
Integer Relations among Real Numbers

Darya Romanova

Saint-Petersburg State University

Joint Advanced Student School 2007

Outline

1 Introduction
Starting Examples
Integer Relations
Algorithms for Finding Integral Relations

2 LLL-based Algorithms
Lattices and Their Bases
HJLS

3 PSLQ

4 Usage

5 Applications
"BBP" Formula for Pi
Bifurcation Points in Chaos Theory

6 Further Reading

Outline

1 Introduction
Starting Examples
Integer Relations
Algorithms for Finding Integral Relations

2 LLL-based Algorithms
Lattices and Their Bases
HJLS

3 PSLQ

4 Usage

5 Applications
"BBP" Formula for Pi
Bifurcation Points in Chaos Theory

6 Further Reading

Starting Examples

Let X be a mathematical expression, that can be approximated
numerically. (For example a definite integral.)

Suppose we know, that X is rational.

X ≈ 2.33333333333333333 . . . ⇒ X = 7/3.

X ≈ 0.1412742382271468144044321 . . . ⇒ X = ?

Starting Examples

Let X be a mathematical expression, that can be approximated
numerically. (For example a definite integral.)

Suppose we know, that X is rational.

X ≈ 2.33333333333333333 . . . ⇒ X = 7/3.

X ≈ 0.1412742382271468144044321 . . . ⇒ X = ?

Starting Examples

Let X be a mathematical expression, that can be approximated
numerically. (For example a definite integral.)

Suppose we know, that X is rational.

X ≈ 2.33333333333333333 . . . ⇒ X =

7/3.

X ≈ 0.1412742382271468144044321 . . . ⇒ X = ?

Starting Examples

Let X be a mathematical expression, that can be approximated
numerically. (For example a definite integral.)

Suppose we know, that X is rational.

X ≈ 2.33333333333333333 . . . ⇒ X = 7/3.

X ≈ 0.1412742382271468144044321 . . . ⇒ X = ?

Starting Examples

Let X be a mathematical expression, that can be approximated
numerically. (For example a definite integral.)

Suppose we know, that X is rational.

X ≈ 2.33333333333333333 . . . ⇒ X = 7/3.

X ≈ 0.1412742382271468144044321 . . . ⇒ X =

?

Starting Examples

Let X be a mathematical expression, that can be approximated
numerically. (For example a definite integral.)

Suppose we know, that X is rational.

X ≈ 2.33333333333333333 . . . ⇒ X = 7/3.

X ≈ 0.1412742382271468144044321 . . . ⇒ X = ?

Continuous Fractions

Let’s make X into continuous fraction:

1/0.14127423822714681440 ≈ 7.0784313725490196080

1/0.078431372549019607843139 ≈ 12.749999999999999975

1/0.749999999999999975 ≈ 1.3333333333333333778

1/0.3333333333333333778 ≈ 2.9999999999999995998

1/0.9999999999999995998 ≈ 1.0000000000000004002

1/0.0000000000000004002 ≈ 24987506246876561, 719

Continuous Fractions

Let’s make X into continuous fraction:

1/0.14127423822714681440 ≈ 7.0784313725490196080

1/0.078431372549019607843139 ≈ 12.749999999999999975

1/0.749999999999999975 ≈ 1.3333333333333333778

1/0.3333333333333333778 ≈ 2.9999999999999995998

1/0.9999999999999995998 ≈ 1.0000000000000004002

1/0.0000000000000004002 ≈ 24987506246876561, 719

Continuous Fractions

0.14127423822714681440 . . . ≈
1

7 +
1

12 +
1

1 +
1

2 +
1

1 +
1

24987506246876561, 719

⇒

X =
1

7 +
1

12 +
1

1 +
1

2 +
1
1

=
51

361
.

(Actually the period of
51

361
is 342.)

Continuous Fractions

0.14127423822714681440 . . . ≈
1

7 +
1

12 +
1

1 +
1

2 +
1

1 +
1

24987506246876561, 719

⇒

X =
1

7 +
1

12 +
1

1 +
1

2 +
1
1

=
51

361
.

(Actually the period of
51

361
is 342.)

Continuous Fractions

0.14127423822714681440 . . . ≈
1

7 +
1

12 +
1

1 +
1

2 +
1

1 +
1

24987506246876561, 719

⇒

X =
1

7 +
1

12 +
1

1 +
1

2 +
1
1

=
51

361
.

(Actually the period of
51

361
is 342.)

Quadratic Irrationalities

Now suppose we don’t know if X is rational. But we do know
that it is a quadratic irrationality. (That is a root of an equation
ax2 + bx + c = 0 with a, b, c rational.)

Theorem(Lagrange)
X is a quadratic irrationality ⇔ its continuos fraction is periodic.

Quadratic Irrationalities

Now suppose we don’t know if X is rational. But we do know
that it is a quadratic irrationality. (That is a root of an equation
ax2 + bx + c = 0 with a, b, c rational.)

Theorem(Lagrange)
X is a quadratic irrationality ⇔ its continuos fraction is periodic.

Quadratic Irrationalities

Example:
√

3

= 1 + (
√

3− 1) = 1 +
2√

3 + 1
= 1 +

1√
3 + 1
2

= 1 +
1

2 + (
√

3− 1)

2

= 1 +
1

1 +

√
3− 1
2

= 1 +
1

1 +
2

2(
√

3 + 1)

= 1 +
1

1 +
1√

3 + 1

= 1 +
1

1 +
1

2 + (
√

3− 1)

= 1 +
1

1 +
1

2 +
1

1 +
1

2 + ...

.

Quadratic Irrationalities

Example:
√

3 = 1 + (
√

3− 1)

= 1 +
2√

3 + 1
= 1 +

1√
3 + 1
2

= 1 +
1

2 + (
√

3− 1)

2

= 1 +
1

1 +

√
3− 1
2

= 1 +
1

1 +
2

2(
√

3 + 1)

= 1 +
1

1 +
1√

3 + 1

= 1 +
1

1 +
1

2 + (
√

3− 1)

= 1 +
1

1 +
1

2 +
1

1 +
1

2 + ...

.

Quadratic Irrationalities

Example:
√

3 = 1 + (
√

3− 1) = 1 +
2√

3 + 1

= 1 +
1√

3 + 1
2

= 1 +
1

2 + (
√

3− 1)

2

= 1 +
1

1 +

√
3− 1
2

= 1 +
1

1 +
2

2(
√

3 + 1)

= 1 +
1

1 +
1√

3 + 1

= 1 +
1

1 +
1

2 + (
√

3− 1)

= 1 +
1

1 +
1

2 +
1

1 +
1

2 + ...

.

Quadratic Irrationalities

Example:
√

3 = 1 + (
√

3− 1) = 1 +
2√

3 + 1
= 1 +

1√
3 + 1
2

= 1 +
1

2 + (
√

3− 1)

2

= 1 +
1

1 +

√
3− 1
2

= 1 +
1

1 +
2

2(
√

3 + 1)

= 1 +
1

1 +
1√

3 + 1

= 1 +
1

1 +
1

2 + (
√

3− 1)

= 1 +
1

1 +
1

2 +
1

1 +
1

2 + ...

.

Quadratic Irrationalities

Example:
√

3 = 1 + (
√

3− 1) = 1 +
2√

3 + 1
= 1 +

1√
3 + 1
2

= 1 +
1

2 + (
√

3− 1)

2

= 1 +
1

1 +

√
3− 1
2

= 1 +
1

1 +
2

2(
√

3 + 1)

= 1 +
1

1 +
1√

3 + 1

= 1 +
1

1 +
1

2 + (
√

3− 1)

= 1 +
1

1 +
1

2 +
1

1 +
1

2 + ...

.

Quadratic Irrationalities

Example:
√

3 = 1 + (
√

3− 1) = 1 +
2√

3 + 1
= 1 +

1√
3 + 1
2

= 1 +
1

2 + (
√

3− 1)

2

= 1 +
1

1 +

√
3− 1
2

= 1 +
1

1 +
2

2(
√

3 + 1)

= 1 +
1

1 +
1√

3 + 1

= 1 +
1

1 +
1

2 + (
√

3− 1)

= 1 +
1

1 +
1

2 +
1

1 +
1

2 + ...

.

Quadratic Irrationalities

Example:
√

3 = 1 + (
√

3− 1) = 1 +
2√

3 + 1
= 1 +

1√
3 + 1
2

= 1 +
1

2 + (
√

3− 1)

2

= 1 +
1

1 +

√
3− 1
2

= 1 +
1

1 +
2

2(
√

3 + 1)

= 1 +
1

1 +
1√

3 + 1

= 1 +
1

1 +
1

2 + (
√

3− 1)

= 1 +
1

1 +
1

2 +
1

1 +
1

2 + ...

.

Quadratic Irrationalities

Example:
√

3 = 1 + (
√

3− 1) = 1 +
2√

3 + 1
= 1 +

1√
3 + 1
2

= 1 +
1

2 + (
√

3− 1)

2

= 1 +
1

1 +

√
3− 1
2

= 1 +
1

1 +
2

2(
√

3 + 1)

= 1 +
1

1 +
1√

3 + 1

= 1 +
1

1 +
1

2 + (
√

3− 1)

= 1 +
1

1 +
1

2 +
1

1 +
1

2 + ...

.

Quadratic Irrationalities

Example:
√

3 = 1 + (
√

3− 1) = 1 +
2√

3 + 1
= 1 +

1√
3 + 1
2

= 1 +
1

2 + (
√

3− 1)

2

= 1 +
1

1 +

√
3− 1
2

= 1 +
1

1 +
2

2(
√

3 + 1)

= 1 +
1

1 +
1√

3 + 1

= 1 +
1

1 +
1

2 + (
√

3− 1)

= 1 +
1

1 +
1

2 +
1

1 +
1

2 + ...

