Integer Relations among Real Numbers

Darya Romanova

Saint-Petersburg State University
Joint Advanced Student School 2007

Outline

(9) Introduction

- Starting Examples
- Integer Relations
- Algorithms for Finding Integral Relations
(2) LLL-based Algorithms
- Lattices and Their Bases
- HJLS
(3) PSLQ
(4) Usage
(5) Applications
- "BBP" Formula for Pi
- Bifurcation Points in Chaos Theory

6 Further Reading

Outline

(1) Introduction

- Starting Examples
- Integer Relations
- Algorithms for Finding Integral Relations

LLL-based Algorithms

- Lattices and Their Bases
- HJLS
(3) PSLQ
(4) Usage
(5) Applications
- "BBP" Formula for Pi
- Bifurcation Points in Chaos Theory

6. Further Reading

Starting Examples

Let X be a mathematical expression, that can be approximated numerically. (For example a definite integral.)

Starting Examples

Let X be a mathematical expression, that can be approximated numerically. (For example a definite integral.)

Suppose we know, that X is rational.

Starting Examples

Let X be a mathematical expression, that can be approximated numerically. (For example a definite integral.)
Suppose we know, that X is rational.

- $X \approx 2.33333333333333333 \ldots \Rightarrow X=$

Starting Examples

Let X be a mathematical expression, that can be approximated numerically. (For example a definite integral.)
Suppose we know, that X is rational.

- $X \approx 2.33333333333333333 \ldots \Rightarrow X=7 / 3$.

Starting Examples

Let X be a mathematical expression, that can be approximated numerically. (For example a definite integral.)

Suppose we know, that X is rational.

- $X \approx 2.33333333333333333 \ldots \Rightarrow=7 / 3$.
- $X \approx 0.1412742382271468144044321 \ldots \Rightarrow X=$

Starting Examples

Let X be a mathematical expression, that can be approximated numerically. (For example a definite integral.)

Suppose we know, that X is rational.

- $X \approx 2.33333333333333333 \ldots \Rightarrow=7 / 3$.
- $X \approx 0.1412742382271468144044321 \ldots \Rightarrow X=$?

Continuous Fractions

Let's make X into continuous fraction:

Continuous Fractions

Let's make X into continuous fraction:
$1 / 0.14127423822714681440 \approx 7.0784313725490196080$ $1 / 0.078431372549019607843139 \approx 12.749999999999999975$
$1 / 0.749999999999999975 \approx 1.333333333333333778$
$1 / 0.3333333333333333778 \approx 2.9999999999999995998$
$1 / 0.9999999999999995998 \approx 1.0000000000000004002$
$1 / 0.0000000000000004002 \approx 24987506246876561,719$

Continuous Fractions

$\frac{0.14127423822714681440 \ldots \approx}{7+\frac{1}{12+\frac{1}{1+\frac{1}{2+\frac{1}{1+\frac{1}{24987506246876561,719}}}}}}=$

Continuous Fractions

Continuous Fractions

$0.14127423822714681440 \ldots \approx$

$$
X=\frac{1}{7+\frac{1}{12+\frac{1}{1+\frac{1}{2+\frac{1}{1}}}}}=\frac{51}{361}
$$

(Actually the period of $\frac{51}{361}$ is 342 .)

Quadratic Irrationalities

Now suppose we don't know if X is rational. But we do know that it is a quadratic irrationality. (That is a root of an equation $a x^{2}+b x+c=0$ with a, b, c rational.)

Quadratic Irrationalities

Now suppose we don't know if X is rational. But we do know that it is a quadratic irrationality. (That is a root of an equation $a x^{2}+b x+c=0$ with a, b, c rational.)

Theorem(Lagrange)

X is a quadratic irrationality \Leftrightarrow its continuos fraction is periodic.

Quadratic Irrationalities

Example: $\sqrt{3}$

Quadratic Irrationalities

Example: $\sqrt{3}=1+(\sqrt{3}-1)$

Quadratic Irrationalities

Example: $\sqrt{3}=1+(\sqrt{3}-1)=1+\frac{2}{\sqrt{3}+1}$

Quadratic Irrationalities

Example: $\sqrt{3}=1+(\sqrt{3}-1)=1+\frac{2}{\sqrt{3}+1}=1+\frac{1}{\frac{\sqrt{3}+1}{2}}$

Quadratic Irrationalities

$$
\begin{aligned}
& \text { Example: } \sqrt{3}=1+(\sqrt{3}-1)=1+\frac{2}{\sqrt{3}+1}=1+\frac{1}{\frac{\sqrt{3}+1}{2}} \\
& =1+\frac{1}{\frac{2+(\sqrt{3}-1)}{2}}
\end{aligned}
$$

Quadratic Irrationalities

$$
\begin{aligned}
& \text { Example: } \sqrt{3}=1+(\sqrt{3}-1)=1+\frac{2}{\sqrt{3}+1}=1+\frac{1}{\frac{\sqrt{3}+1}{2}} \\
& =1+\frac{1}{\frac{2+(\sqrt{3}-1)}{2}}=1+\frac{1}{1+\frac{\sqrt{3}-1}{2}}
\end{aligned}
$$

Quadratic Irrationalities

Example: $\sqrt{3}=1+(\sqrt{3}-1)=1+\frac{2}{\sqrt{3}+1}=1+\frac{1}{\frac{\sqrt{3}+1}{2}}$

$$
\begin{aligned}
& =1+\frac{1}{\frac{2+(\sqrt{3}-1)}{2}}=1+\frac{1}{1+\frac{\sqrt{3}-1}{2}} \\
& =1+\frac{1}{1+\frac{2}{2(\sqrt{3}+1)}}
\end{aligned}
$$

Quadratic Irrationalities

Example: $\sqrt{3}=1+(\sqrt{3}-1)=1+\frac{2}{\sqrt{3}+1}=1+\frac{1}{\frac{\sqrt{3}+1}{2}}$

$$
\begin{aligned}
& =1+\frac{1}{\frac{2+(\sqrt{3}-1)}{2}}=1+\frac{1}{1+\frac{\sqrt{3}-1}{2}} \\
& =1+\frac{1}{1+\frac{2}{2(\sqrt{3}+1)}}=1+\frac{1}{1+\frac{1}{\sqrt{3}+1}}
\end{aligned}
$$

Quadratic Irrationalities

Example: $\sqrt{3}=1+(\sqrt{3}-1)=1+\frac{2}{\sqrt{3}+1}=1+\frac{1}{\frac{\sqrt{3}+1}{2}}$

$$
\begin{aligned}
& =1+\frac{1}{\frac{2+(\sqrt{3}-1)}{2}}=1+\frac{1}{1+\frac{\sqrt{3}-1}{2}} \\
& =1+\frac{1}{1+\frac{2}{2(\sqrt{3}+1)}}=1+\frac{1}{1+\frac{1}{\sqrt{3}+1}} \\
& =1+\frac{1}{1+\frac{1}{2+(\sqrt{3}-1)}}
\end{aligned}
$$

Quadratic Irrationalities

Example: $\sqrt{3}=1+(\sqrt{3}-1)=1+\frac{2}{\sqrt{3}+1}=1+\frac{1}{\frac{\sqrt{3}+1}{2}}$

$$
\begin{aligned}
& =1+\frac{1}{\frac{2+(\sqrt{3}-1)}{2}}=1+\frac{1}{1+\frac{\sqrt{3}-1}{2}} \\
& =1+\frac{1}{1+\frac{2}{2(\sqrt{3}+1)}}=1+\frac{1}{1+\frac{1}{\sqrt{3}+1}} \\
& =1+\frac{1}{1+\frac{1}{2+(\sqrt{3}-1)}}=1+\frac{1}{1+\frac{1}{2+\frac{1}{1+\frac{1}{2+\ldots}}}}
\end{aligned}
$$

Integer Relations

Let's generalize the problem.

Integer Relations

Let's generalize the problem.

Definition

α is an algebraic number if there exist $a_{0}, \ldots, a_{n} \in \mathbb{Z}$ such that $a_{n} \alpha^{n}+\ldots+a_{1} \alpha+a_{0}=0$ and $a_{n} \neq 0$. The degree of α is the smallest of such n.

Integer Relations

Let's generalize the problem.

Definition

α is an algebraic number if there exist $a_{0}, \ldots, a_{n} \in \mathbb{Z}$ such that $a_{n} \alpha^{n}+\ldots+a_{1} \alpha+a_{0}=0$ and $a_{n} \neq 0$. The degree of α is the smallest of such n.

Remark

α is algebraic of degree $\leq n \Leftrightarrow\left(1, \alpha, \alpha^{2}, \ldots, \alpha^{n}\right)$ posess an integer relation [see below].

Integer Relations

Let's generalize the problem.

