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Abstract

In his Tenth Problem Hilbert asked for an algorithm capable to determine
if an arbitrary Diophantine equation is solvable. In this paper we discuss
the statement of the Hilbert’s Tenth Problem, the history and the proof of
its (negative) solution. Also, we discuss some other undecidable problems
concerning some sorts of equations in real numbers and Diophantine games.

This review is based mainly on [Mat00] and also on [Mat93].

Contents

1 Hilbert’s 10th Problem 2
1.1 The Statement of Hilbert’s 10th Problem . . . . . . . . . . . . . . . . 2
1.2 The History of the Problem’s Solution . . . . . . . . . . . . . . . . . 4

2 Proof of DPRM-theorem 10
2.1 Exponentiation Is Diophantine . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Listable Sets Are Diophantine . . . . . . . . . . . . . . . . . . . . . . 11

3 Some Other Undecidable Problems 23
3.1 Passing to Rational and Real Variables . . . . . . . . . . . . . . . . . 23
3.2 Diophantine Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1



1 Hilbert’s 10th Problem

In this section we consider the statement of Hilbert’s Tenth Problem and the history
of its solution.

1.1 The Statement of Hilbert’s 10th Problem

Diophantine Equations A Diophantine equation is an equation of the form

D(x1, . . . , xm) = 0,

where D is a polynomial with integer coefficients.

Hilbert’s Tenth Problem David Hilbert stated the Tenth Problem as follows:

10. Entscheidung der Lösbar-
keit einer diophantischen Glei-
chung. Eine diophantische Glei-
chung mit irgendwelchen Unbekannten
und mit ganzen rationalen Zahlkoeffi-
cienten sei vorgelegt: man soll ein Ver-
fahren angeben, nach welchen sich mit-
tels einer endlichen Anzahl von Opera-
tionen entscheiden lässt, ob die Gle-
ichung in ganzen rationalen Zahlen
lösbar ist.

10. Determination of the Solv-
ability of a Diophantine Equa-
tion. Given a diophantine equation
with any number of unknown quantities
and with rational integral numerical co-
efficients: To devise a process according
to which it can be determined by a finite
number of operations whether the equa-
tion is solvable in rational integers.

Decision Problems Using modern notions, we consider this problem as a decision
problem.

A decision problem P has a positive solution provided there is an algorithm MP

which, for an arbitrary problem instance (or one can say, individual problem) Pi,
will give a (correct) answer YES or NO.

Pi
-

MP

- YES
NO

Figure 1. Decision problem P

And it has a negative solution provided there is no such algorithm.
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Negative Solution of Hilbert’s Tenth Problem Today, we know that Hilbert’s
Tenth Problem has a negative solution:

Theorem 1 (The undecidability of Hilbert’s tenth problem) There is no al-
gorithm which, for a given arbitrary Diophantine equation, would tell whether the
equation has a solution or not.

Moreover, a stronger statement is true:

Theorem 2 (A stronger form) There is an algorithm which, for a given algo-
rithm A, produces a counterexample to the assumption that A solves Hilbert’s tenth
problem.

Hilbert’s Tenth Problem in Natural Numbers Besides the original statement
of the problem, which concerns equations in integers, we can consider the similar
problem in natural numbers:

H10Z: Given a diophantine equation
with any number of unknown quanti-
ties and with integer numerical coeffi-
cients: To devise a process according to
which it can be determined by a finite
number of operations whether the equa-
tion is solvable in integers.

H10N: Given a diophantine equation
with any number of unknown quanti-
ties and with integer numerical coeffi-
cients: To devise a process according to
which it can be determined by a finite
number of operations whether the equa-
tion is solvable in natural numbers.

For technical reasons, we consider 0 as a natural number: N = {0, 1, 2, . . .}.

Two these problems, H10Z and H10N, turned out to be equivalent as decision
problems. Two decision problems are equivalent provided they are reducible to each
other.

Reducibility of Decision Problems Decision problem P is reducible to decision
problem Q provided we can decide P with the use of Q as an oracle:

Pi
-

MP

- YES
NO

Qj
-
MQ

-YES
NO
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Figure 2. Reducing decision problem P
to a decision problem Q
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First, we prove that H10Z is reducible to H10N. We have a problem instance in Z:

D(x1, . . . , xm) = 0, xk ∈ Z (1)

We build a problem instance in N for it:

D(p1 − q1, . . . , pm − qm) = 0, pk, qk ∈ N (2)

We see that if (1) has a solution then (2) has a solution because any integer is
the difference of two natural numbers. If (2) has a solution then (1) has a solution
because we can take

xi = pi − qi

for any i = 1, . . . ,m.