.

Quadratic Irrationalities

Example:
√

3 = 1 + (
√

3− 1) = 1 +
2√

3 + 1
= 1 +

1√
3 + 1
2

= 1 +
1

2 + (
√

3− 1)

2

= 1 +
1

1 +

√
3− 1
2

= 1 +
1

1 +
2

2(
√

3 + 1)

= 1 +
1

1 +
1√

3 + 1

= 1 +
1

1 +
1

2 + (
√

3− 1)

= 1 +
1

1 +
1

2 +
1

1 +
1

2 + ...

.

Integer Relations

Let’s generalize the problem.

Definition
α is an algebraic number if there exist a0, . . . , an ∈ Z such that
anα

n + . . . + a1α + a0 = 0 and an 6= 0. The degree of α is the
smallest of such n.

Remark
α is algebraic of degree ≤ n ⇔ (1, α, α2, . . . , αn) posess an
integer relation [see below].

Definition
An integer relation for n-tuple (x1, . . . , xn) ∈ Rn is an n-tuple
0 6= (a1, . . . , an) ∈ Zn such that a1x1 + . . . + anxn = 0.

Integer Relations

Let’s generalize the problem.

Definition
α is an algebraic number if there exist a0, . . . , an ∈ Z such that
anα

n + . . . + a1α + a0 = 0 and an 6= 0. The degree of α is the
smallest of such n.

Remark
α is algebraic of degree ≤ n ⇔ (1, α, α2, . . . , αn) posess an
integer relation [see below].

Definition
An integer relation for n-tuple (x1, . . . , xn) ∈ Rn is an n-tuple
0 6= (a1, . . . , an) ∈ Zn such that a1x1 + . . . + anxn = 0.

Integer Relations

Let’s generalize the problem.

Definition
α is an algebraic number if there exist a0, . . . , an ∈ Z such that
anα

n + . . . + a1α + a0 = 0 and an 6= 0. The degree of α is the
smallest of such n.

Remark
α is algebraic of degree ≤ n ⇔ (1, α, α2, . . . , αn) posess an
integer relation [see below].

Definition
An integer relation for n-tuple (x1, . . . , xn) ∈ Rn is an n-tuple
0 6= (a1, . . . , an) ∈ Zn such that a1x1 + . . . + anxn = 0.

Integer Relations

Let’s generalize the problem.

Definition
α is an algebraic number if there exist a0, . . . , an ∈ Z such that
anα

n + . . . + a1α + a0 = 0 and an 6= 0. The degree of α is the
smallest of such n.

Remark
α is algebraic of degree ≤ n ⇔ (1, α, α2, . . . , αn) posess an
integer relation [see below].

Definition
An integer relation for n-tuple (x1, . . . , xn) ∈ Rn is an n-tuple
0 6= (a1, . . . , an) ∈ Zn such that a1x1 + . . . + anxn = 0.

Algorithms for Finding Integral Relations

The problem of finding an integer relation for two numbers
(x1, x2) can be solved by applying the Euclidian algorithm to
x1, x2, or, equivalently, by computing the continued fraction
expansion of x1/x2.

The generalization for n ≥ 3 was attempted by Euler, Jacobi,
Minkowski, Perron, Bernstein, among others.

The best known and most used algorithms at the present time
are either algorithms based on lattice basis reduction algorithm
by Lenstra, Lenstra, Jr. and Lovász (LLL) or PSLQ algorithm
based on ideas of Ferguson, Forcade and Bergman. (Both
discovered in 1970-s –1980-s.)

Algorithms for Finding Integral Relations

The problem of finding an integer relation for two numbers
(x1, x2) can be solved by applying the Euclidian algorithm to
x1, x2, or, equivalently, by computing the continued fraction
expansion of x1/x2.

The generalization for n ≥ 3 was attempted by Euler, Jacobi,
Minkowski, Perron, Bernstein, among others.

The best known and most used algorithms at the present time
are either algorithms based on lattice basis reduction algorithm
by Lenstra, Lenstra, Jr. and Lovász (LLL) or PSLQ algorithm
based on ideas of Ferguson, Forcade and Bergman. (Both
discovered in 1970-s –1980-s.)

Algorithms for Finding Integral Relations

The problem of finding an integer relation for two numbers
(x1, x2) can be solved by applying the Euclidian algorithm to
x1, x2, or, equivalently, by computing the continued fraction
expansion of x1/x2.

The generalization for n ≥ 3 was attempted by Euler, Jacobi,
Minkowski, Perron, Bernstein, among others.

The best known and most used algorithms at the present time
are either algorithms based on lattice basis reduction algorithm
by Lenstra, Lenstra, Jr. and Lovász (LLL) or PSLQ algorithm
based on ideas of Ferguson, Forcade and Bergman. (Both
discovered in 1970-s –1980-s.)

Outline

1 Introduction
Starting Examples
Integer Relations
Algorithms for Finding Integral Relations

2 LLL-based Algorithms
Lattices and Their Bases
HJLS

3 PSLQ

4 Usage

5 Applications
"BBP" Formula for Pi
Bifurcation Points in Chaos Theory

6 Further Reading

Some Reminders from Linear Algebra

Let Rn be the n -dimensional real vector space (n > 1) with

inner product: 〈x, y〉 =
n∑

j=1
xjyj .

‖y‖ =
√
〈y, y〉 is the length of y ∈ Rn.

x and y are orthogonal ⇔ 〈x, y〉 = 0.

For a linear subspace E ⊂ Rn we denote by E⊥ ⊂ Rn the
orthogonal complement of E (i.e., the subspace consisting
of all vectors that are orthogonal to E).

Some Reminders from Linear Algebra

Let Rn be the n -dimensional real vector space (n > 1) with

inner product: 〈x, y〉 =
n∑

j=1
xjyj .

‖y‖ =
√
〈y, y〉 is the length of y ∈ Rn.

x and y are orthogonal ⇔ 〈x, y〉 = 0.

For a linear subspace E ⊂ Rn we denote by E⊥ ⊂ Rn the
orthogonal complement of E (i.e., the subspace consisting
of all vectors that are orthogonal to E).

Some Reminders from Linear Algebra

Let Rn be the n -dimensional real vector space (n > 1) with

inner product: 〈x, y〉 =
n∑

j=1
xjyj .

‖y‖ =
√
〈y, y〉 is the length of y ∈ Rn.

x and y are orthogonal ⇔ 〈x, y〉 = 0.

For a linear subspace E ⊂ Rn we denote by E⊥ ⊂ Rn the
orthogonal complement of E (i.e., the subspace consisting
of all vectors that are orthogonal to E).

Some Reminders from Linear Algebra

Let Rn be the n -dimensional real vector space (n > 1) with

inner product: 〈x, y〉 =
n∑

j=1
xjyj .

‖y‖ =
√
〈y, y〉 is the length of y ∈ Rn.

x and y are orthogonal ⇔ 〈x, y〉 = 0.

For a linear subspace E ⊂ Rn we denote by E⊥ ⊂ Rn the
orthogonal complement of E (i.e., the subspace consisting
of all vectors that are orthogonal to E).

Some Reminders from Linear Algebra

E and E⊥ :

Some Reminders from Linear Algebra

The transpose of matrix A is AT .

If b1, . . . , br ∈ Rn then [b1, . . . , br] will denote n × r matrix
which has b1, . . . , br ∈ Rn as columns.
span(b1, . . . , br) is the linear space, spanned on b1, . . . , br :

span(b1, . . . , br) =

{
j=r∑
j=1

ajbj
∣∣aj ∈ R

}
.

Some Reminders from Linear Algebra

The transpose of matrix A is AT .

If b1, . . . , br ∈ Rn then [b1, . . . , br] will denote n × r matrix
which has b1, . . . , br ∈ Rn as columns.

span(b1, . . . , br) is the linear space, spanned on b1, . . . , br :

span(b1, . . . , br) =

{
j=r∑
j=1

ajbj
∣∣aj ∈ R

}
.

Some Reminders from Linear Algebra

The transpose of matrix A is AT .

If b1, . . . , br ∈ Rn then [b1, . . . , br] will denote n × r matrix
which has b1, . . . , br ∈ Rn as columns.
span(b1, . . . , br) is the linear space, spanned on b1, . . . , br :

span(b1, . . . , br) =

{
j=r∑
j=1

ajbj
∣∣aj ∈ R

}
.

Gram-Schmidt orthogonalization

With b0 = x, b1, . . . , bn ∈ Rn we associate the orthogonal
system b∗0, . . . , b∗n that are defined inductively:

b∗0 = x,

b∗ι̇ = bι̇ −
ι̇−1∑
j=0

〈
bι̇, b∗j

〉〈
b∗j , b∗j

〉b∗j , ι̇ = 1, . . . , n.

Note: b∗ι̇ is orthogonal to span(b∗0, . . . , b∗ι̇−1)=span(b0, . . . , bι̇−1).

Gram-Schmidt orthogonalization

With b0 = x, b1, . . . , bn ∈ Rn we associate the orthogonal
system b∗0, . . . , b∗n that are defined inductively:

b∗0 = x,

b∗ι̇ = bι̇ −
ι̇−1∑
j=0

〈
bι̇, b∗j

〉〈
b∗j , b∗j

〉b∗j , ι̇ = 1, . . . , n.

Note: b∗ι̇ is orthogonal to span(b∗0, . . . , b∗ι̇−1)=span(b0, . . . , bι̇−1).

Gram-Schmidt orthogonalization

With b0 = x, b1, . . . , bn ∈ Rn we associate the orthogonal
system b∗0, . . . , b∗n that are defined inductively:

b∗0 = x,

b∗ι̇ = bι̇ −
ι̇−1∑
j=0

〈
bι̇, b∗j

〉〈
b∗j , b∗j

〉b∗j , ι̇ = 1, . . . , n.

