# Course "Polynomials: Their Power and How to Use Them ", JASS'07 

## Differential Polynomials

Stephan Ritscher

Fakultät für Informatik
TU München

March 22, 2007

# Differential Polynomial Ideals - TOC 

Algebraic Aspects
Definitions
Nonrecursive Ideals
Reduction

# Differential Polynomial Ideals - TOC 

Algebraic Aspects
Definitions
Nonrecursive Ideals
Reduction

Geometric Ascpects
Manifolds
Algebraic Representation

# Differential Polynomial Ideals - TOC 

Algebraic Aspects
Definitions
Nonrecursive Ideals
Reduction

Geometric Ascpects
Manifolds
Algebraic Representation
Conclusion

## Differential Ring

Definition 1 (Differential Ring)
A differential ring $R$ is a ring with differential operators
$\Delta=\left\{\delta_{1}, \ldots, \delta_{m}\right\}$ and for all $i, j$ :

## Differential Ring

Definition 1 (Differential Ring)
A differential ring $R$ is a ring with differential operators
$\Delta=\left\{\delta_{1}, \ldots, \delta_{m}\right\}$ and for all $i, j$ :

- $\delta_{i}(a b)=\left(\delta_{i} a\right) b+a\left(\delta_{i} b\right)$


## Differential Ring

Definition 1 (Differential Ring)
A differential ring $R$ is a ring with differential operators
$\Delta=\left\{\delta_{1}, \ldots, \delta_{m}\right\}$ and for all $i, j$ :

- $\delta_{i}(a b)=\left(\delta_{i} a\right) b+a\left(\delta_{i} b\right)$
- $\delta_{i}(a+b)=\delta_{i} a+\delta_{i} b$


## Differential Ring

Definition 1 (Differential Ring)
A differential ring $R$ is a ring with differential operators
$\Delta=\left\{\delta_{1}, \ldots, \delta_{m}\right\}$ and for all $i, j$ :

- $\delta_{i}(a b)=\left(\delta_{i} a\right) b+a\left(\delta_{i} b\right)$
- $\delta_{i}(a+b)=\delta_{i} a+\delta_{i} b$
- $\delta_{i} \delta_{j}=\delta_{j} \delta_{i}$


## Differential Ring

## Definition 1 (Differential Ring)

A differential ring $R$ is a ring with differential operators
$\Delta=\left\{\delta_{1}, \ldots, \delta_{m}\right\}$ and for all $i, j$ :

- $\delta_{i}(a b)=\left(\delta_{i} a\right) b+a\left(\delta_{i} b\right)$
- $\delta_{i}(a+b)=\delta_{i} a+\delta_{i} b$
- $\delta_{i} \delta_{j}=\delta_{j} \delta_{i}$
$\Theta$ denotes the free abelian monoid generated by $\Delta$, alias $\Delta^{*}$, members of $\Theta$ are called derivations.


## Differential Ideal

Definition 2 (Differential Ideal)
An differential ideal $I$ is a ideal of $R$ with $\forall \delta \in \Delta: \delta I \subset I$. We write:
[ $S$ ] differential ideal generated by set $S$
$\{S\}$ perfect differential ideal generated by set $S$

## Example

Example 3 (Differential Ideal)
Members of the differential ideal I generated by $x^{2}$ over $F\{x\}$ with $\Delta=\{d\}\left(x_{(k)}:=d^{k} x\right):$

## Example

Example 3 (Differential Ideal)
Members of the differential ideal / generated by $x^{2}$ over $F\{x\}$ with $\Delta=\{d\}\left(x_{(k)}:=d^{k} x\right)$ :

1. $f x^{2}$ for $f \in F\{x\}$

## Example

Example 3 (Differential Ideal)
Members of the differential ideal / generated by $x^{2}$ over $F\{x\}$ with $\Delta=\{d\}\left(x_{(k)}:=d^{k} x\right)$ :

1. $f x^{2}$ for $f \in F\{x\}$
2. $f x_{(1)} x$

## Example

## Example 3 (Differential Ideal)

Members of the differential ideal / generated by $x^{2}$ over $F\{x\}$ with $\Delta=\{d\}\left(x_{(k)}:=d^{k} x\right)$ :

1. $f x^{2}$ for $f \in F\{x\}$
2. $f_{x_{(1)}} x$
3. $f\left(x_{(2)} x+\left(x_{(1)}\right)^{2}\right)$ and therefore $f\left(x_{(1)}\right)^{2} x$

## Example

## Example 3 (Differential Ideal)

Members of the differential ideal / generated by $x^{2}$ over $F\{x\}$ with $\Delta=\{d\}\left(x_{(k)}:=d^{k} x\right)$ :

1. $f x^{2}$ for $f \in F\{x\}$
2. $f x_{(1)} x$
3. $f\left(x_{(2)} x+\left(x_{(1)}\right)^{2}\right)$ and therefore $f\left(x_{(1)}\right)^{2} x$
4. $f\left(2 x_{(1)} x_{(2)} x+\left(x_{(1)}\right)^{3}\right)$ and therefore $f\left(x_{(1)}\right)^{3}$

## Example

## Example 3 (Differential Ideal)

Members of the differential ideal / generated by $x^{2}$ over $F\{x\}$ with $\Delta=\{d\}\left(x_{(k)}:=d^{k} x\right)$ :

1. $f x^{2}$ for $f \in F\{x\}$
2. $f x_{(1)} x$
3. $f\left(x_{(2)} x+\left(x_{(1)}\right)^{2}\right)$ and therefore $f\left(x_{(1)}\right)^{2} x$
4. $f\left(2 x_{(1)} x_{(2)} x+\left(x_{(1)}\right)^{3}\right)$ and therefore $f\left(x_{(1)}\right)^{3}$
5. $f\left(x_{(k)}\right)^{s}$ for some $s>1$

## Example

## Example 3 (Differential Ideal)

Members of the differential ideal / generated by $x^{2}$ over $F\{x\}$ with $\Delta=\{d\}\left(x_{(k)}:=d^{k} x\right)$ :

1. $f x^{2}$ for $f \in F\{x\}$
2. $f_{x_{(1)} x}$
3. $f\left(x_{(2)} x+\left(x_{(1)}\right)^{2}\right)$ and therefore $f\left(x_{(1)}\right)^{2} x$
4. $f\left(2 x_{(1)} x_{(2)} x+\left(x_{(1)}\right)^{3}\right)$ and therefore $f\left(x_{(1)}\right)^{3}$
5. $f\left(x_{(k)}\right)^{s}$ for some $s>1$
6. ...