Definition

α is an algebraic number if there exist $a_{0}, \ldots, a_{n} \in \mathbb{Z}$ such that $a_{n} \alpha^{n}+\ldots+a_{1} \alpha+a_{0}=0$ and $a_{n} \neq 0$. The degree of α is the smallest of such n.

Remark

α is algebraic of degree $\leq n \Leftrightarrow\left(1, \alpha, \alpha^{2}, \ldots, \alpha^{n}\right)$ posess an integer relation [see below].

Definition

An integer relation for n-tuple $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ is an n-tuple $0 \neq\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}$ such that $a_{1} x_{1}+\ldots+a_{n} x_{n}=0$.

Algorithms for Finding Integral Relations

The problem of finding an integer relation for two numbers (x_{1}, x_{2}) can be solved by applying the Euclidian algorithm to x_{1}, x_{2}, or, equivalently, by computing the continued fraction expansion of x_{1} / x_{2}.

Algorithms for Finding Integral Relations

The problem of finding an integer relation for two numbers $\left(x_{1}, x_{2}\right)$ can be solved by applying the Euclidian algorithm to x_{1}, x_{2}, or, equivalently, by computing the continued fraction expansion of x_{1} / x_{2}.

The generalization for $n \geq 3$ was attempted by Euler, Jacobi, Minkowski, Perron, Bernstein, among others.

Algorithms for Finding Integral Relations

The problem of finding an integer relation for two numbers $\left(x_{1}, x_{2}\right)$ can be solved by applying the Euclidian algorithm to x_{1}, x_{2}, or, equivalently, by computing the continued fraction expansion of x_{1} / x_{2}.

The generalization for $n \geq 3$ was attempted by Euler, Jacobi, Minkowski, Perron, Bernstein, among others.

The best known and most used algorithms at the present time are either algorithms based on lattice basis reduction algorithm by Lenstra, Lenstra, Jr. and Lovász (LLL) or PSLQ algorithm based on ideas of Ferguson, Forcade and Bergman. (Both discovered in 1970-s -1980-s.)

Outline

(1) Introduction

- Starting Examples
- Integer Relations
- Algorithms for Finding Integral Relations
(2) LLL-based Algorithms
- Lattices and Their Bases
- HJLS
(3) PSLQ
(4) Usage
(5. Applications
- "BBP" Formula for Pi
- Bifurcation Points in Chaos Theory
(3. Further Reading

Some Reminders from Linear Algebra

- Let \mathbb{R}^{n} be the n-dimensional real vector space $(n>1)$ with inner product: $\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{j=1}^{n} x_{j} y_{j}$.

Some Reminders from Linear Algebra

- Let \mathbb{R}^{n} be the n-dimensional real vector space $(n>1)$ with inner product: $\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{j=1}^{n} x_{j} y_{j}$.
- $\|\mathbf{y}\|=\sqrt{\langle\mathbf{y}, \mathbf{y}\rangle}$ is the length of $\mathbf{y} \in \mathbb{R}^{n}$.

Some Reminders from Linear Algebra

- Let \mathbb{R}^{n} be the n-dimensional real vector space $(n>1)$ with inner product: $\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{j=1}^{n} x_{j} y_{j}$.
- $\|\mathbf{y}\|=\sqrt{\langle\mathbf{y}, \mathbf{y}\rangle}$ is the length of $\mathbf{y} \in \mathbb{R}^{n}$.
- \mathbf{x} and \mathbf{y} are orthogonal $\Leftrightarrow\langle\mathbf{x}, \mathbf{y}\rangle=0$.

Some Reminders from Linear Algebra

- Let \mathbb{R}^{n} be the n-dimensional real vector space $(n>1)$ with inner product: $\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{j=1}^{n} x_{j} y_{j}$.
- $\|\mathbf{y}\|=\sqrt{\langle\mathbf{y}, \mathbf{y}\rangle}$ is the length of $\mathbf{y} \in \mathbb{R}^{n}$.
- \mathbf{x} and \mathbf{y} are orthogonal $\Leftrightarrow\langle\mathbf{x}, \mathbf{y}\rangle=0$.
- For a linear subspace $E \subset \mathbb{R}^{n}$ we denote by $E^{\perp} \subset \mathbb{R}^{n}$ the orthogonal complement of E (i.e., the subspace consisting of all vectors that are orthogonal to E).

Some Reminders from Linear Algebra

E and E^{\perp} :

Some Reminders from Linear Algebra

- The transpose of matrix A is A^{T}.

Some Reminders from Linear Algebra

- The transpose of matrix A is A^{T}.
- If $\mathbf{b}_{1}, \ldots, \mathbf{b}_{r} \in \mathbb{R}^{n}$ then $\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{r}\right]$ will denote $n \times r$ matrix which has $\mathbf{b}_{1}, \ldots, \mathbf{b}_{r} \in \mathbb{R}^{n}$ as columns.

Some Reminders from Linear Algebra

- The transpose of matrix A is A^{T}.
- If $\mathbf{b}_{1}, \ldots, \mathbf{b}_{r} \in \mathbb{R}^{n}$ then $\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{r}\right]$ will denote $n \times r$ matrix which has $\mathbf{b}_{1}, \ldots, \mathbf{b}_{r} \in \mathbb{R}^{n}$ as columns.
- $\operatorname{span}\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{r}\right)$ is the linear space, spanned on $\mathbf{b}_{1}, \ldots, \mathbf{b}_{r}$: $\operatorname{span}\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{r}\right)=\left\{\sum_{j=1}^{j=r} a_{j} \mathbf{b}_{j} \mid a_{j} \in \mathbb{R}\right\}$.

Gram-Schmidt orthogonalization

With $\mathbf{b}_{0}=\mathbf{x}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{n} \in \mathbb{R}^{n}$ we associate the orthogonal system $\mathbf{b}_{0}^{*}, \ldots, \mathbf{b}_{n}^{*}$ that are defined inductively:

Gram-Schmidt orthogonalization

With $\mathbf{b}_{0}=\mathbf{x}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{n} \in \mathbb{R}^{n}$ we associate the orthogonal system $\mathbf{b}_{0}^{*}, \ldots, \mathbf{b}_{n}^{*}$ that are defined inductively:

- $\mathbf{b}_{0}^{*}=\mathbf{x}$,
- $\mathbf{b}_{i}^{*}=\mathbf{b}_{i}-\sum_{j=0}^{i-1} \frac{\left\langle\mathbf{b}_{i}, \mathbf{b}_{j}^{*}\right\rangle}{\left\langle\mathbf{b}_{j}^{*}, \mathbf{b}_{j}^{*}\right\rangle} \mathbf{b}_{j}^{*}, i=1, \ldots, n$.

Gram-Schmidt orthogonalization

With $\mathbf{b}_{0}=\mathbf{x}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{n} \in \mathbb{R}^{n}$ we associate the orthogonal system $\mathbf{b}_{0}^{*}, \ldots, \mathbf{b}_{n}^{*}$ that are defined inductively:

- $\mathbf{b}_{0}^{*}=\mathbf{x}$,
- $\mathbf{b}_{i}^{*}=\mathbf{b}_{i}-\sum_{j=0}^{i-1} \frac{\left\langle\mathbf{b}_{i}, \mathbf{b}_{j}^{*}\right\rangle}{\left\langle\mathbf{b}_{j}^{*}, \mathbf{b}_{j}^{*}\right\rangle} \mathbf{b}_{j}^{*}, i=1, \ldots, n$.

Gram-Schmidt orthogonalization

With $\mathbf{b}_{0}=\mathbf{x}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{n} \in \mathbb{R}^{n}$ we associate the orthogonal system $\mathbf{b}_{0}^{*}, \ldots, \mathbf{b}_{n}^{*}$ that are defined inductively:

- $\mathbf{b}_{0}^{*}=\mathbf{x}$,
- $\mathbf{b}_{i}^{*}=\mathbf{b}_{i}-\sum_{j=0}^{i-1} \frac{\left\langle\mathbf{b}_{i}, \mathbf{b}_{j}^{*}\right\rangle}{\left\langle\mathbf{b}_{j}^{*}, \mathbf{b}_{j}^{*}\right\rangle} \mathbf{b}_{j}^{*}, i=1, \ldots, n$.

Note: \mathbf{b}_{i}^{*} is orthogonal to $\operatorname{span}\left(\mathbf{b}_{0}^{*}, \ldots, \mathbf{b}_{i-1}^{*}\right)=\operatorname{span}\left(\mathbf{b}_{0}, \ldots, \mathbf{b}_{i-1}\right)$.

Lattices

Definition

A lattice $L \subset \mathbb{R}^{n}$ is an additive closure of some linear independent $\mathbf{b}_{1}, \ldots, \mathbf{b}_{r} \in \mathbb{R}^{n}$, i.e. $L=\left\{\sum_{i=1}^{r} m_{i} \mathbf{b}_{i} \mid m_{i} \in \mathbb{Z}\right\}$.