Note: b∗ι̇ is orthogonal to span(b∗0, . . . , b∗ι̇−1)=span(b0, . . . , bι̇−1).

Gram-Schmidt orthogonalization

With b0 = x, b1, . . . , bn ∈ Rn we associate the orthogonal
system b∗0, . . . , b∗n that are defined inductively:

b∗0 = x,

b∗ι̇ = bι̇ −
ι̇−1∑
j=0

〈
bι̇, b∗j

〉〈
b∗j , b∗j

〉b∗j , ι̇ = 1, . . . , n.

Note: b∗ι̇ is orthogonal to span(b∗0, . . . , b∗ι̇−1)=span(b0, . . . , bι̇−1).

Lattices

Definition
A lattice L ⊂ Rn is an additive closure of some linear

independent b1, . . . , br ∈ Rn, i.e. L =

{
r∑

i=1
mibi |mi ∈ Z

}
.

Lattices

Definition
A lattice L ⊂ Rn is an additive closure of some linear

independent b1, . . . , br ∈ Rn, i.e. L =

{
r∑

i=1
mibi |mi ∈ Z

}
.

Lattices

Such b1, . . . , br are called the basis of L. Of course they are not
defined uniquely.

Lattices

Such b1, . . . , br are called the basis of L. Of course they are not
defined uniquely.

Lattices

An important example: the lattice Lx ⊂ Zn of all integer
relations for x together with 0 : Lx := {m ∈ Zn |〈x, m〉 = 0} .

Lattices

An important example: the lattice Lx ⊂ Zn of all integer
relations for x together with 0 : Lx := {m ∈ Zn |〈x, m〉 = 0} .

Bases

We will perform two types of elementary basis exchange
operations on a current basis b1, . . . , bn of a given lattice:

Exchange steps: Interchange bι̇ and bι̇+1 for some ι̇.

Size-reduction steps: Replace bι̇ with bι̇ − pbj where
p ∈ Z for some 1 ≤ j < ι̇.

With every basis b1, . . . , bn there is the dual basis c1, . . . , cn:
[c1, . . . , cn]

T = [b1, . . . , bn]
−1 ⇔ [c1, . . . , cn]

T [b1, . . . , bn] = Id

⇔
〈
bj , ck

〉
= δjk =

{
0, j 6= k
1, j = k

.

Note: b1, . . . , bn ∈ Zn and
B = [b1, . . . , bn] unimodular (det B = ±1) ⇒ c1, . . . , cn ∈ Zn.

Bases

We will perform two types of elementary basis exchange
operations on a current basis b1, . . . , bn of a given lattice:

Exchange steps: Interchange bι̇ and bι̇+1 for some ι̇.

Size-reduction steps: Replace bι̇ with bι̇ − pbj where
p ∈ Z for some 1 ≤ j < ι̇.

With every basis b1, . . . , bn there is the dual basis c1, . . . , cn:
[c1, . . . , cn]

T = [b1, . . . , bn]
−1 ⇔ [c1, . . . , cn]

T [b1, . . . , bn] = Id

⇔
〈
bj , ck

〉
= δjk =

{
0, j 6= k
1, j = k

.

Note: b1, . . . , bn ∈ Zn and
B = [b1, . . . , bn] unimodular (det B = ±1) ⇒ c1, . . . , cn ∈ Zn.

Bases

We will perform two types of elementary basis exchange
operations on a current basis b1, . . . , bn of a given lattice:

Exchange steps: Interchange bι̇ and bι̇+1 for some ι̇.

Size-reduction steps: Replace bι̇ with bι̇ − pbj where
p ∈ Z for some 1 ≤ j < ι̇.

With every basis b1, . . . , bn there is the dual basis c1, . . . , cn:
[c1, . . . , cn]

T = [b1, . . . , bn]
−1 ⇔ [c1, . . . , cn]

T [b1, . . . , bn] = Id

⇔
〈
bj , ck

〉
= δjk =

{
0, j 6= k
1, j = k

.

Note: b1, . . . , bn ∈ Zn and
B = [b1, . . . , bn] unimodular (det B = ±1) ⇒ c1, . . . , cn ∈ Zn.

Bases

We will perform two types of elementary basis exchange
operations on a current basis b1, . . . , bn of a given lattice:

Exchange steps: Interchange bι̇ and bι̇+1 for some ι̇.

Size-reduction steps: Replace bι̇ with bι̇ − pbj where
p ∈ Z for some 1 ≤ j < ι̇.

With every basis b1, . . . , bn there is the dual basis c1, . . . , cn:
[c1, . . . , cn]

T = [b1, . . . , bn]
−1 ⇔ [c1, . . . , cn]

T [b1, . . . , bn] = Id

⇔
〈
bj , ck

〉
= δjk =

{
0, j 6= k
1, j = k

.

Note: b1, . . . , bn ∈ Zn and
B = [b1, . . . , bn] unimodular (det B = ±1) ⇒ c1, . . . , cn ∈ Zn.

Bases

We will perform two types of elementary basis exchange
operations on a current basis b1, . . . , bn of a given lattice:

Exchange steps: Interchange bι̇ and bι̇+1 for some ι̇.

Size-reduction steps: Replace bι̇ with bι̇ − pbj where
p ∈ Z for some 1 ≤ j < ι̇.

With every basis b1, . . . , bn there is the dual basis c1, . . . , cn:
[c1, . . . , cn]

T = [b1, . . . , bn]
−1 ⇔ [c1, . . . , cn]

T [b1, . . . , bn] = Id

⇔
〈
bj , ck

〉
= δjk =

{
0, j 6= k
1, j = k

.

Note: b1, . . . , bn ∈ Zn and
B = [b1, . . . , bn] unimodular (det B = ±1) ⇒ c1, . . . , cn ∈ Zn.

HJLS: Source; Model of Computation; Notation

Source: J. Hastad, B. Just, J. C. Lagarias, and C. P. Schnorr.
Polynomial Time Algorithms for Finding Integer Relations
among Real Numbers.
SIAM J. Comput., Vol.18, 1989, pp.859-881.

Model of Computation:
Computation with real numbers.
Operations: addition, subtraction, multiplication, division,
comparison, the nearest integer(dc) — at unit cost.

Notation:〈
bι̇, b∗j

〉〈
b∗j , b∗j

〉 =: µι̇j .

λ(x) := the length of the shortest integer relation for x.
If there are no relations then λ(x) := ∞.

HJLS: Source; Model of Computation; Notation

Source: J. Hastad, B. Just, J. C. Lagarias, and C. P. Schnorr.
Polynomial Time Algorithms for Finding Integer Relations
among Real Numbers.
SIAM J. Comput., Vol.18, 1989, pp.859-881.

Model of Computation:
Computation with real numbers.
Operations: addition, subtraction, multiplication, division,
comparison, the nearest integer(dc) — at unit cost.

Notation:〈
bι̇, b∗j

〉〈
b∗j , b∗j

〉 =: µι̇j .

λ(x) := the length of the shortest integer relation for x.
If there are no relations then λ(x) := ∞.

HJLS: Source; Model of Computation; Notation

Source: J. Hastad, B. Just, J. C. Lagarias, and C. P. Schnorr.
Polynomial Time Algorithms for Finding Integer Relations
among Real Numbers.
SIAM J. Comput., Vol.18, 1989, pp.859-881.

Model of Computation:
Computation with real numbers.
Operations: addition, subtraction, multiplication, division,
comparison, the nearest integer(dc) — at unit cost.

Notation:〈
bι̇, b∗j

〉〈
b∗j , b∗j

〉 =: µι̇j .

λ(x) := the length of the shortest integer relation for x.
If there are no relations then λ(x) := ∞.

HJLS: Source; Model of Computation; Notation

Source: J. Hastad, B. Just, J. C. Lagarias, and C. P. Schnorr.
Polynomial Time Algorithms for Finding Integer Relations
among Real Numbers.
SIAM J. Comput., Vol.18, 1989, pp.859-881.

Model of Computation:
Computation with real numbers.
Operations: addition, subtraction, multiplication, division,
comparison, the nearest integer(dc) — at unit cost.

Notation:〈
bι̇, b∗j

〉〈
b∗j , b∗j

〉 =: µι̇j .

λ(x) := the length of the shortest integer relation for x.
If there are no relations then λ(x) := ∞.

HJLS: the Algorithm

Input : x ∈ Rn, k ∈ N.

(1) Initiation: b0 := x; b1, . . . , bn := standard basis of Zn.
Compute µι̇j and ‖b∗ι̇ ‖

2 = 〈b∗ι̇ , b∗ι̇ 〉 .
(2) Termination test :
If ‖b∗n‖ 6= 0 then an integer relation is found.
Compute [c1, . . . , cn]

T = [b1, . . . , bn]
−1 and output the integer

relation cn. Stop.
If

∥∥b∗j
∥∥ ≤ 1/2k , 1 ≤ j ≤ n then no small integer relation exist.

Output "λ(x) ≥ 2k " and stop.
(3) Exchange step:
Choose from 1 ≤ ι̇ ≤ n that ι̇ that maximizes 2ι̇ ‖b∗ι̇ ‖ .
Size-reduce bι̇+1: bι̇+1 := bι̇+1 −

⌈
µι̇+1,ι̇

⌋
bι̇.

Update µι̇+1,j for j = 1, . . . , ι̇.
Exchange bι̇ and bι̇+1.

Update ‖b∗ν‖
2 , µνj , µjν for ν = ι̇, ι̇ + 1, 1 ≤ j ≤ n. Go to (2).