Now, we prove the reduction in opposite direction: H10N −→ H10Z. We have a
problem instance in N:

D(x1, . . . , xm) = 0, xk ∈ N (1)

We build a problem instance in Z for it:

D(p2
1 + q2

1 + r2
1 + s2

1, . . . , p
2
m + q2

m + r2
m + s2

m) = 0, (2)

pk, qk, rk, sk ∈ Z

If (1) has a solution then (2) has a solution because any integer is the sum of
four squares of integer numbers (Langrange’s theorem). If (2) has a solution then
(1) has a solution because we can take

xi = p2
i + q2

i + r2
i + s2

i

for any i = 1, . . . ,m.

Since two these problems are equivalent, for us it will be more convenient to
consider the problem in natural numbers. So, through the rest of the paper all the
variables assume natural values if the opposite isn’t stated.

1.2 The History of the Problem’s Solution

Parametric Equations A parametric Diophantine equation is an equation of the
form

D(a1, . . . , an;x1, . . . , xm) = 0,

where

• a1, . . . , an are parameters,

• x1, . . . , xm are unknowns.

Parameters and unknowns can assume natural values only.
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Diophantine Sets Consider the set S of all n-tuples 〈a1, . . . , an〉 for which the
equation

D(a1, . . . , an;x1, . . . , xm) = 0

has a solution in x1, . . . , xm:

〈a1, . . . , an〉 ∈ S ⇐⇒ ∃x1, . . . , xm : D(a1, . . . , an;x1, . . . , xm) = 0.

Sets having such representations are called Diophantine sets. An equivalence of the
form above is called a Diophantine representation of the set S.

Let us consider some examples of Diophantine sets:

• The set of all squares: a− x2 = 0.

• The set of all composite numbers: a− (x1 + 2)(x2 + 2) = 0.

• The set of all positive integers which are not powers of 2:
a− (2x1 + 3)(x2 + 1) = 0.

It would be natural to ask if the complements of the sets listed above are also
Diophantine. We can easily build a Diophantine representation for the complement
of the first set while the answer for two other complements is not so evident:

• The set of all numbers which are not squares:
(a− z2 − x− 1)2 + ((z + 1)2 − a− y − 1)2 = 0.

• Is the set of all prime numbers Diophantine?

• Is the set of all powers of 2 Diophantine?

Listable Sets Next basic notion we need is the notion of a listable set. A set S of
n-tuples of natural numbers is called listable (or effectively enumerable, or recursively
enumerable) if there is an algorithm, possibly working for an unlimited amount of
time, which would print in some order, possibly with repetitions, all the elements of
the set S.

It is evident that the following sets are listable:

• The set of all prime numbers.

• The set of all powers of 2.

Can we find any relation between two these classes of Diophantine sets and of
listable sets? It is easy to see that one of these classes lies in the other one:
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Fact 1 Any Diophantine set is a listable set.

Proof: Assume S is Diophantine. Then it has a Diophantine representation:

〈a1, . . . , an〉 ∈ S ⇐⇒ ∃x1, . . . , xm : D(a1, . . . , an;x1, . . . , xm) = 0

We have to build an algorithm which lists all elements of S. First, we enumerate
all the (n+m)-tuples of natural numbers. The algorithm must go through all these
(n + m)-tuples, put them in the equation and print first n numbers from them if
and only if the equality holds. �

It was an American mathematician Martin Davis who first stated the following
conjecture:

Davis’s Conjecture Any listable set is a Diophantine set.

At that time, this conjecture looked utterly unbelievable because of its rather striking
corollaries (one of them states that there exists such a polynomial that the set of
its positive values coincides with the set of all prime numbers. These corollaries
are discussed in detail in [Mat00] and in [Mat93]). It was hard to believe that two
notions from different fields, the theory of numbers and the theory of computability,
coincide.

Negative Solution of Hilbert’s 10th Problem This conjecture was very im-
portant because if it were true then the negative solution of H10 problem would
immediately follow from it. It can be easily shown. First, we recollect the notion
of a decidable set. A set is called decidable provided there is an algorithm, which
determines in a finite number of steps whether an arbitrary object is its element or
not. Denoting the complement of any set S by S, we claim:

Fact 2 S is decidable ⇐⇒ S and S are listable.

Proof: We prove that any decidable set S (its complement S) is listable. The
algorithm must go through all the inputs, give them to the algorithm which “decides”
S and print them if and only if they lie in S (do not lie in S).

Now, suppose that we have two algorithms M and M which list S and S, respec-
tively. To show that S is decidable we build the following algorithm. For any given
input a it runs both algorithms M and M (it requires more detailed description of
how one algorithm can simulate the concurrent work of two other algorithms; this
description is omitted here). If a appears as the output of M then a lies in S. Else
a appears as the output of M and that means that a does not lie in S. In any case
our algorithm works for a limited amount of time. �

Now, let S be an undecidable listable set (the example of such set is found, for
instance, in [Mat93]). It has a Diophantine representation:

a ∈ S ⇐⇒ ∃x1, . . . , xm : W (a, x1, . . . , xm) = 0.
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Suppose we have an algorithm which would tell whether the equation

W (a, x1, . . . , xm) = 0

is solvable for a given a. Then we have an algorithm for deciding whether an
arbitrary a lies in S. This leads to a contradiction with the undecidability of S.