Lattices

Definition

A lattice $L \subset \mathbb{R}^{n}$ is an additive closure of some linear independent $\mathbf{b}_{1}, \ldots, \mathbf{b}_{r} \in \mathbb{R}^{n}$, i.e. $L=\left\{\sum_{i=1}^{r} m_{i} \mathbf{b}_{i} \mid m_{i} \in \mathbb{Z}\right\}$.

Lattices

Such $\mathbf{b}_{1}, \ldots, \mathbf{b}_{r}$ are called the basis of L. Of course they are not defined uniquely.

Lattices

Such $\mathbf{b}_{1}, \ldots, \mathbf{b}_{r}$ are called the basis of L. Of course they are not defined uniquely.

Lattices

An important example: the lattice $L_{\mathbf{x}} \subset \mathbb{Z}^{n}$ of all integer relations for \mathbf{x} together with $\mathbf{0}: L_{\mathbf{x}}:=\left\{\mathbf{m} \in \mathbb{Z}^{n} \mid\langle\mathbf{x}, \mathbf{m}\rangle=0\right\}$.

Lattices

An important example: the lattice $L_{\mathbf{x}} \subset \mathbb{Z}^{n}$ of all integer relations for \mathbf{x} together with $\mathbf{0}: L_{\mathbf{x}}:=\left\{\mathbf{m} \in \mathbb{Z}^{n} \mid\langle\mathbf{x}, \mathbf{m}\rangle=0\right\}$.

Bases

We will perform two types of elementary basis exchange operations on a current basis $\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}$ of a given lattice:

Bases

We will perform two types of elementary basis exchange operations on a current basis $\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}$ of a given lattice:

- Exchange steps: Interchange \mathbf{b}_{i} and \mathbf{b}_{i+1} for some i.

Bases

We will perform two types of elementary basis exchange operations on a current basis $\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}$ of a given lattice:

- Exchange steps: Interchange \mathbf{b}_{i} and \mathbf{b}_{i+1} for some i.
- Size-reduction steps: Replace \mathbf{b}_{i} with $\mathbf{b}_{i}-p \mathbf{b}_{j}$ where $p \in \mathbb{Z}$ for some $1 \leq j<i$.

Bases

We will perform two types of elementary basis exchange operations on a current basis $\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}$ of a given lattice:

- Exchange steps: Interchange \mathbf{b}_{i} and \mathbf{b}_{i+1} for some i.
- Size-reduction steps: Replace \mathbf{b}_{i} with $\mathbf{b}_{i}-p \mathbf{b}_{j}$ where $p \in \mathbb{Z}$ for some $1 \leq j<i$.

With every basis $\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}$ there is the dual basis $\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}$:

$$
\begin{aligned}
& {\left[\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right]^{T}=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right]^{-1} \Leftrightarrow\left[\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right]^{T}\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right]=\mathrm{Id}} \\
& \Leftrightarrow\left\langle\mathbf{b}_{j}, \mathbf{c}_{k}\right\rangle=\delta_{j k}= \begin{cases}0, & j \neq k \\
1, & j=k\end{cases}
\end{aligned}
$$

Bases

We will perform two types of elementary basis exchange operations on a current basis $\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}$ of a given lattice:

- Exchange steps: Interchange \mathbf{b}_{i} and \mathbf{b}_{i+1} for some i.
- Size-reduction steps: Replace \mathbf{b}_{i} with $\mathbf{b}_{i}-p \mathbf{b}_{j}$ where $p \in \mathbb{Z}$ for some $1 \leq j<i$.

With every basis $\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}$ there is the dual basis $\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}$: $\left[\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right]^{T}=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right]^{-1} \Leftrightarrow\left[\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right]^{T}\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right]=\mathrm{Id}$
$\Leftrightarrow\left\langle\mathbf{b}_{j}, \mathbf{c}_{k}\right\rangle=\delta_{j k}=\left\{\begin{array}{cc}0, & j \neq k \\ 1, & j=k\end{array}\right.$

Note: $\mathbf{b}_{1}, \ldots, \mathbf{b}_{n} \in \mathbb{Z}^{n}$ and
$B=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right]$ unimodular $(\operatorname{det} B= \pm 1) \Rightarrow \mathbf{c}_{1}, \ldots, \mathbf{c}_{n} \in \mathbb{Z}^{n}$.

HJLS: Source; Model of Computation; Notation

Source: J. Hastad, B. Just, J. C. Lagarias, and C. P. Schnorr. Polynomial Time Algorithms for Finding Integer Relations among Real Numbers.
SIAM J. Comput., Vol.18, 1989, pp.859-881.

HJLS: Source; Model of Computation; Notation

Source: J. Hastad, B. Just, J. C. Lagarias, and C. P. Schnorr. Polynomial Time Algorithms for Finding Integer Relations among Real Numbers.
SIAM J. Comput., Vol.18, 1989, pp.859-881.
Model of Computation:

- Computation with real numbers.
- Operations: addition, subtraction, multiplication, division, comparison, the nearest integer (\rfloor) - at unit cost.

HJLS: Source; Model of Computation; Notation

Source: J. Hastad, B. Just, J. C. Lagarias, and C. P. Schnorr. Polynomial Time Algorithms for Finding Integer Relations among Real Numbers.
SIAM J. Comput., Vol.18, 1989, pp.859-881.
Model of Computation:

- Computation with real numbers.
- Operations: addition, subtraction, multiplication, division, comparison, the nearest integer (\rfloor) - at unit cost.
Notation:
- $\frac{\left\langle\mathbf{b}_{i}, \mathbf{b}_{j}^{*}\right\rangle}{\left\langle\mathbf{b}_{j}^{*}, \mathbf{b}_{j}^{*}\right\rangle}=: \mu_{i j}$.

HJLS: Source; Model of Computation; Notation

Source: J. Hastad, B. Just, J. C. Lagarias, and C. P. Schnorr. Polynomial Time Algorithms for Finding Integer Relations among Real Numbers.
SIAM J. Comput., Vol.18, 1989, pp.859-881.
Model of Computation:

- Computation with real numbers.
- Operations: addition, subtraction, multiplication, division, comparison, the nearest integer (\rceil) - at unit cost.
Notation:
- $\frac{\left\langle\mathbf{b}_{i}, \mathbf{b}_{j}^{*}\right\rangle}{\left\langle\mathbf{b}_{j}^{*}, \mathbf{b}_{j}^{*}\right\rangle}=: \mu_{i j}$.
- $\lambda(\mathbf{x}):=$ the length of the shortest integer relation for \mathbf{x}. If there are no relations then $\lambda(\mathbf{x}):=\infty$.

HJLS: the Algorithm

Input: $\mathbf{x} \in \mathbb{R}^{n}, k \in \mathbb{N}$.

HJLS: the Algorithm

Input: $\mathbf{x} \in \mathbb{R}^{n}, k \in \mathbb{N}$.
(1) Initiation: $\mathbf{b}_{0}:=\mathbf{x} ; \mathbf{b}_{1}, \ldots, \mathbf{b}_{n}:=$ standard basis of \mathbb{Z}^{n}.

Compute $\mu_{i j}$ and $\left\|\mathbf{b}_{i}^{*}\right\|^{2}=\left\langle\mathbf{b}_{i}^{*}, \mathbf{b}_{i}^{*}\right\rangle$.

HJLS: the Algorithm

Input: $\mathbf{x} \in \mathbb{R}^{n}, k \in \mathbb{N}$.
(1) Initiation: $\mathbf{b}_{0}:=\mathbf{x} ; \mathbf{b}_{1}, \ldots, \mathbf{b}_{n}:=$ standard basis of \mathbb{Z}^{n}.

Compute $\mu_{i j}$ and $\left\|\mathbf{b}_{i}^{*}\right\|^{2}=\left\langle\mathbf{b}_{i}^{*}, \mathbf{b}_{i}^{*}\right\rangle$.
(2) Termination test:

If $\left\|\mathbf{b}_{n}^{*}\right\| \neq 0$ then an integer relation is found.
Compute $\left[\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right]^{T}=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right]^{-1}$ and output the integer relation \mathbf{c}_{n}. Stop.

HJLS: the Algorithm

Input: $\mathbf{x} \in \mathbb{R}^{n}, k \in \mathbb{N}$.
(1) Initiation: $\mathbf{b}_{0}:=\mathbf{x} ; \mathbf{b}_{1}, \ldots, \mathbf{b}_{n}:=$ standard basis of \mathbb{Z}^{n}.