HJLS: the Algorithm

Input : x ∈ Rn, k ∈ N.
(1) Initiation: b0 := x; b1, . . . , bn := standard basis of Zn.
Compute µι̇j and ‖b∗ι̇ ‖

2 = 〈b∗ι̇ , b∗ι̇ 〉 .

(2) Termination test :
If ‖b∗n‖ 6= 0 then an integer relation is found.
Compute [c1, . . . , cn]

T = [b1, . . . , bn]
−1 and output the integer

relation cn. Stop.
If

∥∥b∗j
∥∥ ≤ 1/2k , 1 ≤ j ≤ n then no small integer relation exist.

Output "λ(x) ≥ 2k " and stop.
(3) Exchange step:
Choose from 1 ≤ ι̇ ≤ n that ι̇ that maximizes 2ι̇ ‖b∗ι̇ ‖ .
Size-reduce bι̇+1: bι̇+1 := bι̇+1 −

⌈
µι̇+1,ι̇

⌋
bι̇.

Update µι̇+1,j for j = 1, . . . , ι̇.
Exchange bι̇ and bι̇+1.

Update ‖b∗ν‖
2 , µνj , µjν for ν = ι̇, ι̇ + 1, 1 ≤ j ≤ n. Go to (2).

HJLS: the Algorithm

Input : x ∈ Rn, k ∈ N.
(1) Initiation: b0 := x; b1, . . . , bn := standard basis of Zn.
Compute µι̇j and ‖b∗ι̇ ‖

2 = 〈b∗ι̇ , b∗ι̇ 〉 .
(2) Termination test :
If ‖b∗n‖ 6= 0 then an integer relation is found.
Compute [c1, . . . , cn]

T = [b1, . . . , bn]
−1 and output the integer

relation cn. Stop.

If
∥∥b∗j

∥∥ ≤ 1/2k , 1 ≤ j ≤ n then no small integer relation exist.
Output "λ(x) ≥ 2k " and stop.
(3) Exchange step:
Choose from 1 ≤ ι̇ ≤ n that ι̇ that maximizes 2ι̇ ‖b∗ι̇ ‖ .
Size-reduce bι̇+1: bι̇+1 := bι̇+1 −

⌈
µι̇+1,ι̇

⌋
bι̇.

Update µι̇+1,j for j = 1, . . . , ι̇.
Exchange bι̇ and bι̇+1.

Update ‖b∗ν‖
2 , µνj , µjν for ν = ι̇, ι̇ + 1, 1 ≤ j ≤ n. Go to (2).

HJLS: the Algorithm

Input : x ∈ Rn, k ∈ N.
(1) Initiation: b0 := x; b1, . . . , bn := standard basis of Zn.
Compute µι̇j and ‖b∗ι̇ ‖

2 = 〈b∗ι̇ , b∗ι̇ 〉 .
(2) Termination test :
If ‖b∗n‖ 6= 0 then an integer relation is found.
Compute [c1, . . . , cn]

T = [b1, . . . , bn]
−1 and output the integer

relation cn. Stop.
If

∥∥b∗j
∥∥ ≤ 1/2k , 1 ≤ j ≤ n then no small integer relation exist.

Output "λ(x) ≥ 2k " and stop.

(3) Exchange step:
Choose from 1 ≤ ι̇ ≤ n that ι̇ that maximizes 2ι̇ ‖b∗ι̇ ‖ .
Size-reduce bι̇+1: bι̇+1 := bι̇+1 −

⌈
µι̇+1,ι̇

⌋
bι̇.

Update µι̇+1,j for j = 1, . . . , ι̇.
Exchange bι̇ and bι̇+1.

Update ‖b∗ν‖
2 , µνj , µjν for ν = ι̇, ι̇ + 1, 1 ≤ j ≤ n. Go to (2).

HJLS: the Algorithm

Input : x ∈ Rn, k ∈ N.
(1) Initiation: b0 := x; b1, . . . , bn := standard basis of Zn.
Compute µι̇j and ‖b∗ι̇ ‖

2 = 〈b∗ι̇ , b∗ι̇ 〉 .
(2) Termination test :
If ‖b∗n‖ 6= 0 then an integer relation is found.
Compute [c1, . . . , cn]

T = [b1, . . . , bn]
−1 and output the integer

relation cn. Stop.
If

∥∥b∗j
∥∥ ≤ 1/2k , 1 ≤ j ≤ n then no small integer relation exist.

Output "λ(x) ≥ 2k " and stop.
(3) Exchange step:
Choose from 1 ≤ ι̇ ≤ n that ι̇ that maximizes 2ι̇ ‖b∗ι̇ ‖ .

Size-reduce bι̇+1: bι̇+1 := bι̇+1 −
⌈
µι̇+1,ι̇

⌋
bι̇.

Update µι̇+1,j for j = 1, . . . , ι̇.
Exchange bι̇ and bι̇+1.

Update ‖b∗ν‖
2 , µνj , µjν for ν = ι̇, ι̇ + 1, 1 ≤ j ≤ n. Go to (2).

HJLS: the Algorithm

Input : x ∈ Rn, k ∈ N.
(1) Initiation: b0 := x; b1, . . . , bn := standard basis of Zn.
Compute µι̇j and ‖b∗ι̇ ‖

2 = 〈b∗ι̇ , b∗ι̇ 〉 .
(2) Termination test :
If ‖b∗n‖ 6= 0 then an integer relation is found.
Compute [c1, . . . , cn]

T = [b1, . . . , bn]
−1 and output the integer

relation cn. Stop.
If

∥∥b∗j
∥∥ ≤ 1/2k , 1 ≤ j ≤ n then no small integer relation exist.

Output "λ(x) ≥ 2k " and stop.
(3) Exchange step:
Choose from 1 ≤ ι̇ ≤ n that ι̇ that maximizes 2ι̇ ‖b∗ι̇ ‖ .
Size-reduce bι̇+1: bι̇+1 := bι̇+1 −

⌈
µι̇+1,ι̇

⌋
bι̇.

Update µι̇+1,j for j = 1, . . . , ι̇.
Exchange bι̇ and bι̇+1.

Update ‖b∗ν‖
2 , µνj , µjν for ν = ι̇, ι̇ + 1, 1 ≤ j ≤ n. Go to (2).

HJLS: the Algorithm

Input : x ∈ Rn, k ∈ N.
(1) Initiation: b0 := x; b1, . . . , bn := standard basis of Zn.
Compute µι̇j and ‖b∗ι̇ ‖

2 = 〈b∗ι̇ , b∗ι̇ 〉 .
(2) Termination test :
If ‖b∗n‖ 6= 0 then an integer relation is found.
Compute [c1, . . . , cn]

T = [b1, . . . , bn]
−1 and output the integer

relation cn. Stop.
If

∥∥b∗j
∥∥ ≤ 1/2k , 1 ≤ j ≤ n then no small integer relation exist.

Output "λ(x) ≥ 2k " and stop.
(3) Exchange step:
Choose from 1 ≤ ι̇ ≤ n that ι̇ that maximizes 2ι̇ ‖b∗ι̇ ‖ .
Size-reduce bι̇+1: bι̇+1 := bι̇+1 −

⌈
µι̇+1,ι̇

⌋
bι̇.

Update µι̇+1,j for j = 1, . . . , ι̇.

Exchange bι̇ and bι̇+1.

Update ‖b∗ν‖
2 , µνj , µjν for ν = ι̇, ι̇ + 1, 1 ≤ j ≤ n. Go to (2).

HJLS: the Algorithm

Input : x ∈ Rn, k ∈ N.
(1) Initiation: b0 := x; b1, . . . , bn := standard basis of Zn.
Compute µι̇j and ‖b∗ι̇ ‖

2 = 〈b∗ι̇ , b∗ι̇ 〉 .
(2) Termination test :
If ‖b∗n‖ 6= 0 then an integer relation is found.
Compute [c1, . . . , cn]

T = [b1, . . . , bn]
−1 and output the integer

relation cn. Stop.
If

∥∥b∗j
∥∥ ≤ 1/2k , 1 ≤ j ≤ n then no small integer relation exist.

Output "λ(x) ≥ 2k " and stop.
(3) Exchange step:
Choose from 1 ≤ ι̇ ≤ n that ι̇ that maximizes 2ι̇ ‖b∗ι̇ ‖ .
Size-reduce bι̇+1: bι̇+1 := bι̇+1 −

⌈
µι̇+1,ι̇

⌋
bι̇.

Update µι̇+1,j for j = 1, . . . , ι̇.
Exchange bι̇ and bι̇+1.

Update ‖b∗ν‖
2 , µνj , µjν for ν = ι̇, ι̇ + 1, 1 ≤ j ≤ n. Go to (2).

HJLS: the Algorithm

Input : x ∈ Rn, k ∈ N.
(1) Initiation: b0 := x; b1, . . . , bn := standard basis of Zn.
Compute µι̇j and ‖b∗ι̇ ‖

2 = 〈b∗ι̇ , b∗ι̇ 〉 .
(2) Termination test :
If ‖b∗n‖ 6= 0 then an integer relation is found.
Compute [c1, . . . , cn]

T = [b1, . . . , bn]
−1 and output the integer

relation cn. Stop.
If

∥∥b∗j
∥∥ ≤ 1/2k , 1 ≤ j ≤ n then no small integer relation exist.

Output "λ(x) ≥ 2k " and stop.
(3) Exchange step:
Choose from 1 ≤ ι̇ ≤ n that ι̇ that maximizes 2ι̇ ‖b∗ι̇ ‖ .
Size-reduce bι̇+1: bι̇+1 := bι̇+1 −

⌈
µι̇+1,ι̇

⌋
bι̇.

Update µι̇+1,j for j = 1, . . . , ι̇.
Exchange bι̇ and bι̇+1.

Update ‖b∗ν‖
2 , µνj , µjν for ν = ι̇, ι̇ + 1, 1 ≤ j ≤ n. Go to (2).