Thus, H10 problem would have a negative solution if the Davis’s conjecture were
true.

Davis’s Normal Form Martin Davis tried to prove his own conjecture and he
obtained that every listable set has an almost Diophantine representation (which
was called Davis’s normal form).

Theorem 3 (Martin Davis, 1953) Every listable set S has a representation of
the form

〈a1, . . . , an〉 ∈ S ⇐⇒
∃z ∀y ≤ z ∃x1, . . . , xm : D(a1, . . . , an;x1, . . . , xm, y, z) = 0

All that was left to do was to remove the universal quantifier.

Exponential Diophantine Equations Finally, a group of American mathemati-
cians (Martin Davis, Hillary Putnam and Julia Robinson) succeded to remove the
universal quantifier though at the cost of considering a wider class of equations. It
was the class of exponential Diophantine equations.

Exponential Diophantine equation is an equation of the form

EL(x1, . . . , xm) = ER(x1, . . . , xm),

where EL and ER are exponential polynomials. The exponential polynomials are
functions in several variables constructed with the use of integers and traditional laws
of addition, multiplication and exponentiation. The example of such exponential
Diophantine equation is as follows:

(x+ 1)y+2 + x3 = y(x+1)x

+ y4.

Similarly to parametric Diophantine equations, one can define parametric exponen-
tial Diophantine equations.

So, it was obtained that every listable set has an exponential Diophantine rep-
resentation:

Theorem 4 (Davis, Putnam, Robinson, 1961) For every listable set S of n-
tuples of non-negative integers there is a representation of the form

〈a1, . . . , an〉 ∈ S ⇐⇒ ∃x1, . . . , xm :
EL(a1, . . . , an;x1, . . . , xm) = ER(a1, . . . , an;x1, . . . , xm)

where EL and ER are exponential polynomials.
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We could easily obtain a genuine Diophantine representation from an exponential
Diophantine representation if only the set S = {〈a, b, ab〉} were Diophantine (or one
can say, if only the exponentiation function were Diophantine).

Assume S is Diophantine. Then it has a Diophantine representation:

〈a, b, c〉 ∈ S ⇐⇒ ∃z1, . . . , zm : A(a, b, c, z1, . . . , zm) = 0.

Now, suppose that we have an exponential Diophantine representation of some
listable set. Let it look like our sample exponential Diophantine equation:

(x+ 1)y+2 + x3 = y(x+1)x

+ y4.

The genuine Diophantine representation obtained from the exponential one (with
the use of A(a, b, c, z1, . . . , zm)) looks like:

A2(x+ 1, y + 2, s
′
, z

′

1, . . . , z
′

m) + A2(x+ 1, x, s
′′
, z

′′

1 , . . . , z
′′

m)+

A2(y, s
′′
, s

′′′
, z

′′′

1 , . . . , z
′′′

m) + (s
′
+ x3 − s

′′′ − y4)2 = 0

One can easily see that two these representations are indeed equivalent:

A2(x+ 1, y + 2, s
′
, z

′

1, . . . , z
′

m) + A2(x+ 1, x, s
′′
, z

′′

1 , . . . , z
′′

m)+

A2(y, s
′′
, s

′′′
, z

′′′

1 , . . . , z
′′′

m) + (s
′
+ x3 − s

′′′ − y4)2 = 0

⇐⇒


A(x+ 1, y + 2, s

′
, z

′
1, . . . , z

′
m) = 0

A(x+ 1, x, s
′′
, z

′′
1 , . . . , z

′′
m) = 0

A(y, s
′′
, s

′′′
, z

′′′
1 , . . . , z

′′′
m) = 0

s
′
+ x3 − s

′′′ − y4 = 0

⇐⇒


(x+ 1)y+2 = s

′

(x+ 1)x = s
′′

ys
′′

= s
′′′

s
′
+ x3 − s

′′′ − y4 = 0

⇐⇒ (x+ 1)y+2 + x3 = y(x+1)x
+ y4

Thus, the last step in proving Davis’s conjecture was to show that exponentiation
is Diophantine.

Julia Robinson Predicates It could be done with the use of result obtained by
Julia Robinson much earlier:

Theorem 5 (Julia Robinson, 1952) There is a polynomial A(a, b, c, z1, . . . , zm)
such that

ab = c ⇐⇒ ∃z1, . . . , zm : A(a, b, c, z1, . . . , zm) = 0

provided that there is a two-parametric Diophantine equation

J(u, v, y1, . . . , yw) = 0

such that

8



• in every solution of the equation we have u < vv;

• for every k there is a solution such that u > vk.