Compute $\mu_{i j}$ and $\left\|\mathbf{b}_{i}^{*}\right\|^{2}=\left\langle\mathbf{b}_{i}^{*}, \mathbf{b}_{i}^{*}\right\rangle$.
(2) Termination test:

If $\left\|\mathbf{b}_{n}^{*}\right\| \neq 0$ then an integer relation is found.
Compute $\left[\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right]^{T}=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right]^{-1}$ and output the integer relation \mathbf{c}_{n}. Stop.
If $\left\|\mathbf{b}_{j}^{*}\right\| \leq 1 / 2^{k}, 1 \leq j \leq n$ then no small integer relation exist.
Output " $\lambda(\mathbf{x}) \geq 2^{k}$ " and stop.

HJLS: the Algorithm

Input: $\mathbf{x} \in \mathbb{R}^{n}, k \in \mathbb{N}$.
(1) Initiation: $\mathbf{b}_{0}:=\mathbf{x} ; \mathbf{b}_{1}, \ldots, \mathbf{b}_{n}:=$ standard basis of \mathbb{Z}^{n}.

Compute $\mu_{i j}$ and $\left\|\mathbf{b}_{i}^{*}\right\|^{2}=\left\langle\mathbf{b}_{i}^{*}, \mathbf{b}_{i}^{*}\right\rangle$.
(2) Termination test:

If $\left\|\mathbf{b}_{n}^{*}\right\| \neq 0$ then an integer relation is found.
Compute $\left[\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right]^{T}=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right]^{-1}$ and output the integer relation \mathbf{c}_{n}. Stop.
If $\left\|\mathbf{b}_{j}^{*}\right\| \leq 1 / 2^{k}, 1 \leq j \leq n$ then no small integer relation exist.
Output " $\lambda(\mathbf{x}) \geq 2^{k \text { " }}$ and stop.
(3) Exchange step:

Choose from $1 \leq i \leq n$ that i that maximizes $2^{i}\left\|\mathbf{b}_{i}^{*}\right\|$.

HJLS: the Algorithm

Input: $\mathbf{x} \in \mathbb{R}^{n}, k \in \mathbb{N}$.
(1) Initiation: $\mathbf{b}_{0}:=\mathbf{x} ; \mathbf{b}_{1}, \ldots, \mathbf{b}_{n}:=$ standard basis of \mathbb{Z}^{n}.

Compute $\mu_{i j}$ and $\left\|\mathbf{b}_{i}^{*}\right\|^{2}=\left\langle\mathbf{b}_{i}^{*}, \mathbf{b}_{i}^{*}\right\rangle$.
(2) Termination test:

If $\left\|\mathbf{b}_{n}^{*}\right\| \neq 0$ then an integer relation is found.
Compute $\left[\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right]^{T}=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right]^{-1}$ and output the integer relation \mathbf{c}_{n}. Stop.
If $\left\|\mathbf{b}_{j}^{*}\right\| \leq 1 / 2^{k}, 1 \leq j \leq n$ then no small integer relation exist.
Output " $\lambda(\mathbf{x}) \geq 2^{k}$ " and stop.
(3) Exchange step:

Choose from $1 \leq i \leq n$ that i that maximizes $2^{i}\left\|\mathbf{b}_{i}^{*}\right\|$.
Size-reduce $\mathbf{b}_{i+1}: \mathbf{b}_{i+1}:=\mathbf{b}_{i+1}-\left\lceil\mu_{i+1, i}\right\rfloor \mathbf{b}_{i}$.

HJLS: the Algorithm

Input: $\mathbf{x} \in \mathbb{R}^{n}, k \in \mathbb{N}$.
(1) Initiation: $\mathbf{b}_{0}:=\mathbf{x} ; \mathbf{b}_{1}, \ldots, \mathbf{b}_{n}:=$ standard basis of \mathbb{Z}^{n}.

Compute $\mu_{i j}$ and $\left\|\mathbf{b}_{i}^{*}\right\|^{2}=\left\langle\mathbf{b}_{i}^{*}, \mathbf{b}_{i}^{*}\right\rangle$.
(2) Termination test:

If $\left\|\mathbf{b}_{n}^{*}\right\| \neq 0$ then an integer relation is found.
Compute $\left[\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right]^{T}=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right]^{-1}$ and output the integer relation \mathbf{c}_{n}. Stop.
If $\left\|\mathbf{b}_{j}^{*}\right\| \leq 1 / 2^{k}, 1 \leq j \leq n$ then no small integer relation exist.
Output " $\lambda(\mathbf{x}) \geq 2^{k}$ " and stop.
(3) Exchange step:

Choose from $1 \leq i \leq n$ that i that maximizes $2^{i}\left\|\mathbf{b}_{i}^{*}\right\|$.
Size-reduce $\mathbf{b}_{i+1}: \mathbf{b}_{i+1}:=\mathbf{b}_{i+1}-\left\lceil\mu_{i+1, i}\right\rfloor \mathbf{b}_{i}$.
Update $\mu_{i+1, j}$ for $j=1, \ldots, i$.

HJLS: the Algorithm

Input: $\mathbf{x} \in \mathbb{R}^{n}, k \in \mathbb{N}$.
(1) Initiation: $\mathbf{b}_{0}:=\mathbf{x} ; \mathbf{b}_{1}, \ldots, \mathbf{b}_{n}:=$ standard basis of \mathbb{Z}^{n}.

Compute $\mu_{i j}$ and $\left\|\mathbf{b}_{i}^{*}\right\|^{2}=\left\langle\mathbf{b}_{i}^{*}, \mathbf{b}_{i}^{*}\right\rangle$.
(2) Termination test:

If $\left\|\mathbf{b}_{n}^{*}\right\| \neq 0$ then an integer relation is found.
Compute $\left[\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right]^{T}=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right]^{-1}$ and output the integer relation \mathbf{c}_{n}. Stop.
If $\left\|\mathbf{b}_{j}^{*}\right\| \leq 1 / 2^{k}, 1 \leq j \leq n$ then no small integer relation exist.
Output " $\lambda(\mathbf{x}) \geq 2^{k \text { " }}$ and stop.
(3) Exchange step:

Choose from $1 \leq i \leq n$ that i that maximizes $2^{i}\left\|\mathbf{b}_{i}^{*}\right\|$.
Size-reduce $\mathbf{b}_{i+1}: \mathbf{b}_{i+1}:=\mathbf{b}_{i+1}-\left\lceil\mu_{i+1, i}\right\rfloor \mathbf{b}_{i}$.
Update $\mu_{i+1, j}$ for $j=1, \ldots, i$.
Exchange \mathbf{b}_{i} and \mathbf{b}_{i+1}.

HJLS: the Algorithm

Input: $\mathbf{x} \in \mathbb{R}^{n}, k \in \mathbb{N}$.
(1) Initiation: $\mathbf{b}_{0}:=\mathbf{x} ; \mathbf{b}_{1}, \ldots, \mathbf{b}_{n}:=$ standard basis of \mathbb{Z}^{n}.

Compute $\mu_{i j}$ and $\left\|\mathbf{b}_{i}^{*}\right\|^{2}=\left\langle\mathbf{b}_{i}^{*}, \mathbf{b}_{i}^{*}\right\rangle$.
(2) Termination test:

If $\left\|\mathbf{b}_{n}^{*}\right\| \neq 0$ then an integer relation is found.
Compute $\left[\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right]^{T}=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right]^{-1}$ and output the integer relation \mathbf{c}_{n}. Stop.
If $\left\|\mathbf{b}_{j}^{*}\right\| \leq 1 / 2^{k}, 1 \leq j \leq n$ then no small integer relation exist.
Output " $\lambda(\mathbf{x}) \geq 2^{k}$ " and stop.
(3) Exchange step:

Choose from $1 \leq i \leq n$ that i that maximizes $2^{i}\left\|\mathbf{b}_{i}^{*}\right\|$.
Size-reduce $\mathbf{b}_{i+1}: \mathbf{b}_{i+1}:=\mathbf{b}_{i+1}-\left\lceil\mu_{i+1, i}\right\rfloor \mathbf{b}_{i}$.
Update $\mu_{i+1, j}$ for $j=1, \ldots, i$.
Exchange \mathbf{b}_{i} and \mathbf{b}_{i+1}.
Update $\left\|\mathbf{b}_{\nu}^{*}\right\|^{2}, \mu_{\nu j}, \mu_{j \nu}$ for $\nu=i, i+1,1 \leq j \leq n$. Go to (2).

HJLS: the Algorithm

Note: The matrix $\left[\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right]$ can be computed incrementally: - Initially $\left[\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right]=\operatorname{Id}_{n}$.

- $\mathbf{b}_{i+1}:=\mathbf{b}_{i+1}-\left\lceil\mu_{i+1, i}\right\rfloor \mathbf{b}_{i} \Rightarrow \mathbf{c}_{i}:=\mathbf{c}_{i}+\left\lceil\mu_{i+1, i}\right\rfloor \mathbf{c}_{i+1}$.
- $\mathbf{b}_{i} \leftrightarrow \mathbf{b}_{i+1} \Rightarrow \mathbf{c}_{i} \leftrightarrow \mathbf{c}_{i+1}$.