HJLS: the Algorithm

Note: The matrix [c1, . . . , cn] can be computed incrementally:
Initially [c1, . . . , cn] = Idn.

bι̇+1 := bι̇+1 −
⌈
µι̇+1,ι̇

⌋
bι̇ ⇒ cι̇ := cι̇ +

⌈
µι̇+1,ι̇

⌋
cι̇+1.

bι̇ ↔ bι̇+1 ⇒ cι̇ ↔ cι̇+1.

HJLS: Correctedness and Polynomial Time

Theorem
The output cn is an integer relation for x.

For every basis b1, . . . , bn of Zn λ(x) ≥ 1
max‖b∗j ‖

. So the

algorithm claims "λ(x) ≥ 2k " correctly.
The output cn satisfies ‖cn‖2 ≤ 2n−2 min

{
λ(x)2, 22k}

.

The algorithm halts after at most O(n3(k + n)) arithmetic
steps on real numbers.

HJLS: Correctedness and Polynomial Time

Theorem
The output cn is an integer relation for x.

For every basis b1, . . . , bn of Zn λ(x) ≥ 1
max‖b∗j ‖

. So the

algorithm claims "λ(x) ≥ 2k " correctly.

The output cn satisfies ‖cn‖2 ≤ 2n−2 min
{
λ(x)2, 22k}

.

The algorithm halts after at most O(n3(k + n)) arithmetic
steps on real numbers.

HJLS: Correctedness and Polynomial Time

Theorem
The output cn is an integer relation for x.

For every basis b1, . . . , bn of Zn λ(x) ≥ 1
max‖b∗j ‖

. So the

algorithm claims "λ(x) ≥ 2k " correctly.
The output cn satisfies ‖cn‖2 ≤ 2n−2 min

{
λ(x)2, 22k}

.

The algorithm halts after at most O(n3(k + n)) arithmetic
steps on real numbers.

HJLS: Correctedness and Polynomial Time

Theorem
The output cn is an integer relation for x.

For every basis b1, . . . , bn of Zn λ(x) ≥ 1
max‖b∗j ‖

. So the

algorithm claims "λ(x) ≥ 2k " correctly.
The output cn satisfies ‖cn‖2 ≤ 2n−2 min

{
λ(x)2, 22k}

.

The algorithm halts after at most O(n3(k + n)) arithmetic
steps on real numbers.

HJLS: a Partial Proof

Proof.
b∗n 6= 0 ⇒ ∃ι̇ s.t. b∗ι̇ = 0.

Then 0 = b∗ι̇ = bι̇ −
ι̇−1∑
j=0

〈
bι̇, b∗j

〉〈
b∗j , b∗j

〉b∗j .

Then ∃aj s.t.
j=ι̇∑
j=0

ajbj = 0.

b1, . . . , bι̇ are linearly independent ⇒ a0 6= 0

⇒ x = b0 =
j=ι̇∑
j=1

aj

a0
bj .

Since
〈
bj , ck

〉
= 0 ∀k > j we have 〈x, ck 〉 = 0 ∀k > ι̇, in

particular 〈x, cn〉 = 0.

HJLS: a Partial Proof

Proof.
b∗n 6= 0 ⇒ ∃ι̇ s.t. b∗ι̇ = 0.

Then 0 = b∗ι̇ = bι̇ −
ι̇−1∑
j=0

〈
bι̇, b∗j

〉〈
b∗j , b∗j

〉b∗j .

Then ∃aj s.t.
j=ι̇∑
j=0

ajbj = 0.

b1, . . . , bι̇ are linearly independent ⇒ a0 6= 0

⇒ x = b0 =
j=ι̇∑
j=1

aj

a0
bj .

Since
〈
bj , ck

〉
= 0 ∀k > j we have 〈x, ck 〉 = 0 ∀k > ι̇, in

particular 〈x, cn〉 = 0.

HJLS: a Partial Proof

Proof.
b∗n 6= 0 ⇒ ∃ι̇ s.t. b∗ι̇ = 0.

Then 0 = b∗ι̇ = bι̇ −
ι̇−1∑
j=0

〈
bι̇, b∗j

〉〈
b∗j , b∗j

〉b∗j .

Then ∃aj s.t.
j=ι̇∑
j=0

ajbj = 0.

b1, . . . , bι̇ are linearly independent ⇒ a0 6= 0

⇒ x = b0 =
j=ι̇∑
j=1

aj

a0
bj .

Since
〈
bj , ck

〉
= 0 ∀k > j we have 〈x, ck 〉 = 0 ∀k > ι̇, in

particular 〈x, cn〉 = 0.

HJLS: a Partial Proof

Proof.
b∗n 6= 0 ⇒ ∃ι̇ s.t. b∗ι̇ = 0.

Then 0 = b∗ι̇ = bι̇ −
ι̇−1∑
j=0

〈
bι̇, b∗j

〉〈
b∗j , b∗j

〉b∗j .

Then ∃aj s.t.
j=ι̇∑
j=0

ajbj = 0.

b1, . . . , bι̇ are linearly independent ⇒ a0 6= 0

⇒ x = b0 =
j=ι̇∑
j=1

aj

a0
bj .

Since
〈
bj , ck

〉
= 0 ∀k > j we have 〈x, ck 〉 = 0 ∀k > ι̇, in

particular 〈x, cn〉 = 0.

HJLS: a Partial Proof

Proof.
b∗n 6= 0 ⇒ ∃ι̇ s.t. b∗ι̇ = 0.

Then 0 = b∗ι̇ = bι̇ −
ι̇−1∑
j=0

〈
bι̇, b∗j

〉〈
b∗j , b∗j

〉b∗j .

Then ∃aj s.t.
j=ι̇∑
j=0

ajbj = 0.

b1, . . . , bι̇ are linearly independent ⇒ a0 6= 0

⇒ x = b0 =
j=ι̇∑
j=1

aj

a0
bj .

Since
〈
bj , ck

〉
= 0 ∀k > j we have 〈x, ck 〉 = 0 ∀k > ι̇, in

particular 〈x, cn〉 = 0.

HJLS: a Partial Proof

Proof.
Let m be any integer relation for x.

Since m ∈ (xR)⊥ = span(b∗1, . . . , b∗n)
there exists ι̇ s.t. 〈m, b∗ι̇ 〉 6= 0.
For the smallest such ι̇ we have

〈m, b∗ι̇ 〉 =

〈
m, bι̇ −

ι̇−1∑
j=0

µι̇jb∗j

〉
= 〈m, bι̇〉 −

ι̇−1∑
j=0

µι̇j
〈
m, b∗j

〉
=

= 〈m, bι̇〉 ∈ Z, and hence |〈m, b∗ι̇ 〉| ≥ 1.

But |〈m, b∗ι̇ 〉| ≤ ‖m‖ ‖b∗ι̇ ‖ .

So ‖m‖ ≥ 1
‖b∗ι̇ ‖

.

HJLS: a Partial Proof

Proof.
Let m be any integer relation for x.

Since m ∈ (xR)⊥ = span(b∗1, . . . , b∗n)

there exists ι̇ s.t. 〈m, b∗ι̇ 〉 6= 0.
For the smallest such ι̇ we have

〈m, b∗ι̇ 〉 =

〈
m, bι̇ −

ι̇−1∑
j=0

µι̇jb∗j

〉
= 〈m, bι̇〉 −

ι̇−1∑
j=0

µι̇j
〈
m, b∗j

〉
=

= 〈m, bι̇〉 ∈ Z, and hence |〈m, b∗ι̇ 〉| ≥ 1.

But |〈m, b∗ι̇ 〉| ≤ ‖m‖ ‖b∗ι̇ ‖ .

So ‖m‖ ≥ 1
‖b∗ι̇ ‖

.

HJLS: a Partial Proof

Proof.
Let m be any integer relation for x.

Since m ∈ (xR)⊥ = span(b∗1, . . . , b∗n)
there exists ι̇ s.t. 〈m, b∗ι̇ 〉 6= 0.

For the smallest such ι̇ we have

〈m, b∗ι̇ 〉 =

〈
m, bι̇ −

ι̇−1∑
j=0

µι̇jb∗j

〉
= 〈m, bι̇〉 −

ι̇−1∑
j=0

µι̇j
〈
m, b∗j

〉
=

= 〈m, bι̇〉 ∈ Z, and hence |〈m, b∗ι̇ 〉| ≥ 1.

But |〈m, b∗ι̇ 〉| ≤ ‖m‖ ‖b∗ι̇ ‖ .

So ‖m‖ ≥ 1
‖b∗ι̇ ‖

.

HJLS: a Partial Proof

Proof.
Let m be any integer relation for x.

Since m ∈ (xR)⊥ = span(b∗1, . . . , b∗n)
there exists ι̇ s.t. 〈m, b∗ι̇ 〉 6= 0.
For the smallest such ι̇ we have

〈m, b∗ι̇ 〉 =

〈
m, bι̇ −

ι̇−1∑
j=0

µι̇jb∗j

〉
= 〈m, bι̇〉 −

ι̇−1∑
j=0

µι̇j
〈
m, b∗j

〉
=

= 〈m, bι̇〉 ∈ Z, and hence |〈m, b∗ι̇ 〉| ≥ 1.

But |〈m, b∗ι̇ 〉| ≤ ‖m‖ ‖b∗ι̇ ‖ .

So ‖m‖ ≥ 1
‖b∗ι̇ ‖

.

HJLS: a Partial Proof

Proof.
Let m be any integer relation for x.