The sequence satisfying two these relations is also said to satisfy the relations of
exponential growth. One can easily construct many examples of such sequences,
but it was not known any example of such sequence which satisfied also some two-
parametric Diophantine equation.

Finally, in 1970 Russian mathematician Yury Matiyasevich managed to find such
an equation with an exponentially growing solution. He considered the sequence v =
Φ2u (where Φi is the sequence of Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, . . .). It is
a sequence of exponential growth. The corresponding two-parametric Diophantine
equation looks as follows:

v = Φ2u ⇐⇒ ∃a, b, c, d, e, g, h, k, l, p, q, r, x, y :



u+ (a− 1) = v
v + b = l
l2 − lk − k2 = 1
g2 − gh− h2 = 1
l2c = g
ld = r − 2
(2h+ g)e = r − 3
x2 − rxy + y2 = 1
lp = x− u
(2h+ g)q = x− v

Formally speaking, it is not a Diophantine representation. But we can immediately
obtain a Diophatine representation from it using the equivalence

D2
1 +D2

2 = 0 ⇐⇒
{
D1 = 0
D2 = 0

It is left to the reader to show that we can also use logical or in Diophantine repre-
sentations.

DPRM-theorem It was the last step in proving the Davis’s conjecture turning
the conjecture into a theorem. This theorem is known as DPRM-theorem (after
Davis, Putnam, Robinson, Matiyasevich):

Theorem 6 (DPRM-theorem, 1970) Every listable set S of n-tuples of non-
negative integers has a Diophantine representation, that is

〈a1, . . . , an〉 ∈ S ⇐⇒

∃x1, . . . , xm : D(a1, . . . , an;x1, . . . , xm) = 0

for some polynomial D with integer coefficients.
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2 Proof of DPRM-theorem

Now we shall prove the DPRM-theorem. The proof consists of two parts:

1. First, we prove that exponentiation is Diophantine.

2. Then, we prove that any listable set is Diophantine. This is done by showing
that any listable set has an exponential Diophantine representation. It was
shown in previous section how one can obtain a genuine Diophantine repre-
sentation from an exponential one with the use of Diophantine representation
of exponentiation function.

2.1 Exponentiation Is Diophantine

The proof of this part is omitted due to its rather technical nature (those interested
in complete proof may find it in [Mat00] and in [Mat93]). We only show the view
of Diophantine representation of exponentiation function.

As it was shown in the previous section of this paper, the crucial role in proving
Davis’s conjecture was played by the sequence of even-numbered Fibonacci numbers:

φ(n) = Φ(2n).

One can define this sequence in a recursive way:

φ(0) = 0; φ(1) = 1;

φ(n+ 2) = 3φ(n+ 1)− φ(n).

We can consider a sequence of a generalized form:

αb(0) = 0; αb(1) = 1;

αb(n+ 2) = bαb(n+ 1)− αb(n),

where
b ≥ 2.

The sequence φ(n) coincides with the sequnce αb(n) if b = 3.
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One can find a Diophantine representation of the sequence αb(n):

3 < b & a = αb(c) ⇐⇒ ∃r, s, t, u, v, w, x, y :



3 < b
u2 − but+ t2 = 1
s2 − bsr + r2 = 1
r < s
u2 | s
v = bs− 2r
w ≡ b (mod v)
w ≡ 2 (mod u)
2 < w
x2 − wxy + y2 = 1
2a < u
2a < v
a ≡ x (mod v)
2c < u
c ≡ x (mod u)

To show that this representation is indeed Diophantine we have to write relations
“less then” (<), “divides” (|) and “is equivalent modulo” (≡) in a Diophantine form.
For example, 3 < b can be rewritten as b = 4+ z where z is a new variable assuming
natural values. The other cases are also evident and hence are left to the reader.

A Diophantine representation of exponentiation is built with the use of the rep-
resentation of the sequence αb(n):

p = qr ⇐⇒


q = 0 & r = 0 & p = 1
q = 0 & 0 < r & p = 0

∃b,m :


b = αq+4(r + 1) + q2 + 2
m = bq − q2 − 1
p < m
p ≡ qαb(r)− (bαb(r)− αb(r + 1)) (mod m)

2.2 Listable Sets Are Diophantine

Listable Sets The definition of a decidable set is as follows: Set S is decidable if
and only if there exists an algorithm M which, for an arbitrary input a, would tell
(in a finite number of steps) if this element lies in S or not. The following picture
illustrates this definition:

a -
M

- YES, if a ∈ S
NO, if a /∈ S

Figure 3. Decidable set S
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We can slightly modify this definition to obtain a new one: Set S is listable if
and only if there exists an algorithm M1 which, for an arbitrary input a, would tell
YES in a finite number of steps if a lies in S and would never stop in opposite case.
This definition is illustrated as follows:

a -
M1

- YES, if a ∈ S
Never stop, if a /∈ S

Figure 4. Listable set S (new definition)

One can show that this new definition of a listable set is equivalent to the old
definition given in the previous section of this paper: Set S is listable if and only
if there exists an algorithm M2 which would print (possibly in an infinite number of
steps) all elements of S. This definition can be illustrated by the following picture:

M2
-S

Figure 5. Listable set S (old definition)

Let us show that two these definitions of a listable set are indeed equivalent.