## Notation

```
\(F\{X\} \quad\) differential polynomials over field \(F\) with variables \(X\) \(\operatorname{Im}(f) \quad\) leading monomial of \(f\)
Ic \((f)\) leading coefficient of \(f\)
\(\operatorname{lt}(f)=\operatorname{lc}(f) \operatorname{lm}(f)\) leading term of \(f\)
\(\theta x=x_{(\theta)} \quad\) derivation \(\theta \in \Theta\) of variable \(x\)
\(\operatorname{ord}\left(\delta^{\alpha} x\right)=\sum_{i=1}^{n} \alpha_{i}\) order of \(\delta^{\alpha} x\)
\(\operatorname{deg}\left(v^{\beta}\right)=\sum_{i=1}^{r} \beta_{i}\) degree of \(v^{\beta}, \delta^{\alpha} \in \Theta\)
\(\mathrm{wt}\left(v^{\beta}\right)=\sum_{i=1}^{r} \beta_{i} \operatorname{ord}\left(v_{i}\right)\) weight of \(v^{\beta}\)
```


## Nonrecursive Ideals

Example 4
Consider over $\mathbb{Z}\{x\}$ with $\Delta=\{d\}$ :
$f_{i}=\left(d^{i} x\right)^{2}$ for $i \geq 0$ and $I_{k}=\left[f_{0}, \ldots, f_{k}\right]$.
Then: $I_{0} \subsetneq I_{1} \subsetneq \ldots$

## Nonrecursive Ideals

Example 4
Consider over $\mathbb{Z}\{x\}$ with $\Delta=\{d\}$ :
$f_{i}=\left(d^{i} x\right)^{2}$ for $i \geq 0$ and $I_{k}=\left[f_{0}, \ldots, f_{k}\right]$.
Then: $I_{0} \subsetneq I_{1} \subsetneq \ldots$
Proof.

## Nonrecursive Ideals

## Example 4

Consider over $\mathbb{Z}\{x\}$ with $\Delta=\{d\}$ :
$f_{i}=\left(d^{i} x\right)^{2}$ for $i \geq 0$ and $I_{k}=\left[f_{0}, \ldots, f_{k}\right]$.
Then: $I_{0} \subsetneq I_{1} \subsetneq \ldots$
Proof.

- $\operatorname{deg}\left(f_{i}\right)=2, \operatorname{wt}\left(f_{i}\right)=2 i \Rightarrow d^{j} f_{i}$ is homogeneous of degree 2 and isobaric of weight $2 i+j$


## Nonrecursive Ideals

## Example 4

Consider over $\mathbb{Z}\{x\}$ with $\Delta=\{d\}$ :
$f_{i}=\left(d^{i} x\right)^{2}$ for $i \geq 0$ and $I_{k}=\left[f_{0}, \ldots, f_{k}\right]$.
Then: $I_{0} \subsetneq I_{1} \subsetneq \ldots$
Proof.

- $\operatorname{deg}\left(f_{i}\right)=2, \operatorname{wt}\left(f_{i}\right)=2 i \Rightarrow d^{j} f_{i}$ is homogeneous of degree 2 and isobaric of weight $2 i+j$
- Assume $f_{n}=\sum_{i=0}^{n-1} \sum_{j=0}^{k_{i}} \alpha_{i, j} d^{j}\left(f_{i}\right)$


## Nonrecursive Ideals

## Example 4

Consider over $\mathbb{Z}\{x\}$ with $\Delta=\{d\}$ :
$f_{i}=\left(d^{i} x\right)^{2}$ for $i \geq 0$ and $I_{k}=\left[f_{0}, \ldots, f_{k}\right]$.
Then: $I_{0} \subsetneq I_{1} \subsetneq \ldots$
Proof.

- $\operatorname{deg}\left(f_{i}\right)=2, \operatorname{wt}\left(f_{i}\right)=2 i \Rightarrow d^{j} f_{i}$ is homogeneous of degree 2 and isobaric of weight $2 i+j$
- Assume $f_{n}=\sum_{i=0}^{n-1} \sum_{j=0}^{k_{i}} \alpha_{i, j} d^{j}\left(f_{i}\right)$
- If $\operatorname{deg}\left(\alpha_{i, j}\right) \geq 1$, these terms must cancel ( $\operatorname{deg}\left(f_{n}\right)=2$, derivatives of $f_{i}$ are homogeneous).


## Nonrecursive Ideals

## Example 4

Consider over $\mathbb{Z}\{x\}$ with $\Delta=\{d\}$ :
$f_{i}=\left(d^{i} x\right)^{2}$ for $i \geq 0$ and $I_{k}=\left[f_{0}, \ldots, f_{k}\right]$.
Then: $I_{0} \subsetneq I_{1} \subsetneq \ldots$
Proof.

- $\operatorname{deg}\left(f_{i}\right)=2, \operatorname{wt}\left(f_{i}\right)=2 i \Rightarrow d^{j} f_{i}$ is homogeneous of degree 2 and isobaric of weight $2 i+j$
- Assume $f_{n}=\sum_{i=0}^{n-1} \sum_{j=0}^{k_{i}} \alpha_{i, j} d^{j}\left(f_{i}\right)$
- If $\operatorname{deg}\left(\alpha_{i, j}\right) \geq 1$, these terms must cancel ( $\operatorname{deg}\left(f_{n}\right)=2$, derivatives of $f_{i}$ are homogeneous).
$\Rightarrow$ WLOG: $\alpha_{i, j} \in \mathbb{Z}$


## Nonrecursive Ideals

## Example 4

Consider over $\mathbb{Z}\{x\}$ with $\Delta=\{d\}$ :
$f_{i}=\left(d^{i} x\right)^{2}$ for $i \geq 0$ and $I_{k}=\left[f_{0}, \ldots, f_{k}\right]$.
Then: $I_{0} \subsetneq I_{1} \subsetneq \ldots$
Proof.