Since m ∈ (xR)⊥ = span(b∗1, . . . , b∗n)
there exists ι̇ s.t. 〈m, b∗ι̇ 〉 6= 0.
For the smallest such ι̇ we have

〈m, b∗ι̇ 〉 =

〈
m, bι̇ −

ι̇−1∑
j=0

µι̇jb∗j

〉
= 〈m, bι̇〉 −

ι̇−1∑
j=0

µι̇j
〈
m, b∗j

〉
=

= 〈m, bι̇〉 ∈ Z, and hence |〈m, b∗ι̇ 〉| ≥ 1.

But |〈m, b∗ι̇ 〉| ≤ ‖m‖ ‖b∗ι̇ ‖ .

So ‖m‖ ≥ 1
‖b∗ι̇ ‖

.

HJLS: a Partial Proof

Proof.
Let m be any integer relation for x.

Since m ∈ (xR)⊥ = span(b∗1, . . . , b∗n)
there exists ι̇ s.t. 〈m, b∗ι̇ 〉 6= 0.
For the smallest such ι̇ we have

〈m, b∗ι̇ 〉 =

〈
m, bι̇ −

ι̇−1∑
j=0

µι̇jb∗j

〉
= 〈m, bι̇〉 −

ι̇−1∑
j=0

µι̇j
〈
m, b∗j

〉
=

= 〈m, bι̇〉 ∈ Z, and hence |〈m, b∗ι̇ 〉| ≥ 1.

But |〈m, b∗ι̇ 〉| ≤ ‖m‖ ‖b∗ι̇ ‖ .

So ‖m‖ ≥ 1
‖b∗ι̇ ‖

.

HJLS: a Partial Proof

Proof.
Let m be any integer relation for x.

Since m ∈ (xR)⊥ = span(b∗1, . . . , b∗n)
there exists ι̇ s.t. 〈m, b∗ι̇ 〉 6= 0.
For the smallest such ι̇ we have

〈m, b∗ι̇ 〉 =

〈
m, bι̇ −

ι̇−1∑
j=0

µι̇jb∗j

〉
= 〈m, bι̇〉 −

ι̇−1∑
j=0

µι̇j
〈
m, b∗j

〉
=

= 〈m, bι̇〉 ∈ Z, and hence |〈m, b∗ι̇ 〉| ≥ 1.

But |〈m, b∗ι̇ 〉| ≤ ‖m‖ ‖b∗ι̇ ‖ .

So ‖m‖ ≥ 1
‖b∗ι̇ ‖

.

Outline

1 Introduction
Starting Examples
Integer Relations
Algorithms for Finding Integral Relations

2 LLL-based Algorithms
Lattices and Their Bases
HJLS

3 PSLQ

4 Usage

5 Applications
"BBP" Formula for Pi
Bifurcation Points in Chaos Theory

6 Further Reading

PSLQ: Source; Model of Computation

The name "PSLQ" comes from partial sums of squares and LQ
(lower-diagonal—orthogonal) matrix decomposition.

Source:
H. R. P. Ferguson, D. H. Bailey, S. Arno.
Analysis of PSLQ, an Integer Finding Algorithm.
Mathematics of Computation, Vol.68, 1999, pp.351-369.

Model of Computation:
Computation with real numbers.
Operations: addition, subtraction, multiplication, division,
comparison, the nearest integer(dc) — at unit cost.

PSLQ: Source; Model of Computation

The name "PSLQ" comes from partial sums of squares and LQ
(lower-diagonal—orthogonal) matrix decomposition.

Source:
H. R. P. Ferguson, D. H. Bailey, S. Arno.
Analysis of PSLQ, an Integer Finding Algorithm.
Mathematics of Computation, Vol.68, 1999, pp.351-369.

Model of Computation:
Computation with real numbers.
Operations: addition, subtraction, multiplication, division,
comparison, the nearest integer(dc) — at unit cost.

PSLQ: Source; Model of Computation

The name "PSLQ" comes from partial sums of squares and LQ
(lower-diagonal—orthogonal) matrix decomposition.

Source:
H. R. P. Ferguson, D. H. Bailey, S. Arno.
Analysis of PSLQ, an Integer Finding Algorithm.
Mathematics of Computation, Vol.68, 1999, pp.351-369.

Model of Computation:
Computation with real numbers.
Operations: addition, subtraction, multiplication, division,
comparison, the nearest integer(dc) — at unit cost.

Definitions

x = (x1, . . . , xn), ‖x‖ = 1, xj 6= 0.

Definition

Let for 1 ≤ j ≤ n s2
j :=

k=n∑
k=j

x2
k .

Definition
Let Hx = (hi,j) be n × (n − 1) lower-trapezoidal matrix defined
by:

hi,j :=

0 1 ≤ ι̇ < j ≤ n − 1
sι̇+1/sι̇ 1 ≤ ι̇ = j ≤ n − 1
−x2

j /(sjsj+1) 1 ≤ j < ι̇ ≤ n − 1.

Definitions

x = (x1, . . . , xn), ‖x‖ = 1, xj 6= 0.

Definition

Let for 1 ≤ j ≤ n s2
j :=

k=n∑
k=j

x2
k .

Definition
Let Hx = (hi,j) be n × (n − 1) lower-trapezoidal matrix defined
by:

hi,j :=

0 1 ≤ ι̇ < j ≤ n − 1
sι̇+1/sι̇ 1 ≤ ι̇ = j ≤ n − 1
−x2

j /(sjsj+1) 1 ≤ j < ι̇ ≤ n − 1.

Definitions

x = (x1, . . . , xn), ‖x‖ = 1, xj 6= 0.

Definition

Let for 1 ≤ j ≤ n s2
j :=

k=n∑
k=j

x2
k .

Definition
Let Hx = (hi,j) be n × (n − 1) lower-trapezoidal matrix defined
by:

hi,j :=

0 1 ≤ ι̇ < j ≤ n − 1
sι̇+1/sι̇ 1 ≤ ι̇ = j ≤ n − 1
−x2

j /(sjsj+1) 1 ≤ j < ι̇ ≤ n − 1.

PSLQ: The Algorithm

Input: x ∈ Rn; γ ≥
√

4/3.

(1)Initiation: s := (s1, . . . , sn); y := x/s1; H := Hx; B := Idn.
Reduce H:
for ι̇ := 2 to n

for j := ι̇− 1 to 1 step −1
t :=

⌈
hι̇j/hjj

⌋
yj := yj + tyι̇

for k := 1 to j
hι̇k := hι̇k − thjk

endfor
for k := 1 to n

bkj := bkj + tbk ι̇

endfor
endfor

endfor

PSLQ: The Algorithm

Input: x ∈ Rn; γ ≥
√

4/3.
(1)Initiation: s := (s1, . . . , sn); y := x/s1; H := Hx; B := Idn.

Reduce H:
for ι̇ := 2 to n

for j := ι̇− 1 to 1 step −1
t :=

⌈
hι̇j/hjj

⌋
yj := yj + tyι̇

for k := 1 to j
hι̇k := hι̇k − thjk

endfor
for k := 1 to n

bkj := bkj + tbk ι̇

endfor
endfor

endfor

PSLQ: The Algorithm

Input: x ∈ Rn; γ ≥
√

4/3.
(1)Initiation: s := (s1, . . . , sn); y := x/s1; H := Hx; B := Idn.
Reduce H:
for ι̇ := 2 to n

for j := ι̇− 1 to 1 step −1
t :=

⌈
hι̇j/hjj

⌋
yj := yj + tyι̇

for k := 1 to j
hι̇k := hι̇k − thjk

endfor
for k := 1 to n

bkj := bkj + tbk ι̇

endfor
endfor

endfor

PSLQ: The Algorithm

(2)Exchange step:
Choose r that maximizes γr |hrr | .

Exchange yr ↔ yr+1, corresponding rows of H and
corresponding columns of B.
(3)Corner:
δ :=

√
h2

rr + h2
r ,r+1; α := hrr/δ; β := hr ,r+1/δ.

if r ≤ n − 2 then
for i := r to n

h0 := hir ; h1 := hi,r+1;
hir := αh0 + βh1; hi,r+1 := −βh0 + αh1

endfor
endif
(4)Reduce H.
(5)Norm bound: Compute M := 1/ max

1≤j≤n
hjj . Then λ(x) ≥ M.

(6)Termination: Goto (2) unless yj = 0 for some 1 ≤ j ≤ n or
hι̇ι̇ = 0 for some 1 ≤ ι̇ ≤ n − 1.

PSLQ: The Algorithm

(2)Exchange step:
Choose r that maximizes γr |hrr | .
Exchange yr ↔ yr+1, corresponding rows of H and
corresponding columns of B.

(3)Corner:
δ :=

√
h2

rr + h2
r ,r+1; α := hrr/δ; β := hr ,r+1/δ.

if r ≤ n − 2 then
for i := r to n

h0 := hir ; h1 := hi,r+1;
hir := αh0 + βh1; hi,r+1 := −βh0 + αh1

endfor
endif
(4)Reduce H.
(5)Norm bound: Compute M := 1/ max

1≤j≤n
hjj . Then λ(x) ≥ M.

(6)Termination: Goto (2) unless yj = 0 for some 1 ≤ j ≤ n or
hι̇ι̇ = 0 for some 1 ≤ ι̇ ≤ n − 1.

PSLQ: The Algorithm

(2)Exchange step:
Choose r that maximizes γr |hrr | .
Exchange yr ↔ yr+1, corresponding rows of H and
corresponding columns of B.
(3)Corner:
δ :=

√
h2

rr + h2
r ,r+1; α := hrr/δ; β := hr ,r+1/δ.

if r ≤ n − 2 then
for i := r to n

h0 := hir ; h1 := hi,r+1;
hir := αh0 + βh1; hi,r+1 := −βh0 + αh1

endfor
endif

(4)Reduce H.
(5)Norm bound: Compute M := 1/ max

1≤j≤n
hjj . Then λ(x) ≥ M.