Proof: First, we have an arbitrary set S which is listable in 2nd sense. We
prove that it is listable in 1st sense, too.

We have that there exists algorithm M2 which prints all elements of S. Let us
build M1 from the first definition. For an input a it runs M2 and waits until it prints
a. If this happens, then M1 stops saying YES, else M1 works without stop.

For the opposite direction implication we give only the idea of the proof. The
algorithm M2 must run an infinite number of copies of M1 for all possible inputs. If
any copy of M1 stops then M2 prints the corresponding input. Since it is impossible
to run an infinite number of copies of an algorithm, M2 must start the first copy at
a step 1, the second copy at a step 2, and so on. The proof is incomplete since we
do not show how M2 can simulate a concurrent work of any finite number of copies
of M1. �

Register Machines We introduce the notion of a register machine (further de-
noted by RM). This is a machine supplied with a finite number of registers

R1, . . . , Rn

capable to store integers. Its work is controlled by a program which looks like a
set of instructions or states (which is the same since there is a bijection between
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the states and the instructions which must be done in any state). RM has a finite
number of possible states:

S1, . . . , Sm.

Instructions can be of three types:

1. Sk : Rl + +; Si

2. Sk : Rl −−; Si; Sj

3. Sk : STOP

The instruction of the first type means that RM must increment (by one) the value
stored in register Rl and jump to the state Si. The instruction of the second type
means that RM must decrement (by one) the value stored in Rl and jump to Si if
this value is not equal to zero already, and jump to the state Sj in opposite case.
The instruction of the third type makes RM stop.

This machine is equivalent to Turing machine.

Protocol The work of the RM can be recorded in the form of protocol:

q . . . t+ 1 t . . . 0

S1 s1,q . . . s1,t+1 s1,t . . . s1,0
...

...
...

...
...

...
...

Sm sm,q . . . sm,t+1 sm,t . . . sm,0

R1 r1,q . . . r1,t+1 r1,t . . . r1,0
...

...
...

...
...

...
...

Rn rn,q . . . rn,t+1 rn,t . . . rn,0

Z1 z1,q . . . z1,t+1 z1,t . . . z1,0
...

...
...

...
...

...
...

Zn zn,q . . . zn,t+1 zn,t . . . zn,0

The t-th column corresponds to the moment of time t. For some reasons which
will be evident later we choose the order of columns from right to the left. Here we
set:

sl,t =

{
1, if RM is in state Sl at a step t
0, if RM is in any other state at a step t

and
rl,t = value of Rl at a step t

Also we introduce auxiliary zero indicators Z1, . . . , Zn:

zl,t =

{
0, if rl,t = 0
1, otherwise
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Initial and Final States We make some arrangements on initial and final states
of the RM. Without loss of generality, we count that the following relations con-
cerning the initial state of RM hold:

s1,0 = 1; s2,0 = . . . = sm,0 = 0

r1,0 = a; r2,0 = . . . = rn,0 = 0

That means that RM begins its work at the state S1 and input a is placed in the
register R1.

At the final state the following relations are supposed to be held:

sm,q = 1; s1,q = . . . = sm−1,q = 0

r1,q = . . . = rn,q = 0

That means that RM ends its work at the state Sm and it empties all the registers
before the end of the work.

From Step to Step It is easy to see that since RM is fully determined, the (t+1)-
th column of the protocol table can be uniquely recovered from its t-th column.

For example, the following relations hold for values stored in registers:

rl,t+1 = rl,t + Σ+sk,t − Σ−zl,tsk,t

• where Σ+ summation is over all instructions of the form Sk : Rl + +;Si,

• and Σ− summation is over all instructions ot the form Sk : Rl −−;Si;Sj.

To validate this formula we notice that only one of the sk,t is equal to 1 for any
fixed t. And we must increment the value in Rl if we use the instruction of the first
form and decrement it if we use the instruction of the second form and if the value
of Rl is not already equal to zero.