- $\operatorname{deg}\left(f_{i}\right)=2, \operatorname{wt}\left(f_{i}\right)=2 i \Rightarrow d^{j} f_{i}$ is homogeneous of degree 2 and isobaric of weight $2 i+j$
- Assume $f_{n}=\sum_{i=0}^{n-1} \sum_{j=0}^{k_{i}} \alpha_{i, j} d^{j}\left(f_{i}\right)$
- If $\operatorname{deg}\left(\alpha_{i, j}\right) \geq 1$, these terms must cancel ( $\operatorname{deg}\left(f_{n}\right)=2$, derivatives of $f_{i}$ are homogeneous).
$\Rightarrow$ WLOG: $\alpha_{i, j} \in \mathbb{Z}$
- $\alpha_{i, j}=0$ for $j \neq 2 n-2 i\left(w t\left(f_{n}\right)=2 n, d^{j} f_{i}\right.$ are isobaric $)$.


## Nonrecursive Ideals (2)

Example 5
Consider over $\mathbb{Z}\{x\}$ with $\Delta=\{d\}$ :
$f_{i}=\left(d^{i} x\right)^{2}$ for $i \geq 0$ and $I_{k}=\left[f_{0}, \ldots, f_{k}\right]$.
Then: $I_{0} \subsetneq I_{1} \subsetneq \ldots$

## Nonrecursive Ideals (2)

Example 5
Consider over $\mathbb{Z}\{x\}$ with $\Delta=\{d\}$ :
$f_{i}=\left(d^{i} x\right)^{2}$ for $i \geq 0$ and $I_{k}=\left[f_{0}, \ldots, f_{k}\right]$.
Then: $I_{0} \subsetneq I_{1} \subsetneq \ldots$
Proof.

## Nonrecursive Ideals (2)

Example 5
Consider over $\mathbb{Z}\{x\}$ with $\Delta=\{d\}$ :
$f_{i}=\left(d^{i} x\right)^{2}$ for $i \geq 0$ and $I_{k}=\left[f_{0}, \ldots, f_{k}\right]$.
Then: $I_{0} \subsetneq I_{1} \subsetneq \ldots$
Proof.

$$
\Rightarrow f_{n}=c_{0} d^{2 n} f_{0}+c_{1} d^{(2 n-2)} f_{1}+\ldots+c_{n-1} d^{2} f_{n-1} \text { for } c_{i} \in \mathbb{Z}
$$

## Nonrecursive Ideals (2)

Example 5
Consider over $\mathbb{Z}\{x\}$ with $\Delta=\{d\}$ :
$f_{i}=\left(d^{i} x\right)^{2}$ for $i \geq 0$ and $I_{k}=\left[f_{0}, \ldots, f_{k}\right]$.
Then: $I_{0} \subsetneq I_{1} \subsetneq \ldots$
Proof.
$\Rightarrow f_{n}=c_{0} d^{2 n} f_{0}+c_{1} d^{(2 n-2)} f_{1}+\ldots+c_{n-1} d^{2} f_{n-1}$ for $c_{i} \in \mathbb{Z}$

- $d^{2 n} f_{0}$ contains the monomial $x_{(2 n)} x \Rightarrow c_{0}=0$


## Nonrecursive Ideals (2)

Example 5
Consider over $\mathbb{Z}\{x\}$ with $\Delta=\{d\}$ :
$f_{i}=\left(d^{i} x\right)^{2}$ for $i \geq 0$ and $I_{k}=\left[f_{0}, \ldots, f_{k}\right]$.
Then: $I_{0} \subsetneq I_{1} \subsetneq \ldots$
Proof.
$\Rightarrow f_{n}=c_{0} d^{2 n} f_{0}+c_{1} d^{(2 n-2)} f_{1}+\ldots+c_{n-1} d^{2} f_{n-1}$ for $c_{i} \in \mathbb{Z}$

- $d^{2 n} f_{0}$ contains the monomial $x_{(2 n)} x \Rightarrow c_{0}=0$
- Analogous reasoning for $d^{2 n-2 i} f_{i}$ yields $c_{i}=0$


## Nonrecursive Ideals (2)

Example 5
Consider over $\mathbb{Z}\{x\}$ with $\Delta=\{d\}$ :
$f_{i}=\left(d^{i} x\right)^{2}$ for $i \geq 0$ and $I_{k}=\left[f_{0}, \ldots, f_{k}\right]$.
Then: $I_{0} \subsetneq I_{1} \subsetneq \ldots$
Proof.
$\Rightarrow f_{n}=c_{0} d^{2 n} f_{0}+c_{1} d^{(2 n-2)} f_{1}+\ldots+c_{n-1} d^{2} f_{n-1}$ for $c_{i} \in \mathbb{Z}$

- $d^{2 n} f_{0}$ contains the monomial $x_{(2 n)} x \Rightarrow c_{0}=0$
- Analogous reasoning for $d^{2 n-2 i} f_{i}$ yields $c_{i}=0$
- Contradiction: $f_{n} \neq 0$


## Nonrecursive Ideals (3)

Example 6
Let $S \subset \mathbb{N}_{0}$ and $I_{S}=\left[\left\{f_{i}: i \in S\right\}\right]$. Then

$$
f_{i} \in I_{S} \Leftrightarrow i \in S
$$

So for a nonrecursive set $S \subset \mathbb{N}_{0}$ there is no algorithm to decide if a given differential polynomial $g$ is in $I_{S}$.

## Admissible Orderings

Definition 7 (Ranking)
Let $<$ be a total ordering on the set $\Theta X$ of differential variables.

## Admissible Orderings

Definition 7 (Ranking)
Let $<$ be a total ordering on the set $\Theta X$ of differential variables.

- $v<w \Rightarrow \theta v<\theta w$ for all $v, w \in \Theta X, \theta \in \Theta$


## Admissible Orderings

Definition 7 (Ranking)
Let $<$ be a total ordering on the set $\Theta X$ of differential variables.

- $v<w \Rightarrow \theta v<\theta w$ for all $v, w \in \Theta X, \theta \in \Theta$
- $v \leq \theta v$ for $v \in \Theta X, \theta \in \Theta$


## Admissible Orderings

Definition 7 (Ranking)
Let $<$ be a total ordering on the set $\Theta X$ of differential variables.