(6)Termination: Goto (2) unless yj = 0 for some 1 ≤ j ≤ n or
hι̇ι̇ = 0 for some 1 ≤ ι̇ ≤ n − 1.

PSLQ: The Algorithm

(2)Exchange step:
Choose r that maximizes γr |hrr | .
Exchange yr ↔ yr+1, corresponding rows of H and
corresponding columns of B.
(3)Corner:
δ :=

√
h2

rr + h2
r ,r+1; α := hrr/δ; β := hr ,r+1/δ.

if r ≤ n − 2 then
for i := r to n

h0 := hir ; h1 := hi,r+1;
hir := αh0 + βh1; hi,r+1 := −βh0 + αh1

endfor
endif
(4)Reduce H.

(5)Norm bound: Compute M := 1/ max
1≤j≤n

hjj . Then λ(x) ≥ M.

(6)Termination: Goto (2) unless yj = 0 for some 1 ≤ j ≤ n or
hι̇ι̇ = 0 for some 1 ≤ ι̇ ≤ n − 1.

PSLQ: The Algorithm

(2)Exchange step:
Choose r that maximizes γr |hrr | .
Exchange yr ↔ yr+1, corresponding rows of H and
corresponding columns of B.
(3)Corner:
δ :=

√
h2

rr + h2
r ,r+1; α := hrr/δ; β := hr ,r+1/δ.

if r ≤ n − 2 then
for i := r to n

h0 := hir ; h1 := hi,r+1;
hir := αh0 + βh1; hi,r+1 := −βh0 + αh1

endfor
endif
(4)Reduce H.
(5)Norm bound: Compute M := 1/ max

1≤j≤n
hjj . Then λ(x) ≥ M.

(6)Termination: Goto (2) unless yj = 0 for some 1 ≤ j ≤ n or
hι̇ι̇ = 0 for some 1 ≤ ι̇ ≤ n − 1.

PSLQ: The Algorithm

(2)Exchange step:
Choose r that maximizes γr |hrr | .
Exchange yr ↔ yr+1, corresponding rows of H and
corresponding columns of B.
(3)Corner:
δ :=

√
h2

rr + h2
r ,r+1; α := hrr/δ; β := hr ,r+1/δ.

if r ≤ n − 2 then
for i := r to n

h0 := hir ; h1 := hi,r+1;
hir := αh0 + βh1; hi,r+1 := −βh0 + αh1

endfor
endif
(4)Reduce H.
(5)Norm bound: Compute M := 1/ max

1≤j≤n
hjj . Then λ(x) ≥ M.

(6)Termination: Goto (2) unless yj = 0 for some 1 ≤ j ≤ n or
hι̇ι̇ = 0 for some 1 ≤ ι̇ ≤ n − 1.

PSLQ: Correctedness and Polynomial Time

Theorem
The integer relation m for x appears as one of the columns
of B.

λ(x) ≥ 1/ max
1≤j≤n

hjj .

‖m‖ ≤ γn−2λ(x).

The algorithm halts after at most O(n4 + n3 log λ(x))
arithmetic steps on real numbers.

PSLQ: Correctedness and Polynomial Time

Theorem
The integer relation m for x appears as one of the columns
of B.

λ(x) ≥ 1/ max
1≤j≤n

hjj .

‖m‖ ≤ γn−2λ(x).

The algorithm halts after at most O(n4 + n3 log λ(x))
arithmetic steps on real numbers.

PSLQ: Correctedness and Polynomial Time

Theorem
The integer relation m for x appears as one of the columns
of B.

λ(x) ≥ 1/ max
1≤j≤n

hjj .

‖m‖ ≤ γn−2λ(x).

The algorithm halts after at most O(n4 + n3 log λ(x))
arithmetic steps on real numbers.

PSLQ: Correctedness and Polynomial Time

Theorem
The integer relation m for x appears as one of the columns
of B.

λ(x) ≥ 1/ max
1≤j≤n

hjj .

‖m‖ ≤ γn−2λ(x).

The algorithm halts after at most O(n4 + n3 log λ(x))
arithmetic steps on real numbers.

Outline

1 Introduction
Starting Examples
Integer Relations
Algorithms for Finding Integral Relations

2 LLL-based Algorithms
Lattices and Their Bases
HJLS

3 PSLQ

4 Usage

5 Applications
"BBP" Formula for Pi
Bifurcation Points in Chaos Theory

6 Further Reading

Usage

Note: Proving relations is a separate matter.

Precision:
As a rule of thumb if x has n entries and D is the maximal
number of digits in the relation we hope to find then we should
work with nD digits precision.

LLL or PSLQ?
LLL-based algorithms are available in almost any computer
algebra system (Maple, Mathematica).
PSLQ implementation are less directly available.

PSLQ is more stable, because it uses a stable matrix reduction
procedure. Unfortunately, HJLS is not stable.

Usage

Note: Proving relations is a separate matter.

Precision:
As a rule of thumb if x has n entries and D is the maximal
number of digits in the relation we hope to find then we should
work with nD digits precision.

LLL or PSLQ?
LLL-based algorithms are available in almost any computer
algebra system (Maple, Mathematica).
PSLQ implementation are less directly available.

PSLQ is more stable, because it uses a stable matrix reduction
procedure. Unfortunately, HJLS is not stable.

Usage

Note: Proving relations is a separate matter.

Precision:
As a rule of thumb if x has n entries and D is the maximal
number of digits in the relation we hope to find then we should
work with nD digits precision.

LLL or PSLQ?
LLL-based algorithms are available in almost any computer
algebra system (Maple, Mathematica).
PSLQ implementation are less directly available.

PSLQ is more stable, because it uses a stable matrix reduction
procedure. Unfortunately, HJLS is not stable.

Usage

Note: Proving relations is a separate matter.

Precision:
As a rule of thumb if x has n entries and D is the maximal
number of digits in the relation we hope to find then we should
work with nD digits precision.

LLL or PSLQ?
LLL-based algorithms are available in almost any computer
algebra system (Maple, Mathematica).
PSLQ implementation are less directly available.

PSLQ is more stable, because it uses a stable matrix reduction
procedure. Unfortunately, HJLS is not stable.

An Example

Consider x = (11, 27, 31).

PSLQ with γ =
√

2 for successive iterations N = 0, 1, 2, 3, 4
yields the five matrices: 1 0 0

0 1 0
0 −1 1

 ,

 1 0 0
3 8 1
−3 −7 −1

 ,

 −2 1 0
2 3 1
−1 −3 −1

 ,

 3 −2 0
1 2 1
−2 −1 −1

 ,

 −1
5
−4

−8
9
−5

−2
2
−1

 .

It found 2 relations:
−11 + 5 · 27− 4 · 31 = −11 + 135− 124 = 0;
−8 · 11 + 9 · 27− 5 · 31 = −88 + 243− 155 = 0.

An Example

Consider x = (11, 27, 31).

PSLQ with γ =
√

2 for successive iterations N = 0, 1, 2, 3, 4
yields the five matrices: 1 0 0

0 1 0
0 −1 1

 ,

 1 0 0
3 8 1
−3 −7 −1

 ,

 −2 1 0
2 3 1
−1 −3 −1

 ,

 3 −2 0
1 2 1
−2 −1 −1

 ,

 −1
5
−4

−8
9
−5

−2
2
−1

 .

It found 2 relations:
−11 + 5 · 27− 4 · 31 = −11 + 135− 124 = 0;
−8 · 11 + 9 · 27− 5 · 31 = −88 + 243− 155 = 0.

An Example

Consider x = (11, 27, 31).

PSLQ with γ =
√

2 for successive iterations N = 0, 1, 2, 3, 4
yields the five matrices: 1 0 0

0 1 0
0 −1 1

 ,

 1 0 0
3 8 1
−3 −7 −1

 ,

 −2 1 0
2 3 1
−1 −3 −1

 ,

 3 −2 0
1 2 1
−2 −1 −1

 ,

 −1
5
−4

−8
9
−5

−2
2
−1

 .

It found 2 relations:
−11 + 5 · 27− 4 · 31 = −11 + 135− 124 = 0;
−8 · 11 + 9 · 27− 5 · 31 = −88 + 243− 155 = 0.

An Example

HJLS for successive iterations N = 0, 1, 2, 3, 4, 5, 6 yields the
seven matrices: 1 0 0

0 1 0
0 0 1

 ,

 1 0 0
0 0 1
0 1 −1

 ,

 0 1 0
0 0 1
1 0 −1

 , 1 −2 0
0 0 1
0 1 −1

 ,

 1 0 −2
0 1 2
0 −1 −1

 ,

 0 1 −2
1 3 2
−1 −3 −1

 , 0 −2
1 2
−1 −1

−1
5
−4

 .

It found 1 relation.

An Example

HJLS for successive iterations N = 0, 1, 2, 3, 4, 5, 6 yields the
seven matrices: 1 0 0

0 1 0
0 0 1

 ,

 1 0 0
0 0 1
0 1 −1

 ,

 0 1 0
0 0 1
1 0 −1

 , 1 −2 0
0 0 1
0 1 −1

 ,

 1 0 −2
0 1 2
0 −1 −1

 ,

 0 1 −2
1 3 2
−1 −3 −1

 , 0 −2
1 2
−1 −1

−1
5
−4

 .

It found 1 relation.

Outline

1 Introduction
Starting Examples
Integer Relations
Algorithms for Finding Integral Relations

2 LLL-based Algorithms
Lattices and Their Bases
HJLS

3 PSLQ

4 Usage

5 Applications
"BBP" Formula for Pi
Bifurcation Points in Chaos Theory

6 Further Reading

"BBP" formula for π

Perhaps one of the best known applications of PSLQ is the
1995 discovery, by means of PSLQ computation, of the "BBP"
(Bailey, Borwein, Plouffe) formula for π:

π =
∞∑

k=0

1
16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
.