In similar way one can write the relations for states:

sd,t+1 = Σ0sk,t + Σ+zl,tsk,t + Σ−(1− zl,t)sk,t

• where Σ0 summation is over all instructions of the form Sk : Rl + +;Sd,

• Σ+ summation is over all instructions of the form Sk : Rl −−;Sd;Sj,

• and Σ− summation is over all instructions of the form Sk : Rl −−;Si;Sd.
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Almost Diophantine Representation Thus, we obtain that RM will stop on
input a after a finite number of steps if and only if it starts, it works from step to
step and it finishes work. Or, we can say that RM will stop on input a after a finite
number of steps if and only if there exist natural numbers q, sk,t, rl,t, zl,t such that
the following equations hold:

zl,t =

{
0, if rl,t = 0
1, otherwise

s1,0 = 1; s2,0 = . . . = sm,0 = 0

r1,0 = a; r2,0 = . . . = rn,0 = 0

rl,t+1 = rl,t + Σ+sk,t − Σ−zl,tsk,t

sd,t+1 = Σ0sk,t + Σ+zl,tsk,t + Σ−(1− zl,t)sk,t

sm,q = 1; s1,q = . . . = sm−1,q = 0

r1,q = . . . = rn,q = 0

We see that if we use this RM in the (new) definition of a listable set, we obtain
that any listable set has an almost Diophantine representation, expressed via the
equations above. Unfortunately, this is not a Diophantine representation since it
uses indefinite number of variables.

Positional Coding of the Protocol This difficulty may be overcome in the fol-
lowing way. We simply delete the vertical lines in the protocol table and consider
the values in one row as digits of one number (that is why the order of columns is
chosen from right to the left):

q . . . t+ 1 t . . . 0

s1 s1,q . . . s1,t+1 s1,t . . . s1,0
...

...
...

...
...

...
...

sm sm,q . . . sm,t+1 sm,t . . . sm,0

r1 r1,q . . . r1,t+1 r1,t . . . r1,0
...

...
...

...
...

...
...

rn rn,q . . . rn,t+1 rn,t . . . rn,0

z1 z1,q . . . z1,t+1 z1,t . . . z1,0
...

...
...

...
...

...
...

zn zn,q . . . zn,t+1 zn,t . . . zn,0

To speak formally, we select a number

b = 2c+1
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which should be greater then any 2sk,t, 2rl,t and 2zl,t. Then we define:

sk =

q∑
t=0

sk,tb
t, rl =

q∑
t=0

rl,tb
t, zl =

q∑
t=0

zl,tb
t

Our aim now is to rewrite relations from the almost Diophantine reoresentation
of a listable set using the language of new variables sk, rl, zl.

Rewriting Zero Indicator Relations Let us first rewrite the zero indicator
relations:

zl,t =

{
0, if rl,t = 0
1, otherwise

The binary notation of the number 2c − 1 looks like: 111 . . . 11︸ ︷︷ ︸
c

. Hence x ≤ 2c − 1 is

equivalent to x � 2c − 1, where � stands for masking (or bitwise comparing).

Consequently, we can write

rl � d l = 1, . . . , n,

where

d =

q∑
t=0

(2c − 1)bt.

Numbers zl,t are either 0 or 1, so the zl satisfy relations:

zl � e l = 1, . . . , n,

where

e =

q∑
t=0

bt.

Consider the number rl,t + 2c − 1. If rl,t = 0, then the binary notation of this
number, padded to the length c+ 1, is

01 . . . 1.

If rl,t > 0, then its binary notation looks like

1 ∗ . . . ∗ .

In other words, the leading (c+ 1)-th digit of rl,t + 2c − 1 is always equal to zl,t and
hence

2czl,t = (rl,t + 2c − 1) ∧ 2c,
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where ∧ stands for bitwise and (or digit-by-digit multiplication). Consequently, the
definition of zl can be written as

2czl = (rl + d) ∧ f,

where

f =

q∑
t=0

2cbt.

Rewriting Register and State Relations Now, we rewrite the register rela-
tions:

rl,t+1 = rl,t + Σ+sk,t − Σ−zl,tsk,t.

Multiplying both parts by bt+1 and summing up for t from 0 to q − 1, one obtains:

rl = brl + bΣ+sk − bΣ−(zl ∧ sk), l = 2, . . . , n

and
r1 = a+ br1 + bΣ+sk − bΣ−(z1 ∧ sk).

Then, we have to rewrite the state relations:

sd,t+1 = Σ0sk,t + Σ+zl,tsk,t + Σ−(1− zl,t)sk,t.

In similar to the register relations way, we obtain:

sp = bΣ0sk + bΣ+(zl ∧ sk) + bΣ−((e− zl) ∧ sk), p = 2, . . . ,m

and
s1 = 1 + bΣ0sk + bΣ+(zl ∧ sk) + bΣ−((e− zl) ∧ sk).

Rewriting Initial and Final Relations Now, we rewrite the initial relations:

s1,0 = 1; s2,0 = . . . = sm,0 = 0

r1,0 = a; r2,0 = . . . = rn,0 = 0

It is easy to see that they are implied by rewritten register and state relations:

Relation

sp = bΣ0sk + bΣ+(zl ∧ sk) + bΣ−((e− zl) ∧ sk), p = 2, . . . ,m

implies that b divides sp for any p = 2, . . . ,m and hence the last digit of sp is zero:

s2,0 = . . . = sm,0 = 0.