HJLS: Correctedness and Polynomial Time

Theorem

- The output \boldsymbol{c}_{n} is an integer relation for \boldsymbol{x}.

HJLS: Correctedness and Polynomial Time

Theorem

- The output \boldsymbol{c}_{n} is an integer relation for \boldsymbol{x}.
- For every basis $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}$ of $\mathbb{Z}^{n} \lambda(\boldsymbol{x}) \geq \frac{1}{\max \left\|\boldsymbol{b}_{j}^{*}\right\|}$. So the algorithm claims " $\lambda(\boldsymbol{x}) \geq 2^{k}$ " correctly.

HJLS: Correctedness and Polynomial Time

Theorem

- The output \boldsymbol{c}_{n} is an integer relation for \boldsymbol{x}.
- For every basis $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}$ of $\mathbb{Z}^{n} \lambda(\boldsymbol{x}) \geq \frac{1}{\max \left\|\boldsymbol{b}_{j}^{*}\right\|}$. So the algorithm claims " $\lambda(\boldsymbol{x}) \geq 2^{k}$ " correctly.
- The output \boldsymbol{c}_{n} satisfies $\left\|\boldsymbol{c}_{n}\right\|^{2} \leq 2^{n-2} \min \left\{\lambda(\boldsymbol{x})^{2}, 2^{2 k}\right\}$.

HJLS: Correctedness and Polynomial Time

Theorem

- The output \boldsymbol{c}_{n} is an integer relation for \boldsymbol{x}.
- For every basis $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}$ of $\mathbb{Z}^{n} \lambda(\boldsymbol{x}) \geq \frac{1}{\max \left\|\boldsymbol{b}_{j}^{*}\right\|}$. So the algorithm claims " $\lambda(\boldsymbol{x}) \geq 2^{k}$ " correctly.
- The output \boldsymbol{c}_{n} satisfies $\left\|\boldsymbol{c}_{n}\right\|^{2} \leq 2^{n-2} \min \left\{\lambda(\boldsymbol{x})^{2}, 2^{2 k}\right\}$.
- The algorithm halts after at most $O\left(n^{3}(k+n)\right)$ arithmetic steps on real numbers.

HJLS: a Partial Proof

Proof.

- $\mathbf{b}_{n}^{*} \neq \mathbf{0} \Rightarrow \exists i$ s.t. $\mathbf{b}_{i}^{*}=\mathbf{0}$.

HJLS: a Partial Proof

Proof.

- $\mathbf{b}_{n}^{*} \neq \mathbf{0} \Rightarrow \exists i$ s.t. $\mathbf{b}_{i}^{*}=\mathbf{0}$.

Then $\mathbf{0}=\mathbf{b}_{i}^{*}=\mathbf{b}_{i}-\sum_{j=0}^{i-1} \frac{\left\langle\mathbf{b}_{i}, \mathbf{b}_{j}^{*}\right\rangle}{\left\langle\mathbf{b}_{j}^{*}, \mathbf{b}_{j}^{*}\right\rangle} \mathbf{b}_{j}^{*}$.

HJLS: a Partial Proof

Proof.

- $\mathbf{b}_{n}^{*} \neq \mathbf{0} \Rightarrow \exists i$ s.t. $\mathbf{b}_{i}^{*}=\mathbf{0}$.

Then $\mathbf{0}=\mathbf{b}_{i}^{*}=\mathbf{b}_{i}-\sum_{j=0}^{i-1} \frac{\left\langle\mathbf{b}_{i}, \mathbf{b}_{j}^{*}\right\rangle}{\left\langle\mathbf{b}_{j}^{*}, \mathbf{b}_{j}^{*}\right\rangle} \mathbf{b}_{j}^{*}$.
Then $\exists a_{j}$ s.t. $\sum_{j=0}^{j=i} a_{j} \mathbf{b}_{j}=\mathbf{0}$.

HJLS: a Partial Proof

Proof.

- $\mathbf{b}_{n}^{*} \neq \mathbf{0} \Rightarrow \exists i$ s.t. $\mathbf{b}_{i}^{*}=\mathbf{0}$.

Then $\mathbf{0}=\mathbf{b}_{i}^{*}=\mathbf{b}_{i}-\sum_{j=0}^{i-1} \frac{\left\langle\mathbf{b}_{i}, \mathbf{b}_{j}^{*}\right\rangle}{\left\langle\mathbf{b}_{j}^{*}, \mathbf{b}_{j}^{*}\right\rangle} \mathbf{b}_{j}^{*}$.
Then $\exists a_{j}$ s.t. $\sum_{j=0}^{j=i} a_{j} \mathbf{b}_{j}=\mathbf{0}$.
$\mathbf{b}_{1}, \ldots, \mathbf{b}_{i}$ are linearly independent $\Rightarrow a_{0} \neq 0$

$$
\Rightarrow \mathbf{x}=\mathbf{b}_{0}=\sum_{j=1}^{j=i} \frac{a_{j}}{a_{0}} \mathbf{b}_{j}
$$

HJLS: a Partial Proof

Proof.

- $\mathbf{b}_{n}^{*} \neq \mathbf{0} \Rightarrow \exists i$ s.t. $\mathbf{b}_{i}^{*}=\mathbf{0}$.

Then $\mathbf{0}=\mathbf{b}_{i}^{*}=\mathbf{b}_{i}-\sum_{j=0}^{i-1} \frac{\left\langle\mathbf{b}_{i}, \mathbf{b}_{j}^{*}\right\rangle}{\left\langle\mathbf{b}_{j}^{*}, \mathbf{b}_{j}^{*}\right\rangle} \mathbf{b}_{j}^{*}$.
Then $\exists a_{j}$ s.t. $\sum_{j=0}^{j=i} a_{j} \mathbf{b}_{j}=\mathbf{0}$.
$\mathbf{b}_{1}, \ldots, \mathbf{b}_{i}$ are linearly independent $\Rightarrow a_{0} \neq 0$
$\Rightarrow \mathbf{x}=\mathbf{b}_{0}=\sum_{j=1}^{j=i} \frac{a_{j}}{a_{0}} \mathbf{b}_{j}$.
Since $\left\langle\mathbf{b}_{j}, \mathbf{c}_{k}\right\rangle=0 \forall k>j$ we have $\left\langle\mathbf{x}, \mathbf{c}_{k}\right\rangle=0 \forall k>i$, in particular $\left\langle\mathbf{x}, \mathbf{c}_{n}\right\rangle=0$.

HJLS: a Partial Proof

Proof.

- Let \mathbf{m} be any integer relation for \mathbf{x}.

HJLS: a Partial Proof

Proof.

- Let \mathbf{m} be any integer relation for \mathbf{x}. Since $\mathbf{m} \in(\mathbf{x} \mathbb{R})^{\perp}=\operatorname{span}\left(\mathbf{b}_{1}^{*}, \ldots, \mathbf{b}_{n}^{*}\right)$

HJLS: a Partial Proof

Proof.

- Let \mathbf{m} be any integer relation for \mathbf{x}. Since $\mathbf{m} \in(\mathbf{x} \mathbb{R})^{\perp}=\operatorname{span}\left(\mathbf{b}_{1}^{*}, \ldots, \mathbf{b}_{n}^{*}\right)$ there exists i s.t. $\left\langle\mathbf{m}, \mathbf{b}_{i}^{*}\right\rangle \neq 0$.

HJLS: a Partial Proof

Proof.

- Let \mathbf{m} be any integer relation for \mathbf{x}.

Since $\mathbf{m} \in(\mathbf{x} \mathbb{R})^{\perp}=\operatorname{span}\left(\mathbf{b}_{1}^{*}, \ldots, \mathbf{b}_{n}^{*}\right)$
there exists i s.t. $\left\langle\mathbf{m}, \mathbf{b}_{i}^{*}\right\rangle \neq 0$.
For the smallest such i we have

$$
\left\langle\mathbf{m}, \mathbf{b}_{i}^{*}\right\rangle=\left\langle\mathbf{m}, \mathbf{b}_{i}-\sum_{j=0}^{i-1} \mu_{i j} \mathbf{b}_{j}^{*}\right\rangle=\left\langle\mathbf{m}, \mathbf{b}_{i}\right\rangle-\sum_{j=0}^{i-1} \mu_{i j}\left\langle\mathbf{m}, \mathbf{b}_{j}^{*}\right\rangle=
$$

HJLS: a Partial Proof

Proof.

- Let \mathbf{m} be any integer relation for \mathbf{x}.