- $v<w \Rightarrow \theta v<\theta w$ for all $v, w \in \Theta X, \theta \in \Theta$
- $v \leq \theta v$ for $v \in \Theta X, \theta \in \Theta$
- Then $<$ is called ranking of $\Theta X$.


## Admissible Orderings

Definition 7 (Ranking)
Let $<$ be a total ordering on the set $\Theta X$ of differential variables.

- $v<w \Rightarrow \theta v<\theta w$ for all $v, w \in \Theta X, \theta \in \Theta$
- $v \leq \theta v$ for $v \in \Theta X, \theta \in \Theta$
- Then $<$ is called ranking of $\Theta X$.


## Definition 8 (Admissible Ordering)

Let $<$ be a total ordering on the set $M$ of monomials of $F\{X\}$.
$<$ is called admissible iff

## Admissible Orderings

Definition 7 (Ranking)
Let $<$ be a total ordering on the set $\Theta X$ of differential variables.

- $v<w \Rightarrow \theta v<\theta w$ for all $v, w \in \Theta X, \theta \in \Theta$
- $v \leq \theta v$ for $v \in \Theta X, \theta \in \Theta$
- Then $<$ is called ranking of $\Theta X$.


## Definition 8 (Admissible Ordering)

Let $<$ be a total ordering on the set $M$ of monomials of $F\{X\}$.
$<$ is called admissible iff

1. The restriction of $<$ to $\Theta X$ is a ranking.

## Admissible Orderings

Definition 7 (Ranking)
Let $<$ be a total ordering on the set $\Theta X$ of differential variables.

- $v<w \Rightarrow \theta v<\theta w$ for all $v, w \in \Theta X, \theta \in \Theta$
- $v \leq \theta v$ for $v \in \Theta X, \theta \in \Theta$
- Then $<$ is called ranking of $\Theta X$.


## Definition 8 (Admissible Ordering)

Let $<$ be a total ordering on the set $M$ of monomials of $F\{X\}$.
$<$ is called admissible iff

1. The restriction of $<$ to $\Theta X$ is a ranking.
2. $1 \leq f$ for all $f \in M$

## Admissible Orderings

Definition 7 (Ranking)
Let $<$ be a total ordering on the set $\Theta X$ of differential variables.

- $v<w \Rightarrow \theta v<\theta w$ for all $v, w \in \Theta X, \theta \in \Theta$
- $v \leq \theta v$ for $v \in \Theta X, \theta \in \Theta$
- Then $<$ is called ranking of $\Theta X$.


## Definition 8 (Admissible Ordering)

Let $<$ be a total ordering on the set $M$ of monomials of $F\{X\}$.
$<$ is called admissible iff

1. The restriction of $<$ to $\Theta X$ is a ranking.
2. $1 \leq f$ for all $f \in M$
3. $f<g \Rightarrow h f<h g$ for all $f, g, h \in M$

## Examples of Rankings

$X=\left\{x_{1}, \ldots, x_{n}\right\}$ with $x_{1}<\ldots<x_{n}$.
Example 9 (Lexicographic Ranking on $\Theta X$ )
Consider a monomial ordering $<$ on the differential operators $\Theta$. Then the lexicographic ranking is given by $\theta x_{i}<\eta x_{k}$ iff $i<k$ or $i=k$ and $\theta<\eta$.

## Examples of Rankings

$X=\left\{x_{1}, \ldots, x_{n}\right\}$ with $x_{1}<\ldots<x_{n}$.
Example 9 (Lexicographic Ranking on $\Theta X$ )
Consider a monomial ordering $<$ on the differential operators $\Theta$. Then the lexicographic ranking is given by $\theta x_{i}<\eta x_{k}$ iff $i<k$ or $i=k$ and $\theta<\eta$.

Example 10 (Derivation Ranking on $\Theta X$ )
Consider a monomial ordering $<$ on the differential operators $\Theta$. Then the derivation ranking is given by $\theta x_{i}<\eta x_{k}$ iff $\theta<\eta$ or $\theta=\eta$ and $i<k$.

## Examples of Rankings

$X=\left\{x_{1}, \ldots, x_{n}\right\}$ with $x_{1}<\ldots<x_{n}$.
Example 9 (Lexicographic Ranking on $\Theta X$ )
Consider a monomial ordering $<$ on the differential operators $\Theta$. Then the lexicographic ranking is given by $\theta x_{i}<\eta x_{k}$ iff $i<k$ or $i=k$ and $\theta<\eta$.

## Example 10 (Derivation Ranking on $\Theta X$ )

Consider a monomial ordering $<$ on the differential operators $\Theta$. Then the derivation ranking is given by $\theta x_{i}<\eta x_{k}$ iff $\theta<\eta$ or $\theta=\eta$ and $i<k$.

- For $|X|=|\Delta|=1$ there is only one ranking: $x_{(i)}<x_{(i+1)}$


## Examples of Admissible Orderings

$f=\prod_{i=1}^{r} v_{i}^{\alpha_{i}}$ with $v_{1}>\ldots>v_{r}$.
$g=\prod_{i=1}^{s} w_{i}^{\beta_{i}}$ with $w_{1}>\ldots>w_{s}$.
Example 11 (Lexicographic Ordering on $M$ )
Given an ranking on $\Theta X$.
$f<_{\text {lex }} g$ iff $\exists k \leq r, s: v_{i}=w_{i}$ for $i<k$ and $v_{k}<w_{k}$ or $v_{k}=w_{k}$ and $\alpha_{i}<\beta_{i}$ or $v_{i}=w_{i}$ for $i \leq r$ and $r<s$.

## Examples of Admissible Orderings

$f=\prod_{i=1}^{r} v_{i}^{\alpha_{i}}$ with $v_{1}>\ldots>v_{r}$.
$g=\prod_{i=1}^{s} w_{i}^{\beta_{i}}$ with $w_{1}>\ldots>w_{s}$.
Example 11 (Lexicographic Ordering on $M$ )
Given an ranking on $\Theta X$.
$f<_{\text {lex }} g$ iff $\exists k \leq r, s: v_{i}=w_{i}$ for $i<k$ and $v_{k}<w_{k}$ or $v_{k}=w_{k}$ and $\alpha_{i}<\beta_{i}$ or $v_{i}=w_{i}$ for $i \leq r$ and $r<s$.