This formula permits one to compute directly hexademical
digits of π without computing previous ones.

The formula was found by applying PSLQ to (X1, . . . , Xn, π)
where

Xj =
∞∑

k=0

1
16k (8k + j)

.

"BBP" formula for π

Perhaps one of the best known applications of PSLQ is the
1995 discovery, by means of PSLQ computation, of the "BBP"
(Bailey, Borwein, Plouffe) formula for π:

π =
∞∑

k=0

1
16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
.

This formula permits one to compute directly hexademical
digits of π without computing previous ones.

The formula was found by applying PSLQ to (X1, . . . , Xn, π)
where

Xj =
∞∑

k=0

1
16k (8k + j)

.

"BBP" formula for π

Perhaps one of the best known applications of PSLQ is the
1995 discovery, by means of PSLQ computation, of the "BBP"
(Bailey, Borwein, Plouffe) formula for π:

π =
∞∑

k=0

1
16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
.

This formula permits one to compute directly hexademical
digits of π without computing previous ones.

The formula was found by applying PSLQ to (X1, . . . , Xn, π)
where

Xj =
∞∑

k=0

1
16k (8k + j)

.

"BBP" formula for π

Perhaps one of the best known applications of PSLQ is the
1995 discovery, by means of PSLQ computation, of the "BBP"
(Bailey, Borwein, Plouffe) formula for π:

π =
∞∑

k=0

1
16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
.

This formula permits one to compute directly hexademical
digits of π without computing previous ones.

The formula was found by applying PSLQ to (X1, . . . , Xn, π)
where

Xj =
∞∑

k=0

1
16k (8k + j)

.

Bifurcation Points in Chaos Theory

The chaotic iteration xn+1 = rxn(1− xn) ("logistic iteration"):

Bifurcation Points in Chaos Theory

1 < r < B1 = 3 : one limit point.
B1 < r < B2 = 1 +

√
6 = 3.449489 . . . : two distinct limit points.

B2 < r < B3 : four distinct limit points.
B3 < r < B4 : eight distinct limit points.
And so on.

Using PSLQ with n = 13 we get that B3 satisfies:
r12 − 12r11 + 48r10 − 40r9 − 193r8 + 392r7 + 44r6 + 8r5 −
977r4 − 604r3 + 2108r2 + 4913 = 0.

Bifurcation Points in Chaos Theory

1 < r < B1 = 3 : one limit point.
B1 < r < B2 = 1 +

√
6 = 3.449489 . . . : two distinct limit points.

B2 < r < B3 : four distinct limit points.
B3 < r < B4 : eight distinct limit points.
And so on.

Using PSLQ with n = 13 we get that B3 satisfies:
r12 − 12r11 + 48r10 − 40r9 − 193r8 + 392r7 + 44r6 + 8r5 −
977r4 − 604r3 + 2108r2 + 4913 = 0.

Bifurcation Points in Chaos Theory

The much more difficult problem for finding B4 was studied in

D. H. Bailey and D. J. Broadhurst. Parallel integer relation
detection: techniques and applications. Mathematics of
Computation, Vol.70, 2000, pp.1719-1736.

It was conjectured that B4 might satisfy a 240-degree
polynomial, and, in addition, α = −B4(B4 − 2) might satisfy a
120-degree polynomial.
Then an advanced PSLQ implementation was employed, and a
relation with coefficients descending from 25730 to 1 was found.

4 year later the result was confirmed in large symbolic
computation in

I. Kotsireas and K. Karamanos. Exact computation of the
bifurcation point b4 of the logistic map and the
Bailey-Broadhurst conjectures. Internat. J. Bifurcation and
Chaos, Vol.14, 2004, pp.2417-2423.

Bifurcation Points in Chaos Theory

The much more difficult problem for finding B4 was studied in

D. H. Bailey and D. J. Broadhurst. Parallel integer relation
detection: techniques and applications. Mathematics of
Computation, Vol.70, 2000, pp.1719-1736.

It was conjectured that B4 might satisfy a 240-degree
polynomial, and, in addition, α = −B4(B4 − 2) might satisfy a
120-degree polynomial.
Then an advanced PSLQ implementation was employed, and a
relation with coefficients descending from 25730 to 1 was found.

4 year later the result was confirmed in large symbolic
computation in

I. Kotsireas and K. Karamanos. Exact computation of the
bifurcation point b4 of the logistic map and the
Bailey-Broadhurst conjectures. Internat. J. Bifurcation and
Chaos, Vol.14, 2004, pp.2417-2423.

Bifurcation Points in Chaos Theory

The much more difficult problem for finding B4 was studied in

D. H. Bailey and D. J. Broadhurst. Parallel integer relation
detection: techniques and applications. Mathematics of
Computation, Vol.70, 2000, pp.1719-1736.

It was conjectured that B4 might satisfy a 240-degree
polynomial, and, in addition, α = −B4(B4 − 2) might satisfy a
120-degree polynomial.
Then an advanced PSLQ implementation was employed, and a
relation with coefficients descending from 25730 to 1 was found.

4 year later the result was confirmed in large symbolic
computation in

I. Kotsireas and K. Karamanos. Exact computation of the
bifurcation point b4 of the logistic map and the
Bailey-Broadhurst conjectures. Internat. J. Bifurcation and
Chaos, Vol.14, 2004, pp.2417-2423.

Outline

1 Introduction
Starting Examples
Integer Relations
Algorithms for Finding Integral Relations

2 LLL-based Algorithms
Lattices and Their Bases
HJLS

3 PSLQ

4 Usage

5 Applications
"BBP" Formula for Pi
Bifurcation Points in Chaos Theory

6 Further Reading

Outline

1 Introduction
Starting Examples
Integer Relations
Algorithms for Finding Integral Relations

2 LLL-based Algorithms
Lattices and Their Bases
HJLS

3 PSLQ

4 Usage

5 Applications
"BBP" Formula for Pi
Bifurcation Points in Chaos Theory

6 Further Reading

Further Reading

A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász.
Factoring Polynomials with Rational Coefficients.
Math. Ann., Vol.261, 1982, pp.515-534.

J. Hastad, B. Just, J. C. Lagarias, and C. P. Schnorr.
Polynomial Time Algorithms for Finding Integer Relations
among Real Numbers.
SIAM J. Comput., Vol.18, 1989, pp.859-881.

H. R. P. Ferguson, D. H. Bailey, S. Arno.
Analysis of PSLQ, an Integer Finding Algorithm.
Mathematics of Computation, Vol.68, 1999, pp.351-369.

D. H. Bailey, J. M. Borwein, N. J. Calkin, R. Girgensohn,
D. R. Luke, and V. H. Moll. "Integer Relation Detection":
§2.2 in Experimental Mathematics in Action.
Natick, MA: A. K. Peters, pp. 29-31, 2006.

Further Reading

A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász.
Factoring Polynomials with Rational Coefficients.
Math. Ann., Vol.261, 1982, pp.515-534.

J. Hastad, B. Just, J. C. Lagarias, and C. P. Schnorr.
Polynomial Time Algorithms for Finding Integer Relations
among Real Numbers.
SIAM J. Comput., Vol.18, 1989, pp.859-881.

H. R. P. Ferguson, D. H. Bailey, S. Arno.
Analysis of PSLQ, an Integer Finding Algorithm.
Mathematics of Computation, Vol.68, 1999, pp.351-369.

D. H. Bailey, J. M. Borwein, N. J. Calkin, R. Girgensohn,
D. R. Luke, and V. H. Moll. "Integer Relation Detection":
§2.2 in Experimental Mathematics in Action.
Natick, MA: A. K. Peters, pp. 29-31, 2006.

Further Reading

A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász.
Factoring Polynomials with Rational Coefficients.
Math. Ann., Vol.261, 1982, pp.515-534.

J. Hastad, B. Just, J. C. Lagarias, and C. P. Schnorr.
Polynomial Time Algorithms for Finding Integer Relations
among Real Numbers.
SIAM J. Comput., Vol.18, 1989, pp.859-881.

H. R. P. Ferguson, D. H. Bailey, S. Arno.
Analysis of PSLQ, an Integer Finding Algorithm.
Mathematics of Computation, Vol.68, 1999, pp.351-369.

D. H. Bailey, J. M. Borwein, N. J. Calkin, R. Girgensohn,
D. R. Luke, and V. H. Moll. "Integer Relation Detection":
§2.2 in Experimental Mathematics in Action.
Natick, MA: A. K. Peters, pp. 29-31, 2006.

Further Reading

A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász.
Factoring Polynomials with Rational Coefficients.
Math. Ann., Vol.261, 1982, pp.515-534.

J. Hastad, B. Just, J. C. Lagarias, and C. P. Schnorr.
Polynomial Time Algorithms for Finding Integer Relations
among Real Numbers.
SIAM J. Comput., Vol.18, 1989, pp.859-881.

H. R. P. Ferguson, D. H. Bailey, S. Arno.
Analysis of PSLQ, an Integer Finding Algorithm.
Mathematics of Computation, Vol.68, 1999, pp.351-369.

D. H. Bailey, J. M. Borwein, N. J. Calkin, R. Girgensohn,
D. R. Luke, and V. H. Moll. "Integer Relation Detection":
§2.2 in Experimental Mathematics in Action.
Natick, MA: A. K. Peters, pp. 29-31, 2006.

	Introduction
	Starting Examples
	Integer Relations
	Algorithms for Finding Integral Relations

	LLL-based Algorithms
	Lattices and Their Bases
	HJLS

	PSLQ
	Usage
	Applications
	"BBP" Formula for Pi
	Bifurcation Points in Chaos Theory

	Further Reading

