVLEX: x2 is a standard basis.

Stephan Ritscher: Differential Polynomials 19/ 30



Algebraic Aspects Geometric Ascpects Conclusion

Reduction

Infinite Standard Bases

Example 19

Remember I = [x2] over F{x} with ∆ = {d}. Then for every
r ≥ 0 there is an q > 1 such that (x(r))

q ∈ I .

I LEX: lm(d(
∏r

i=1 vαi
i )) = d(v1)v

α1−1
1

∏r
i=2 vαi

i if
v1 > . . . > vr .
Therefore (x(r))

s for every r ≥ 0 for some s > 0 is in every
standard basis (→ infinite).

I DEGREVLEX: x2 is a standard basis.

Stephan Ritscher: Differential Polynomials 19/ 30



Algebraic Aspects Geometric Ascpects Conclusion

Reduction

Infinite Standard Bases (2)

Example 20

Conjecture: There is no finite standard basis for [x(1)x ] for no
monomial ordering.

Lemma 21
The families of monomials

1. x rx(r) for r ≥ 1

2. x tr
(r) for r ≥ 1 and some tr ≥ r + 2

3. x2
(r)x

2
(r+2) · · · x

2
(r+2kr )

for r ≥ 0 and some kr

4. x2
(r)x

2
(r+3) · · · x

2
(r+3lr )

for r ≥ 0 and some lr ≥ 2r − 1

belong to the ideal [x(1)x ].
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Manifolds

Manifolds

We choose e.g. F as set of all meromorphic functions.

Definition 22
Let Σ be a system of differential polynomials over F{x1, . . . , xn},
F1 an extension of F .
If Y = (y1, . . . , yn) ∈ F n

1 such that for all f ∈ Σ f (y1, . . . , yn) = 0,
then Y is a zero of Σ. The set of all zeros of Σ (for all possible
extentions of F ) is called manifold.
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Manifolds

Unions of Manifolds

I Let M1,M2 be the manifolds of Σ1,Σ2. If M1 ∩M2 6= ∅ then
M1 ∩M2 is the manifold of Σ1 + Σ2. M1 ∪M2 is the manifold
of {AB : A ∈ Σ1,B ∈ Σ2}.

I M is called reducible if it is union of two manifolds
M1,M2 6= M.

I Otherwise it is called irreducible.
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Manifolds

Irreducible Manifolds

Lemma 23
M is irreducible ⇔
(AB vanishes over M ⇒ A or B vanishes over M)

Proof.

⇒ Assume ∃A,B such that AB vanishes over M, but A, B don’t.
Then the manifolds of Σ + A, Σ + B are proper parts of M,
their union is M.

⇐ Let M be proper union of M1,M2 with systems Σ1,Σ2. Then
∃Ai ∈ Σi be differential polynomials that do not vanish over
M. A1A2 vanishes over M.

I I.e. irreducible manifolds correspond to prime ideals.
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Manifolds

Decomposition

Theorem 24
Every manifold is the union of a finite number of irreducible
manifolds.
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Manifolds

Decomposition (2)

Consider differential polynomials over F{x} with ∆ = {d} and F
the meromorphic functions:

Example 25

Let Σ = [f ] with f = x2
(1) − 4x . Then df = 2x(1)(x(2) − 2).

I x(1) = 0 has the solution x(t) = c . Looking at f , only c = 0
is valid.

I x(2)−2 = 0 has the solution x(t) = (t +b)2 + c . Again c = 0.

I There are no other solutions.
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Algebraic Representation

The Theorem of Zeros

Theorem 26
Let Σ = [f1, . . . , fk ] with manifold M. If g vanishes over M then
g s ∈ Σ for some s ∈ N0.

I So the manifolds are represented by perfect ideals.
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Algebraic Representation

The Ritt-Braudenbush Theorem

Theorem 27
Every perfect differential ideal has a finite basis.
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Algebraic Representation

Membership Test for Perfect Differential Ideals/Manifolds

Let Σ be a finite system of differential polynomials.
Question: Is f ∈ {Σ}?

I Resolve Σ into prime ideals (resp. the corresponding manifold
into irreducible manifolds).

I f must be member of each of these prime ideals.

I Test if the remainder of f with respect to the characteristic
sets of the prime ideals is zero.

Stephan Ritscher: Differential Polynomials 28/ 30



Algebraic Aspects Geometric Ascpects Conclusion

Algebraic Representation

Membership Test for Perfect Differential Ideals/Manifolds

Let Σ be a finite system of differential polynomials.
Question: Is f ∈ {Σ}?

I Resolve Σ into prime ideals (resp. the corresponding manifold
into irreducible manifolds).

I f must be member of each of these prime ideals.

I Test if the remainder of f with respect to the characteristic
sets of the prime ideals is zero.

Stephan Ritscher: Differential Polynomials 28/ 30



Algebraic Aspects Geometric Ascpects Conclusion

Algebraic Representation

Membership Test for Perfect Differential Ideals/Manifolds

Let Σ be a finite system of differential polynomials.
Question: Is f ∈ {Σ}?

I Resolve Σ into prime ideals (resp. the corresponding manifold
into irreducible manifolds).

I f must be member of each of these prime ideals.

I Test if the remainder of f with respect to the characteristic
sets of the prime ideals is zero.

Stephan Ritscher: Differential Polynomials 28/ 30



Algebraic Aspects Geometric Ascpects Conclusion

Conclusion

I Differential polynomials can be used to model differential
equation systems.

I There are many problems in contrast to algebraic polynomials
(no finite (standard) bases, monomial ideals depend on
ordering).

I Manifolds (solutions) correspond to perfect ideals, that are
easier to handle.

I For some important problems (finite) algorithms exist.
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