Example 12 (Graded (by Degree) Reverse Lexicographic Ordering on $M$ )
Given an ranking on $\Theta X$.
$f<_{\text {degrevlex }} g$ iff $\operatorname{deg}(f)<\operatorname{deg}(g)$ or $\operatorname{deg}(f)=\operatorname{deg}(g)$ and
$f<$ revlex $g$.

## Reduction

Definition 13
$f$ is reduced by $g$ to $h$ iff $\exists \theta \in \Theta, m \in M$ such that $\operatorname{Im}(f)=\operatorname{Im}(m \theta g)$ and $h=f-\frac{\mathrm{IC}(f)}{\mathrm{IC}(g)} m \theta g$.
$f$ is reducable by $g$, iff there is an $h$ such that $f$ is reduced by $g$ to $h$.

## Reduction Algorithm

```
Procedure: Reduce \((f, g)\)
if \((\operatorname{deg}(\operatorname{lm}(f))<\operatorname{deg}(\operatorname{lm}(g)) \| \operatorname{wt}(\operatorname{lm}(f))<\mathrm{wt}(\operatorname{lm}(g)))\)
    return \(f\);
if \((\operatorname{lm}(g) \mid \ln (f))\)
    return \(\operatorname{Reduce}(f-(\operatorname{lt}(f) / \operatorname{lt}(g)) * g, g)\);
for ( \(i=1\); \(i<=m\); \(i++\) ) \{
    \(t=\operatorname{Reduce}\left(f, \delta_{i} g\right)\);
    if ( \(t\) != f) return Reduce ( \(t, g\) );
\}
return \(f\);
```


## Monoideals and Standard Bases

Definition 14 (Monoideal)
$E \subset M$ is called a monoideal iff $M E \subset E$ and $\operatorname{Im}(\Delta E) \subset E$.

## Monoideals and Standard Bases

Definition 14 (Monoideal)
$E \subset M$ is called a monoideal iff $M E \subset E$ and $\operatorname{Im}(\Delta E) \subset E$.
Definition 15 (Standard Basis)
$G \subset I$ is called a standard basis iff $\operatorname{Im}(G)$ generates $\operatorname{Im}(I)$ as monoideal.

## Examples

Example 16 (Monoideal - Lexicographic Ordering)
Members of the monoideal / generated by $x^{2}$ over $F\{x\}$ with $\Delta=\{d\}$ using lexicographic ordering $\left(x_{(k)}:=d^{k} x\right)$ :

## Examples

Example 16 (Monoideal - Lexicographic Ordering)
Members of the monoideal / generated by $x^{2}$ over $F\{x\}$ with
$\Delta=\{d\}$ using lexicographic ordering $\left(x_{(k)}:=d^{k} x\right)$ :

1. $m x^{2}$ for $m \in M$

## Examples

Example 16 (Monoideal - Lexicographic Ordering)
Members of the monoideal / generated by $x^{2}$ over $F\{x\}$ with
$\Delta=\{d\}$ using lexicographic ordering $\left(x_{(k)}:=d^{k} x\right)$ :

1. $m x^{2}$ for $m \in M$
2. $m x_{(1)} x$

## Examples

Example 16 (Monoideal - Lexicographic Ordering)
Members of the monoideal / generated by $x^{2}$ over $F\{x\}$ with
$\Delta=\{d\}$ using lexicographic ordering $\left(x_{(k)}:=d^{k} x\right)$ :

1. $m x^{2}$ for $m \in M$
2. $m x_{(1)} x$
3. $m x_{(2)} x$

## Examples

Example 16 (Monoideal - Lexicographic Ordering)
Members of the monoideal / generated by $x^{2}$ over $F\{x\}$ with
$\Delta=\{d\}$ using lexicographic ordering $\left(x_{(k)}:=d^{k} x\right)$ :

1. $m x^{2}$ for $m \in M$
2. $m x_{(1)} x$
3. $m x_{(2)} x$
4. $m x_{(k)} x$

## Examples

Example 16 (Monoideal - Lexicographic Ordering)
Members of the monoideal / generated by $x^{2}$ over $F\{x\}$ with
$\Delta=\{d\}$ using lexicographic ordering $\left(x_{(k)}:=d^{k} x\right)$ :

1. $m x^{2}$ for $m \in M$
2. $m x_{(1)} x$
3. $m x_{(2)} x$
4. $m x_{(k)} x$
5. $\operatorname{BUT}\left(x_{(k)}\right)^{r} \notin I$

## Examples (2)

Example 17 (Monoideal - Graded Reverse Lexicographic Ordering)
Members of the monoideal / generated by $x^{2}$ over $F\{x\}$ with $\Delta=\left\{^{\prime}\right\}$ using graded lexicographic ordering $\left(x_{(k)}:=d^{k} x\right)$ :

## Examples (2)

Example 17 (Monoideal - Graded Reverse Lexicographic Ordering)
Members of the monoideal / generated by $x^{2}$ over $F\{x\}$ with $\Delta=\left\{^{\prime}\right\}$ using graded lexicographic ordering $\left(x_{(k)}:=d^{k} x\right)$ :

1. $m x^{2}$ for $m \in M$

## Examples (2)

Example 17 (Monoideal - Graded Reverse Lexicographic Ordering)
Members of the monoideal / generated by $x^{2}$ over $F\{x\}$ with $\Delta=\left\{^{\prime}\right\}$ using graded lexicographic ordering $\left(x_{(k)}:=d^{k} x\right)$ :

1. $m x^{2}$ for $m \in M$
2. $m x_{(1)} x$

## Examples (2)

Example 17 (Monoideal - Graded Reverse Lexicographic Ordering)
Members of the monoideal / generated by $x^{2}$ over $F\{x\}$ with $\Delta=\left\{{ }^{\prime}\right\}$ using graded lexicographic ordering $\left(x_{(k)}:=d^{k} x\right)$ :