17



Similarly, relation

rl = brl + bΣ+sk − bΣ−(zl ∧ sk), l = 2, . . . , n

implies that
r2,0 = . . . = rn,0 = 0.

Relation

s1 = 1 + bΣ0sk + bΣ+(zl ∧ sk) + bΣ−((e− zl) ∧ sk)

implies that the last digit of sl is 1 and hence

s1,0 = 1.

We impose
a < 2c

to be sure that
r1 = a+ br1 + bΣ+sk − bΣ−(z1 ∧ sk)

implies
r1,0 = a.

Then, we rewrite the final relations:

sm,q = 1; s1,q = . . . = sm−1,q = 0

r1,q = . . . = rn,q = 0.

One can see that sm,q = 1 can be rewritten as

sm = bq.

It is not necessary to consider all other final relations since they state that we can
write any quantity of zeros before these numbers which is always true.

Exponential Diophantine Representation of Listable Set We obtain that if
RM will stop on input a after a finite number of steps, then there exist b, c, d, e, f, q,
s1, . . . , sm, r1, . . . , rn, z1, . . . , zn such that the following equations hold:

b = 2c+1

rl � d, l = 1, . . . , n

(b− 1)d = (2c − 1)(bq+1 − 1)

zl � e, l = 1, . . . , n

18



(b− 1)e = bq+1 − 1

2czl = (rl + d) ∧ f, l = 1, . . . , n

(b− 1)f = 2c(bq+1 − 1)

rl = brl + bΣ+sk − bΣ−(zl ∧ sk), l = 2, . . . , n

r1 = a+ br1 + bΣ+sk − bΣ−(z1 ∧ sk)

sp = bΣ0sk + bΣ+(zl ∧ sk) + bΣ−((e− zl) ∧ sk), p = 2, . . . ,m

s1 = 1 + bΣ0sk + bΣ+(zl ∧ sk) + bΣ−((e− zl) ∧ sk)

a < 2c

sm = bq

The converse is also true: if some numbers b, c, d, e, f, q, s1, . . . , sm, r1, . . . , rn,
z1, . . . , zn satisfy these conditions, then on input a RM stops after q steps. Or, we
may say that rewritten relations imply original ones.

To show it, first we obtain:

rl,t = Digit(rl, b, t)

sk,t = Digit(sk, b, t)

zl,t = Digit(zl, b, t)

whereDigit(a, b, t) is t-th digit in base-b notation of number a. We have seen already
that rewritten initial and final relations and zero indicator relations imply original
ones. It is left to the reader as a technical exercise to understand why rewritten
register and state relations imply original ones (only one of sk,t equals to 1 while the
others equal to 0 for any t. Hence there is no carry from digit to digit in the state
relations. Similar arguments work for the register relations).

Thus, we obtain the exponential Diophantine representation of a listable set
which can be transformed into a genuine Diophantine representation of this set.

All that is left to show is that the relation of masking is (exponential) Dio-
phantine (which means that the set of pairs satisfying this relation is (exponential)
Diophantine) and digit-by-digit multiplication is (exponential) Diophantine function
(which means that its graph is an (exponential) Diophantine set).
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Digit Function Every natural number a has a unique representation of the fol-
lowing form:

a =
∞∑

k=0

akb
k

which is called base-b notation of number a. We define Digit(a, b, k) as ak (it is a
k-th digit of number a written in base-b notation counting from the rightmost digit,
which is at position number 0). If the form of a in base-b notation is

. . . ak+1︸ ︷︷ ︸
x

d ak−1 . . . a0︸ ︷︷ ︸
y

,

then

d = Digit(a, b, k) ⇐⇒ ∃x, y : {a = xbk+1 + dbk + y & d < b & y < bk}.

It is an exponential Diophantine representation of the Digit function.

Binomial Coefficients Digit function allows to build an exponential Diophantine
representation of a binomial coefficient.

We can define binomial coefficients
(

a
b

)
= Ca,b through the identity

(u+ 1)a = Ca,au
a + Ca,a−1u

a−1 + . . .+ Ca,0

which must be held for any u. Fortunately, it is sufficient to treat this as an equation
having a solution with a large enough value of u. This gives us an exponential
Diophantine representation for binomial coefficients:

c =

(
a

b

)
⇐⇒ ∃u : u = 2a + 1 & c = Digit((u+ 1)a, u, b).

Kummer’s Theorem Consider the factorization of a binomial coefficient:(
a+ b

b

)
= 2α2(a,b)3α3(a,b)5α5(a,b) . . .