Since $\mathbf{m} \in(\mathbf{x} \mathbb{R})^{\perp}=\operatorname{span}\left(\mathbf{b}_{1}^{*}, \ldots, \mathbf{b}_{n}^{*}\right)$ there exists i s.t. $\left\langle\mathbf{m}, \mathbf{b}_{i}^{*}\right\rangle \neq 0$.
For the smallest such i we have

$$
\begin{aligned}
& \left\langle\mathbf{m}, \mathbf{b}_{i}^{*}\right\rangle=\left\langle\mathbf{m}, \mathbf{b}_{i}-\sum_{j=0}^{i-1} \mu_{i j} \mathbf{b}_{j}^{*}\right\rangle=\left\langle\mathbf{m}, \mathbf{b}_{i}\right\rangle-\sum_{j=0}^{i-1} \mu_{i j}\left\langle\mathbf{m}, \mathbf{b}_{j}^{*}\right\rangle= \\
& =\left\langle\mathbf{m}, \mathbf{b}_{i}\right\rangle \in \mathbb{Z}, \text { and hence }\left|\left\langle\mathbf{m}, \mathbf{b}_{i}^{*}\right\rangle\right| \geq 1
\end{aligned}
$$

HJLS: a Partial Proof

Proof.

- Let \mathbf{m} be any integer relation for \mathbf{x}.

Since $\mathbf{m} \in(\mathbf{x} \mathbb{R})^{\perp}=\operatorname{span}\left(\mathbf{b}_{1}^{*}, \ldots, \mathbf{b}_{n}^{*}\right)$
there exists i s.t. $\left\langle\mathbf{m}, \mathbf{b}_{i}^{*}\right\rangle \neq 0$.
For the smallest such i we have
$\left\langle\mathbf{m}, \mathbf{b}_{i}^{*}\right\rangle=\left\langle\mathbf{m}, \mathbf{b}_{i}-\sum_{j=0}^{i-1} \mu_{i j} \mathbf{b}_{j}^{*}\right\rangle=\left\langle\mathbf{m}, \mathbf{b}_{i}\right\rangle-\sum_{j=0}^{i-1} \mu_{i j}\left\langle\mathbf{m}, \mathbf{b}_{j}^{*}\right\rangle=$
$=\left\langle\mathbf{m}, \mathbf{b}_{i}\right\rangle \in \mathbb{Z}$, and hence $\left|\left\langle\mathbf{m}, \mathbf{b}_{i}^{*}\right\rangle\right| \geq 1$.
But $\left|\left\langle\mathbf{m}, \mathbf{b}_{i}^{*}\right\rangle\right| \leq\|\mathbf{m}\|\left\|\mathbf{b}_{i}^{*}\right\|$.

HJLS: a Partial Proof

Proof.

- Let \mathbf{m} be any integer relation for \mathbf{x}.

Since $\mathbf{m} \in(\mathbf{x} \mathbb{R})^{\perp}=\operatorname{span}\left(\mathbf{b}_{1}^{*}, \ldots, \mathbf{b}_{n}^{*}\right)$
there exists i s.t. $\left\langle\mathbf{m}, \mathbf{b}_{i}^{*}\right\rangle \neq 0$.
For the smallest such i we have
$\left\langle\mathbf{m}, \mathbf{b}_{i}^{*}\right\rangle=\left\langle\mathbf{m}, \mathbf{b}_{i}-\sum_{j=0}^{i-1} \mu_{i j} \mathbf{b}_{j}^{*}\right\rangle=\left\langle\mathbf{m}, \mathbf{b}_{i}\right\rangle-\sum_{j=0}^{i-1} \mu_{i j}\left\langle\mathbf{m}, \mathbf{b}_{j}^{*}\right\rangle=$
$=\left\langle\mathbf{m}, \mathbf{b}_{i}\right\rangle \in \mathbb{Z}$, and hence $\left|\left\langle\mathbf{m}, \mathbf{b}_{i}^{*}\right\rangle\right| \geq 1$.
But $\left|\left\langle\mathbf{m}, \mathbf{b}_{i}^{*}\right\rangle\right| \leq\|\mathbf{m}\|\left\|\mathbf{b}_{i}^{*}\right\|$.
So $\|\mathbf{m}\| \geq \frac{1}{\left\|\mathbf{b}_{i}^{*}\right\|}$.

Outline

（1）Introduction
－Starting Examples
－Integer Relations
－Algorithms for Finding Integral Relations
（2）LLL－based Algorithms
－Lattices and Their Bases
－HJLS
（3）PSLQ
（4）Usage
（5）Applications
－＂BBP＂Formula for Pi
－Bifurcation Points in Chaos Theory
6 Further Reading

PSLQ: Source; Model of Computation

The name "PSLQ" comes from partial sums of squares and LQ (lower-diagonal-orthogonal) matrix decomposition.

PSLQ: Source; Model of Computation

The name "PSLQ" comes from partial sums of squares and LQ (lower-diagonal-orthogonal) matrix decomposition.

Source:

H. R. P. Ferguson, D. H. Bailey, S. Arno.

Analysis of PSLQ, an Integer Finding Algorithm.
Mathematics of Computation, Vol.68, 1999, pp.351-369.

PSLQ: Source; Model of Computation

The name "PSLQ" comes from partial sums of squares and LQ (lower-diagonal—orthogonal) matrix decomposition.

Source:

H. R. P. Ferguson, D. H. Bailey, S. Arno. Analysis of PSLQ, an Integer Finding Algorithm. Mathematics of Computation, Vol.68, 1999, pp.351-369.
Model of Computation:

- Computation with real numbers.
- Operations: addition, subtraction, multiplication, division, comparison, the nearest integer (\rfloor) - at unit cost.

Definitions

$$
\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right),\|\mathbf{x}\|=1, x_{j} \neq 0 .
$$

Definitions

$$
\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right),\|\mathbf{x}\|=1, x_{j} \neq 0
$$

Definition

Let for $1 \leq j \leq n \quad s_{j}^{2}:=\sum_{k=j}^{k=n} x_{k}^{2}$.

Definitions

$$
\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right),\|\mathbf{x}\|=1, x_{j} \neq 0
$$

Definition

Let for $1 \leq j \leq n \quad s_{j}^{2}:=\sum_{k=j}^{k=n} x_{k}^{2}$.

Definition

Let $H_{\mathbf{x}}=\left(h_{i, j}\right)$ be $n \times(n-1)$ lower-trapezoidal matrix defined by:

$$
h_{i, j}:= \begin{cases}0 & 1 \leq i<j \leq n-1 \\ s_{i+1} / s_{i} & 1 \leq i=j \leq n-1 \\ -x_{j}^{2} /\left(s_{j} s_{j+1}\right) & 1 \leq j<i \leq n-1\end{cases}
$$

PSLQ: The Algorithm

Input: $\mathbf{x} \in \mathbb{R}^{n} ; \gamma \geq \sqrt{4 / 3}$.

PSLQ: The Algorithm

Input: $\mathbf{x} \in \mathbb{R}^{n} ; \gamma \geq \sqrt{4 / 3}$.
(1)Initiation: $\mathbf{s}:=\left(s_{1}, \ldots, s_{n}\right) ; \mathbf{y}:=\mathbf{x} / s_{1} ; H:=H_{\mathbf{x}} ; B:=\operatorname{Id}_{n}$.

PSLQ: The Algorithm

Input: $\mathbf{x} \in \mathbb{R}^{n} ; \gamma \geq \sqrt{4 / 3}$.
(1)Initiation: $\mathbf{s}:=\left(s_{1}, \ldots, s_{n}\right) ; \mathbf{y}:=\mathbf{x} / s_{1} ; H:=H_{\mathbf{x}} ; B:=\operatorname{Id}_{n}$. Reduce H :
for $i:=2$ to n
for $j:=i-1$ to 1 step -1
$t:=\left\lceil h_{i j} / h_{j j}\right\rfloor$
$y_{j}:=y_{j}+t y_{i}$
for $k:=1$ to j

$$
h_{i k}:=h_{i k}-t h_{j k}
$$

endfor
for $k:=1$ to n

$$
b_{k j}:=b_{k j}+t b_{k i}
$$

endfor
endfor
endfor

PSLQ: The Algorithm

(2) Exchange step:

Choose r that maximizes $\gamma^{r}\left|h_{r r}\right|$.

PSLQ: The Algorithm

(2) Exchange step:

Choose r that maximizes $\gamma^{r}\left|h_{r r}\right|$.
Exchange $y_{r} \leftrightarrow y_{r+1}$, corresponding rows of H and corresponding columns of B.