1. $m x^{2}$ for $m \in M$
2. $m x_{(1)} x$
3. $m\left(x_{(1)}\right)^{2}$

## Examples (2)

Example 17 (Monoideal - Graded Reverse Lexicographic Ordering)
Members of the monoideal / generated by $x^{2}$ over $F\{x\}$ with $\Delta=\left\{{ }^{\prime}\right\}$ using graded lexicographic ordering $\left(x_{(k)}:=d^{k} x\right)$ :

1. $m x^{2}$ for $m \in M$
2. $m x_{(1)} x$
3. $m\left(x_{(1)}\right)^{2}$
4. $m x_{(1)} x_{(2)}$

## Examples (2)

Example 17 (Monoideal - Graded Reverse Lexicographic Ordering)
Members of the monoideal / generated by $x^{2}$ over $F\{x\}$ with $\Delta=\left\{{ }^{\prime}\right\}$ using graded lexicographic ordering $\left(x_{(k)}:=d^{k} x\right)$ :

1. $m x^{2}$ for $m \in M$
2. $m x_{(1)} x$
3. $m\left(x_{(1)}\right)^{2}$
4. $m x_{(1)} x_{(2)}$
5. $m\left(x_{(2)}\right)^{2}$

## Examples (2)

Example 17 (Monoideal - Graded Reverse Lexicographic Ordering)
Members of the monoideal / generated by $x^{2}$ over $F\{x\}$ with $\Delta=\left\{{ }^{\prime}\right\}$ using graded lexicographic ordering $\left(x_{(k)}:=d^{k} x\right)$ :

1. $m x^{2}$ for $m \in M$
2. $m x_{(1)} x$
3. $m\left(x_{(1)}\right)^{2}$
4. $m x_{(1)} x_{(2)}$
5. $m\left(x_{(2)}\right)^{2}$
6. $m x_{(k)^{x}(k+1)}$

## Examples (2)

Example 17 (Monoideal - Graded Reverse Lexicographic Ordering)
Members of the monoideal / generated by $x^{2}$ over $F\{x\}$ with $\Delta=\left\{{ }^{\prime}\right\}$ using graded lexicographic ordering $\left(x_{(k)}:=d^{k} x\right)$ :

1. $m x^{2}$ for $m \in M$
2. $m x_{(1)} x$
3. $m\left(x_{(1)}\right)^{2}$
4. $m x_{(1)} x_{(2)}$
5. $m\left(x_{(2)}\right)^{2}$
6. $m x_{(k)^{x}(k+1)}$
7. $m x_{(k)}^{2}$

## Membership Problem

Theorem 18
Let $G$ be a set of polynomials, I a differential ideal. Then the following propositions are equivalent:

Proof:

## Membership Problem

Theorem 18
Let $G$ be a set of polynomials, I a differential ideal. Then the following propositions are equivalent:

1. $G$ is a standard basis of $I$.

Proof:

## Membership Problem

Theorem 18
Let $G$ be a set of polynomials, I a differential ideal. Then the following propositions are equivalent:

1. $G$ is a standard basis of $I$.
2. For $f \in F\{X\}$ yields: $f \in I \Leftrightarrow f$ is reduced to 0 by $G$.

Proof:

## Membership Problem

Theorem 18
Let $G$ be a set of polynomials, I a differential ideal. Then the following propositions are equivalent:

1. $G$ is a standard basis of $I$.
2. For $f \in F\{X\}$ yields: $f \in I \Leftrightarrow f$ is reduced to 0 by $G$.

Proof:
$\Rightarrow$ Let $0 \neq f \in I$. Then $f$ is reducible by $G$ and the reduction $h \in I, \operatorname{Im}(h)<\operatorname{lm}(f)$.

## Membership Problem

## Theorem 18

Let $G$ be a set of polynomials, I a differential ideal. Then the following propositions are equivalent:

1. $G$ is a standard basis of $I$.
2. For $f \in F\{X\}$ yields: $f \in I \Leftrightarrow f$ is reduced to 0 by $G$.

Proof:
$\Rightarrow$ Let $0 \neq f \in I$. Then $f$ is reducible by $G$ and the reduction $h \in I, \operatorname{lm}(h)<\operatorname{lm}(f)$.
$\Leftarrow g \in G \Rightarrow g$ is reduced to 0 by $G \Rightarrow G \subset I$ $f \in I \Rightarrow f$ is reduced to 0 by $G \Rightarrow \operatorname{lm} / \subset \operatorname{lm}(M \Theta G)$

## Infinite Standard Bases

Example 19
Remember $I=\left[x^{2}\right]$ over $F\{x\}$ with $\Delta=\{d\}$. Then for every $r \geq 0$ there is an $q>1$ such that $\left(x_{(r)}\right)^{q} \in I$.

## Infinite Standard Bases

Example 19
Remember $I=\left[x^{2}\right]$ over $F\{x\}$ with $\Delta=\{d\}$. Then for every
$r \geq 0$ there is an $q>1$ such that $\left(x_{(r)}\right)^{q} \in I$.

- LEX: $\operatorname{Im}\left(d\left(\prod_{i=1}^{r} v_{i}^{\alpha_{i}}\right)\right)=d\left(v_{1}\right) v_{1}^{\alpha_{1}-1} \prod_{i=2}^{r} v_{i}^{\alpha_{i}}$ if $v_{1}>\ldots>v_{r}$.
Therefore $\left(x_{(r)}\right)^{s}$ for every $r \geq 0$ for some $s>0$ is in every standard basis ( $\rightarrow$ infinite).


## Infinite Standard Bases

Example 19
Remember $I=\left[x^{2}\right]$ over $F\{x\}$ with $\Delta=\{d\}$. Then for every
$r \geq 0$ there is an $q>1$ such that $\left(x_{(r)}\right)^{q} \in I$.

- LEX: $\operatorname{Im}\left(d\left(\prod_{i=1}^{r} v_{i}^{\alpha_{i}}\right)\right)=d\left(v_{1}\right) v_{1}^{\alpha_{1}-1} \prod_{i=2}^{r} v_{i}^{\alpha_{i}}$ if $v_{1}>\ldots>v_{r}$.
Therefore $\left(x_{(r)}\right)^{s}$ for every $r \geq 0$ for some $s>0$ is in every standard basis ( $\rightarrow$ infinite).
- DEGREVLEX: $x^{2}$ is a standard basis.


## Infinite Standard Bases (2)

Example 20
Conjecture: There is no finite standard basis for $\left[x_{(1)} x\right]$ for no monomial ordering.

## Infinite Standard Bases (2)

Example 20
Conjecture: There is no finite standard basis for $\left[x_{(1)} x\right]$ for no monomial ordering.

Lemma 21
The families of monomials
belong to the ideal $\left[x_{(1)} x\right]$.

## Infinite Standard Bases (2)

## Example 20

Conjecture: There is no finite standard basis for $\left[x_{(1)} x\right]$ for no monomial ordering.

Lemma 21
The families of monomials

$$
\text { 1. } x^{r} x_{(r)} \text { for } r \geq 1
$$

belong to the ideal $\left[x_{(1)} x\right]$.

## Infinite Standard Bases (2)

## Example 20

Conjecture: There is no finite standard basis for $\left[x_{(1)} x\right]$ for no monomial ordering.

Lemma 21
The families of monomials

1. $x^{r} x_{(r)}$ for $r \geq 1$
2. $x_{(r)}^{t_{r}}$ for $r \geq 1$ and some $t_{r} \geq r+2$
belong to the ideal $\left[x_{(1)} x\right]$.

## Infinite Standard Bases (2)

## Example 20

Conjecture: There is no finite standard basis for $\left[x_{(1)} x\right]$ for no monomial ordering.

Lemma 21
The families of monomials

1. $x^{r} x_{(r)}$ for $r \geq 1$
2. $x_{(r)}^{t_{r}}$ for $r \geq 1$ and some $t_{r} \geq r+2$
3. $x_{(r)}^{2} x_{(r+2)}^{2} \cdots x_{\left(r+2 k_{r}\right)}^{2}$ for $r \geq 0$ and some $k_{r}$
belong to the ideal $\left[x_{(1)} x\right]$.

## Infinite Standard Bases (2)

## Example 20

Conjecture: There is no finite standard basis for $\left[x_{(1)} x\right]$ for no monomial ordering.

Lemma 21
The families of monomials

1. $x^{r} x_{(r)}$ for $r \geq 1$
2. $x_{(r)}^{t_{r}}$ for $r \geq 1$ and some $t_{r} \geq r+2$
3. $x_{(r)}^{2} x_{(r+2)}^{2} \cdots x_{\left(r+2 k_{r}\right)}^{2}$ for $r \geq 0$ and some $k_{r}$
4. $x_{(r)}^{2} x_{(r+3)}^{2} \cdots x_{\left(r+3 I_{r}\right)}^{2}$ for $r \geq 0$ and some $I_{r} \geq 2 r-1$
belong to the ideal $\left[x_{(1)} x\right]$.

## Manifolds

We choose e.g. $F$ as set of all meromorphic functions.
Definition 22
Let $\Sigma$ be a system of differential polynomials over $F\left\{x_{1}, \ldots, x_{n}\right\}$, $F_{1}$ an extension of $F$.
If $Y=\left(y_{1}, \ldots, y_{n}\right) \in F_{1}^{n}$ such that for all $f \in \Sigma f\left(y_{1}, \ldots, y_{n}\right)=0$, then $Y$ is a zero of $\Sigma$. The set of all zeros of $\Sigma$ (for all possible extentions of $F$ ) is called manifold.

## Unions of Manifolds

- Let $M_{1}, M_{2}$ be the manifolds of $\Sigma_{1}, \Sigma_{2}$. If $M_{1} \cap M_{2} \neq \emptyset$ then $M_{1} \cap M_{2}$ is the manifold of $\Sigma_{1}+\Sigma_{2} . M_{1} \cup M_{2}$ is the manifold of $\left\{A B: A \in \Sigma_{1}, B \in \Sigma_{2}\right\}$.


## Unions of Manifolds

- Let $M_{1}, M_{2}$ be the manifolds of $\Sigma_{1}, \Sigma_{2}$. If $M_{1} \cap M_{2} \neq \emptyset$ then $M_{1} \cap M_{2}$ is the manifold of $\Sigma_{1}+\Sigma_{2} . M_{1} \cup M_{2}$ is the manifold of $\left\{A B: A \in \Sigma_{1}, B \in \Sigma_{2}\right\}$.
- $M$ is called reducible if it is union of two manifolds $M_{1}, M_{2} \neq M$.


## Unions of Manifolds

- Let $M_{1}, M_{2}$ be the manifolds of $\Sigma_{1}, \Sigma_{2}$. If $M_{1} \cap M_{2} \neq \emptyset$ then $M_{1} \cap M_{2}$ is the manifold of $\Sigma_{1}+\Sigma_{2} . M_{1} \cup M_{2}$ is the manifold of $\left\{A B: A \in \Sigma_{1}, B \in \Sigma_{2}\right\}$.
- $M$ is called reducible if it is union of two manifolds $M_{1}, M_{2} \neq M$.
- Otherwise it is called irreducible.


## Irreducible Manifolds

Lemma 23
$M$ is irreducible $\Leftrightarrow$
( $A B$ vanishes over $M \Rightarrow A$ or $B$ vanishes over $M$ )

## Irreducible Manifolds

Lemma 23
$M$ is irreducible $\Leftrightarrow$
( $A B$ vanishes over $M \Rightarrow A$ or $B$ vanishes over $M$ )
Proof.

## Irreducible Manifolds

Lemma 23
$M$ is irreducible $\Leftrightarrow$
( $A B$ vanishes over $M \Rightarrow A$ or $B$ vanishes over $M$ )
Proof.
$\Rightarrow$ Assume $\exists A, B$ such that $A B$ vanishes over $M$, but $A, B$ don't. Then the manifolds of $\Sigma+A, \Sigma+B$ are proper parts of $M$, their union is $M$.

## Irreducible Manifolds

Lemma 23
$M$ is irreducible $\Leftrightarrow$
( $A B$ vanishes over $M \Rightarrow A$ or $B$ vanishes over $M$ )
Proof.
$\Rightarrow$ Assume $\exists A, B$ such that $A B$ vanishes over $M$, but $A, B$ don't. Then the manifolds of $\Sigma+A, \Sigma+B$ are proper parts of $M$, their union is $M$.
$\Leftarrow$ Let $M$ be proper union of $M_{1}, M_{2}$ with systems $\Sigma_{1}, \Sigma_{2}$. Then $\exists A_{i} \in \Sigma_{i}$ be differential polynomials that do not vanish over M. $A_{1} A_{2}$ vanishes over $M$.