PSLQ: The Algorithm

(2) Exchange step:

Choose r that maximizes $\gamma^{r}\left|h_{r r}\right|$.
Exchange $y_{r} \leftrightarrow y_{r+1}$, corresponding rows of H and corresponding columns of B.
(3)Corner:
$\delta:=\sqrt{h_{r r}^{2}+h_{r, r+1}^{2}} ; \alpha:=h_{r r} / \delta ; \beta:=h_{r, r+1} / \delta$.
if $r \leq n-2$ then
for $i:=r$ to n

$$
\begin{aligned}
& h_{0}:=h_{i r} ; h_{1}:=h_{i, r+1} ; \\
& h_{i r}:=\alpha h_{0}+\beta h_{1} ; h_{i, r+1}:=-\beta h_{0}+\alpha h_{1}
\end{aligned}
$$

endfor
endif

PSLQ: The Algorithm

(2) Exchange step:

Choose r that maximizes $\gamma^{r}\left|h_{r r}\right|$.
Exchange $y_{r} \leftrightarrow y_{r+1}$, corresponding rows of H and corresponding columns of B.
(3)Corner:
$\delta:=\sqrt{h_{r r}^{2}+h_{r, r+1}^{2}} ; \alpha:=h_{r r} / \delta ; \beta:=h_{r, r+1} / \delta$.
if $r \leq n-2$ then
for $i:=r$ to n

$$
\begin{aligned}
& h_{0}:=h_{i r} ; h_{1}:=h_{i, r+1} ; \\
& h_{i r}:=\alpha h_{0}+\beta h_{1} ; h_{i, r+1}:=-\beta h_{0}+\alpha h_{1}
\end{aligned}
$$

endfor
endif
(4)Reduce H.

PSLQ: The Algorithm

(2) Exchange step:

Choose r that maximizes $\gamma^{r}\left|h_{r r}\right|$.
Exchange $y_{r} \leftrightarrow y_{r+1}$, corresponding rows of H and corresponding columns of B.
(3)Corner:
$\delta:=\sqrt{h_{r r}^{2}+h_{r, r+1}^{2}} ; \alpha:=h_{r r} / \delta ; \beta:=h_{r, r+1} / \delta$.
if $r \leq n-2$ then
for $i:=r$ to n

$$
\begin{aligned}
& h_{0}:=h_{i r} ; h_{1}:=h_{i, r+1} ; \\
& h_{i r}:=\alpha h_{0}+\beta h_{1} ; h_{i, r+1}:=-\beta h_{0}+\alpha h_{1}
\end{aligned}
$$

endfor
endif
(4)Reduce H.
(5)Norm bound: Compute $M:=1 / \max _{1 \leq j \leq n} h_{j j}$. Then $\lambda(\mathbf{x}) \geq M$.

PSLQ: The Algorithm

(2) Exchange step:

Choose r that maximizes $\gamma^{r}\left|h_{r r}\right|$.
Exchange $y_{r} \leftrightarrow y_{r+1}$, corresponding rows of H and corresponding columns of B.
(3)Corner:
$\delta:=\sqrt{h_{r r}^{2}+h_{r, r+1}^{2}} ; \alpha:=h_{r r} / \delta ; \beta:=h_{r, r+1} / \delta$.
if $r \leq n-2$ then
for $i:=r$ to n

$$
\begin{aligned}
& h_{0}:=h_{i r} ; h_{1}:=h_{i, r+1} ; \\
& h_{i r}:=\alpha h_{0}+\beta h_{1} ; h_{i, r+1}:=-\beta h_{0}+\alpha h_{1}
\end{aligned}
$$

endfor

endif

(4)Reduce H.
(5)Norm bound: Compute $M:=1 / \max _{1 \leq j \leq n} h_{j j}$. Then $\lambda(\mathbf{x}) \geq M$.
(6)Termination: Goto (2) unless $y_{j}=0$ for some $1 \leq j \leq n$ or $h_{i i}=0$ for some $1 \leq i \leq n-1$.

PSLQ: Correctedness and Polynomial Time

Theorem

- The integer relation \mathbf{m} for \boldsymbol{x} appears as one of the columns of B.

PSLQ: Correctedness and Polynomial Time

Theorem

- The integer relation \mathbf{m} for \boldsymbol{x} appears as one of the columns of B.
- $\lambda(\boldsymbol{x}) \geq 1 / \max _{1 \leq j \leq n} h_{j j}$.

PSLQ: Correctedness and Polynomial Time

Theorem

- The integer relation \mathbf{m} for \boldsymbol{x} appears as one of the columns of B.
- $\lambda(\boldsymbol{x}) \geq 1 / \max _{1 \leq j \leq n} h_{j j}$.
- $\|\mathbf{m}\| \leq \gamma^{n-2} \lambda(\boldsymbol{x})$.

PSLQ: Correctedness and Polynomial Time

Theorem

- The integer relation \mathbf{m} for \boldsymbol{x} appears as one of the columns of B.
- $\lambda(\boldsymbol{x}) \geq 1 / \max _{1 \leq j \leq n} h_{j j}$.
- $\|\mathbf{m}\| \leq \gamma^{n-2} \lambda(\boldsymbol{x})$.
- The algorithm halts after at most $O\left(n^{4}+n^{3} \log \lambda(\boldsymbol{x})\right)$ arithmetic steps on real numbers.

Outline

(1) Introduction

- Starting Examples
- Integer Relations
- Algorithms for Finding Integral Relations
(2) LLL-based Algorithms
- Lattices and Their Bases
- HJLS
(3) PSLQ
(4) Usage
(5) Applications
- "BBP" Formula for Pi
- Bifurcation Points in Chaos Theory

6) Further Reading

Usage

Note: Proving relations is a separate matter.

Usage

Note: Proving relations is a separate matter.
Precision:
As a rule of thumb if \mathbf{x} has n entries and D is the maximal number of digits in the relation we hope to find then we should work with $n D$ digits precision.

Usage

Note: Proving relations is a separate matter.
Precision:
As a rule of thumb if \mathbf{x} has n entries and D is the maximal number of digits in the relation we hope to find then we should work with $n D$ digits precision.

LLL or PSLQ?
LLL-based algorithms are available in almost any computer algebra system (Maple, Mathematica).
PSLQ implementation are less directly available.

Usage

Note: Proving relations is a separate matter.
Precision:
As a rule of thumb if \mathbf{x} has n entries and D is the maximal number of digits in the relation we hope to find then we should work with $n D$ digits precision.

LLL or PSLQ?
LLL-based algorithms are available in almost any computer algebra system (Maple, Mathematica).
PSLQ implementation are less directly available.
PSLQ is more stable, because it uses a stable matrix reduction procedure. Unfortunately, HJLS is not stable.

An Example

Consider $\mathbf{x}=(11,27,31)$.

An Example

Consider $\mathbf{x}=(11,27,31)$.
PSLQ with $\gamma=\sqrt{2}$ for successive iterations $N=0,1,2,3,4$ yields the five matrices:

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right),\left(\begin{array}{ccc}
1 & 0 & 0 \\
3 & 8 & 1 \\
-3 & -7 & -1
\end{array}\right),\left(\begin{array}{ccc}
-2 & 1 & 0 \\
2 & 3 & 1 \\
-1 & -3 & -1
\end{array}\right), \\
& \left.\left(\begin{array}{ccc}
3 & -2 & 0 \\
1 & 2 & 1 \\
-2 & -1 & -1
\end{array}\right),\left(\begin{array}{c}
-1 \\
5 \\
-4
\end{array}\right) \begin{array}{cc}
-8 \\
9 \\
-5
\end{array} \begin{array}{c}
-2 \\
2 \\
-1
\end{array}\right) .
\end{aligned}
$$

An Example

Consider $\mathbf{x}=(11,27,31)$.
PSLQ with $\gamma=\sqrt{2}$ for successive iterations $N=0,1,2,3,4$ yields the five matrices:

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right),\left(\begin{array}{ccc}
1 & 0 & 0 \\
3 & 8 & 1 \\
-3 & -7 & -1
\end{array}\right),\left(\begin{array}{ccc}
-2 & 1 & 0 \\
2 & 3 & 1 \\
-1 & -3 & -1
\end{array}\right), \\
& \left.\left(\begin{array}{ccc}
3 & -2 & 0 \\
1 & 2 & 1 \\
-2 & -1 & -1
\end{array}\right),\left(\begin{array}{c}
-1 \\
5 \\
-4
\end{array}\right) \begin{array}{cc}
-8 \\
9 \\
-5
\end{array} \begin{array}{c}
-2 \\
2 \\
-1
\end{array}\right) .
\end{aligned}
$$

It found 2 relations:
$-11+5 \cdot 27-4 \cdot 31=-11+135-124=0$;
$-8 \cdot 11+9 \cdot 27-5 \cdot 31=-88+243-155=0$.