## Irreducible Manifolds

Lemma 23
$M$ is irreducible $\Leftrightarrow$
( $A B$ vanishes over $M \Rightarrow A$ or $B$ vanishes over $M$ )
Proof.
$\Rightarrow$ Assume $\exists A, B$ such that $A B$ vanishes over $M$, but $A, B$ don't. Then the manifolds of $\Sigma+A, \Sigma+B$ are proper parts of $M$, their union is $M$.
$\Leftarrow$ Let $M$ be proper union of $M_{1}, M_{2}$ with systems $\Sigma_{1}, \Sigma_{2}$. Then $\exists A_{i} \in \Sigma_{i}$ be differential polynomials that do not vanish over M. $A_{1} A_{2}$ vanishes over $M$.

- I.e. irreducible manifolds correspond to prime ideals.


## Decomposition

Theorem 24
Every manifold is the union of a finite number of irreducible manifolds.

## Decomposition (2)

Consider differential polynomials over $F\{x\}$ with $\Delta=\{d\}$ and $F$ the meromorphic functions:

Example 25
Let $\Sigma=[f]$ with $f=x_{(1)}^{2}-4 x$. Then $d f=2 x_{(1)}\left(x_{(2)}-2\right)$.

## Decomposition (2)

Consider differential polynomials over $F\{x\}$ with $\Delta=\{d\}$ and $F$ the meromorphic functions:

## Example 25

Let $\Sigma=[f]$ with $f=x_{(1)}^{2}-4 x$. Then $d f=2 x_{(1)}\left(x_{(2)}-2\right)$.

- $x_{(1)}=0$ has the solution $x(t)=c$. Looking at $f$, only $c=0$ is valid.


## Decomposition (2)

Consider differential polynomials over $F\{x\}$ with $\Delta=\{d\}$ and $F$ the meromorphic functions:

## Example 25

Let $\Sigma=[f]$ with $f=x_{(1)}^{2}-4 x$. Then $d f=2 x_{(1)}\left(x_{(2)}-2\right)$.

- $x_{(1)}=0$ has the solution $x(t)=c$. Looking at $f$, only $c=0$ is valid.
- $x_{(2)}-2=0$ has the solution $x(t)=(t+b)^{2}+c$. Again $c=0$.


## Decomposition (2)

Consider differential polynomials over $F\{x\}$ with $\Delta=\{d\}$ and $F$ the meromorphic functions:

## Example 25

Let $\Sigma=[f]$ with $f=x_{(1)}^{2}-4 x$. Then $d f=2 x_{(1)}\left(x_{(2)}-2\right)$.

- $x_{(1)}=0$ has the solution $x(t)=c$. Looking at $f$, only $c=0$ is valid.
- $x_{(2)}-2=0$ has the solution $x(t)=(t+b)^{2}+c$. Again $c=0$.
- There are no other solutions.


## The Theorem of Zeros

Theorem 26
Let $\Sigma=\left[f_{1}, \ldots, f_{k}\right]$ with manifold $M$. If $g$ vanishes over $M$ then $g^{s} \in \Sigma$ for some $s \in \mathbb{N}_{0}$.

## The Theorem of Zeros

Theorem 26
Let $\Sigma=\left[f_{1}, \ldots, f_{k}\right]$ with manifold $M$. If $g$ vanishes over $M$ then $g^{s} \in \Sigma$ for some $s \in \mathbb{N}_{0}$.

- So the manifolds are represented by perfect ideals.


## The Ritt-Braudenbush Theorem

Theorem 27
Every perfect differential ideal has a finite basis.

## Membership Test for Perfect Differential Ideals/Manifolds

Let $\Sigma$ be a finite system of differential polynomials.
Question: Is $f \in\{\Sigma\}$ ?

- Resolve $\Sigma$ into prime ideals (resp. the corresponding manifold into irreducible manifolds).


## Membership Test for Perfect Differential Ideals/Manifolds

Let $\Sigma$ be a finite system of differential polynomials.
Question: Is $f \in\{\Sigma\}$ ?

- Resolve $\Sigma$ into prime ideals (resp. the corresponding manifold into irreducible manifolds).
- $f$ must be member of each of these prime ideals.


## Membership Test for Perfect Differential Ideals/Manifolds

Let $\Sigma$ be a finite system of differential polynomials.
Question: Is $f \in\{\Sigma\}$ ?

- Resolve $\Sigma$ into prime ideals (resp. the corresponding manifold into irreducible manifolds).
- $f$ must be member of each of these prime ideals.
- Test if the remainder of $f$ with respect to the characteristic sets of the prime ideals is zero.


## Conclusion

- Differential polynomials can be used to model differential equation systems.


## Conclusion

- Differential polynomials can be used to model differential equation systems.
- There are many problems in contrast to algebraic polynomials (no finite (standard) bases, monomial ideals depend on ordering).


## Conclusion

- Differential polynomials can be used to model differential equation systems.
- There are many problems in contrast to algebraic polynomials (no finite (standard) bases, monomial ideals depend on ordering).
- Manifolds (solutions) correspond to perfect ideals, that are easier to handle.


## Conclusion

- Differential polynomials can be used to model differential equation systems.
- There are many problems in contrast to algebraic polynomials (no finite (standard) bases, monomial ideals depend on ordering).
- Manifolds (solutions) correspond to perfect ideals, that are easier to handle.
- For some important problems (finite) algorithms exist.


## Thank you for the attention

國 G．Gallo，B．Mishra，and F．Ollivier．
Some constructions in rings of differential polynomials．
Lecture Notes In Computer Science，539， 1994.
图 F．Ollivier．
Standard bases of differential ideals．
Lecture Notes In Computer Science，508， 1990.
圊 J．Ritt．
Differential Algebra．
AMS， 1950.
囯 A．I．Zobnin．
On standard bases in rings of differential polynomials． Journal of Mathematical Sciences，135（5）， 2006.