An Example

HJLS for successive iterations $N=0,1,2,3,4,5,6$ yields the seven matrices:

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & -1
\end{array}\right),\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & -1
\end{array}\right), \\
& \left(\begin{array}{ccc}
1 & -2 & 0 \\
0 & 0 & 1 \\
0 & 1 & -1
\end{array}\right),\left(\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 2 \\
0 & -1 & -1
\end{array}\right),\left(\begin{array}{ccc}
0 & 1 & -2 \\
1 & 3 & 2 \\
-1 & -3 & -1
\end{array}\right) \\
& \left(\begin{array}{cc}
0 & -2 \\
1 & 2 \\
-1 & -1
\end{array} \begin{array}{c}
-1 \\
5 \\
-4
\end{array}\right)
\end{aligned}
$$

An Example

HJLS for successive iterations $N=0,1,2,3,4,5,6$ yields the seven matrices:

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & -1
\end{array}\right),\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & -1
\end{array}\right), \\
& \left(\begin{array}{ccc}
1 & -2 & 0 \\
0 & 0 & 1 \\
0 & 1 & -1
\end{array}\right),\left(\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 2 \\
0 & -1 & -1
\end{array}\right),\left(\begin{array}{ccc}
0 & 1 & -2 \\
1 & 3 & 2 \\
-1 & -3 & -1
\end{array}\right) \\
& \left(\begin{array}{cc}
0 & -2 \\
1 & 2 \\
-1 & -1
\end{array} \begin{array}{c}
-1 \\
5 \\
-4
\end{array}\right)
\end{aligned}
$$

It found 1 relation.

Outline

(1) Introduction

- Starting Examples
- Integer Relations
- Algorithms for Finding Integral Relations
(2) LLL-based Algorithms
- Lattices and Their Bases
- HJLS
(3) PSLQ
(a) Usage
(5) Applications
- "BBP" Formula for Pi
- Bifurcation Points in Chaos Theory
(6) Further Reading

Perhaps one of the best known applications of PSLQ is the 1995 discovery, by means of PSLQ computation, of the "BBP" (Bailey, Borwein, Plouffe) formula for π :

$$
\pi=\sum_{k=0}^{\infty} \frac{1}{16^{k}}\left(\frac{4}{8 k+1}-\frac{2}{8 k+4}-\frac{1}{8 k+5}-\frac{1}{8 k+6}\right)
$$

Perhaps one of the best known applications of PSLQ is the 1995 discovery, by means of PSLQ computation, of the "BBP" (Bailey, Borwein, Plouffe) formula for π :

$$
\pi=\sum_{k=0}^{\infty} \frac{1}{16^{k}}\left(\frac{4}{8 k+1}-\frac{2}{8 k+4}-\frac{1}{8 k+5}-\frac{1}{8 k+6}\right) .
$$

This formula permits one to compute directly hexademical digits of π without computing previous ones.

"BBP" formula for π

Perhaps one of the best known applications of PSLQ is the 1995 discovery, by means of PSLQ computation, of the "BBP" (Bailey, Borwein, Plouffe) formula for π :

$$
\pi=\sum_{k=0}^{\infty} \frac{1}{16^{k}}\left(\frac{4}{8 k+1}-\frac{2}{8 k+4}-\frac{1}{8 k+5}-\frac{1}{8 k+6}\right) .
$$

This formula permits one to compute directly hexademical digits of π without computing previous ones.
The formula was found by applying PSLQ to $\left(X_{1}, \ldots, X_{n}, \pi\right)$ where

$$
X_{j}=\sum_{k=0}^{\infty} \frac{1}{16^{k}(8 k+j)}
$$

Bifurcation Points in Chaos Theory

The chaotic iteration $x_{n+1}=r x_{n}\left(1-x_{n}\right)$ ("logistic iteration"):

Bifurcation Points in Chaos Theory

$1<r<B_{1}=3$: one limit point.
$B_{1}<r<B_{2}=1+\sqrt{6}=3.449489 \ldots$: two distinct limit points.
$B_{2}<r<B_{3}$: four distinct limit points. $B_{3}<r<B_{4}$: eight distinct limit points. And so on.

Bifurcation Points in Chaos Theory

$1<r<B_{1}=3$: one limit point.
$B_{1}<r<B_{2}=1+\sqrt{6}=3.449489 \ldots$: two distinct limit points.
$B_{2}<r<B_{3}$: four distinct limit points.
$B_{3}<r<B_{4}$: eight distinct limit points.
And so on.
Using PSLQ with $n=13$ we get that B_{3} satisfies:
$r^{12}-12 r^{11}+48 r^{10}-40 r^{9}-193 r^{8}+392 r^{7}+44 r^{6}+8 r^{5}-$
$977 r^{4}-604 r^{3}+2108 r^{2}+4913=0$.

Bifurcation Points in Chaos Theory

The much more difficult problem for finding B_{4} was studied in
D. H. Bailey and D. J. Broadhurst. Parallel integer relation detection: techniques and applications. Mathematics of Computation, Vol.70, 2000, pp.1719-1736.

Bifurcation Points in Chaos Theory

The much more difficult problem for finding B_{4} was studied in
D. H. Bailey and D. J. Broadhurst. Parallel integer relation detection: techniques and applications. Mathematics of Computation, Vol.70, 2000, pp.1719-1736.

It was conjectured that B_{4} might satisfy a 240-degree polynomial, and, in addition, $\alpha=-B_{4}\left(B_{4}-2\right)$ might satisfy a 120-degree polynomial.
Then an advanced PSLQ implementation was employed, and a relation with coefficients descending from 257^{30} to 1 was found.

Bifurcation Points in Chaos Theory

The much more difficult problem for finding B_{4} was studied in
D. H. Bailey and D. J. Broadhurst. Parallel integer relation detection: techniques and applications. Mathematics of Computation, Vol.70, 2000, pp.1719-1736.

It was conjectured that B_{4} might satisfy a 240 -degree polynomial, and, in addition, $\alpha=-B_{4}\left(B_{4}-2\right)$ might satisfy a 120-degree polynomial.
Then an advanced PSLQ implementation was employed, and a relation with coefficients descending from 257^{30} to 1 was found.

4 year later the result was confirmed in large symbolic computation in
I. Kotsireas and K. Karamanos. Exact computation of the bifurcation point b4 of the logistic map and the Bailey-Broadhurst conjectures. Internat. J. Bifurcation and Chaos, Vol.14, 2004, pp.2417-2423.

Outline

(9) Introduction

- Starting Examples
- Integer Relations
- Algorithms for Finding Integral Relations
(2) LLL-based Algorithms
- Lattices and Their Bases
- HJLS
(3) PSLQ
(4) Usage
(5) Applications
- "BBP" Formula for Pi
- Bifurcation Points in Chaos Theory

6 Further Reading

Outline

(1) Introduction

- Starting Examples
- Integer Relations
- Algorithms for Finding Integral Relations
(2) LLL-based Algorithms
- Lattices and Their Bases
- HJLS
(3) PSLQ
a Usage
(5) Applications
- "BBP" Formula for Pi
- Bifurcation Points in Chaos Theory

6 Further Reading

Further Reading

囲 A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring Polynomials with Rational Coefficients. Math. Ann., Vol.261, 1982, pp.515-534.

Further Reading

嗇 A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring Polynomials with Rational Coefficients. Math. Ann., Vol.261, 1982, pp.515-534.
國 J. Hastad, B. Just, J. C. Lagarias, and C. P. Schnorr. Polynomial Time Algorithms for Finding Integer Relations among Real Numbers.
SIAM J. Comput., Vol.18, 1989, pp.859-881.

Further Reading

(A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring Polynomials with Rational Coefficients. Math. Ann., Vol.261, 1982, pp.515-534.
國 J. Hastad, B. Just, J. C. Lagarias, and C. P. Schnorr. Polynomial Time Algorithms for Finding Integer Relations among Real Numbers.
SIAM J. Comput., Vol.18, 1989, pp.859-881.
E H. R. P. Ferguson, D. H. Bailey, S. Arno.
Analysis of PSLQ, an Integer Finding Algorithm.
Mathematics of Computation, Vol.68, 1999, pp.351-369.

Further Reading

圊 A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring Polynomials with Rational Coefficients. Math. Ann., Vol.261, 1982, pp.515-534.

國 J. Hastad, B. Just, J. C. Lagarias, and C. P. Schnorr. Polynomial Time Algorithms for Finding Integer Relations among Real Numbers.
SIAM J. Comput., Vol.18, 1989, pp.859-881.
R H. R. P. Ferguson, D. H. Bailey, S. Arno.
Analysis of PSLQ, an Integer Finding Algorithm.
Mathematics of Computation, Vol.68, 1999, pp.351-369.
D. H. Bailey, J. M. Borwein, N. J. Calkin, R. Girgensohn,
D. R. Luke, and V. H. Moll. "Integer Relation Detection":
§2.2 in Experimental Mathematics in Action.
Natick, MA: A. K. Peters, pp. 29-31, 2006.