Kummer’s theorem gives a recipe of calculation of αp(a, b):

Theorem 7 (Kummer) To calculate αp(a, b) one can write a and b in base-p no-
tation and add them; the number of carries from digit to digit performed during this
addition is equals to αp(a, b).
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Binary Orthogonality Let us have two natural numbers in base-2 notation:

a =
∞∑

k=0

ak2
k, b =

∞∑
k=0

bk2
k.

We call two numbers a and b orthogonal (a ⊥ b) provided

akbk = 0

for any k.

Kummer’s theorem gives us an exponential Diophantine representation of the
relation of orthogonality:

a ⊥ b ⇐⇒ Odd

((
a+ b

b

))
.

To validate this equivalence we notice that the left part (a ⊥ b) is true if and only
if there is no carry from digit to digit during the calculation of the sum of a and b.
The right part (Odd(

(
a+b

b

)
)) is true if and only if α2(a, b) from the factorization of(

a+b
b

)
is equal to zero, which is equivalent (due to Kummer’s theorem) to the same

statement: we don’t have carries from digit to digit while adding a and b.

Binary Masking Let us have two natural numbers in base-2 notation:

b =
∞∑

k=0

bk2
k, c =

∞∑
k=0

ck2
k.

We say that b is masked by c (b � c) provided

bk ≤ ck

for any k.

We can build an exponential Diophantine representation of the relation of mask-
ing:

b � c ⇐⇒ Odd

((
c

b

))
.

Validation of this equivalence is left to the reader (set c = a+ b).

Digit-by-digit Multiplication Let us have three natural numbers in base-2 no-
tation:

a =
∞∑

k=0

ak2
k, b =

∞∑
k=0

bk2
k, c =

∞∑
k=0

ck2
k.
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We say that c is the result of digit-by-digit multiplication of numbers a and b (c =
a ∧ b) provided

ck = akbk

for any k.

It is possible to obtain an exponential Diophantine representation of digit-by-
digit multiplication:

c = a ∧ b ⇐⇒ c � a & c � b & a− c ⊥ b− c.

Validation of this equivalence is also left to the reader.
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3 Some Other Undecidable Problems

The negative solution of H10 problem allows us to derive negative solutions for some
other decision problems about polynomials. First, we might be interested in solving
Diophantine equations in sets different from N and Z: for example, in Q and R.
The problem H10Q is still unsolved.

Then, we consider Diophatine games.

3.1 Passing to Rational and Real Variables

Solving in Q Consider the problem H10Q. One can easily build a reduction of
this problem to the problem H10N. If we have a problem instance in rationals

D(χ1, . . . , χm) = 0, χ1, . . . , χm ∈ Q,

then since any rational is an integer divided by a positive integer, we can rewrite it
in the following way:

D(
x1 − y1

z + 1
, . . . ,

xm − ym

z + 1
) = 0, xk, yk, z ∈ N

and then multiply both parts by (z + 1)d (assuming d is a degree of D):

(z + 1)dD(
x1 − y1

z + 1
, . . . ,

xm − ym

z + 1
) = 0, xk, yk, z ∈ N,

thus obtaining a problem instance in natural numbers, which is solvable if and only
if the original problem instance in rationals is solvable.

At this time, it is still an open question if there exists a reduction in opposite
direction.

It was shown that the problem of decidability of Diophantine equations in Q and
the problem of decidability of homogeneous Diophantine equations in Z are equiv-
alent as decision problems. But both problems are still not known to be decidable
or not.

Solving in R Now we pass to the problem H10R: to determine if an arbitrary
equation of the form

D(χ1, . . . , χm) = 0, χ1, . . . , χm ∈ R,

where D is a polynomial with integer coefficients, is solvable. This problem is known
to be decidable:

• For m = 1: Sturm’s method allows to determine the solvability of an arbitrary
Diophantine equation in real numbers.

• For m > 1: We can apply Tarski’s generalization of Sturm’s method

One of the ways to obtain undecidable problem in real numbers is to consider a
wider class of functions D.
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Adding Sine Function The first idea is to add a sine function into a function
D. Consider the following equation (with D being a polynomial with integer coeffi-
cients):

D2(χ1, . . . , χm) + sin2(πχ1) + · · ·+ sin2(πχm) = 0, χ1, . . . , χm ∈ R,

which can be rewritten in the form of a system of equations:
D(χ1, . . . , χm) = 0, χ1, . . . , χm ∈ R
sin(πχ1) = 0

...
sin(πχm) = 0

This system is equivalent to another system of conditions:
D(χ1, . . . , χm) = 0, χ1, . . . , χm ∈ R
χ1 ∈ Z

...
χm ∈ Z

or simply to an equation

D(χ1, . . . , χm) = 0, χ1, . . . , χm ∈ Z.

Since we know that there is no universal algorithm for deciding if an arbitrary
equation of the last form has a solution, there is no algorithm for deciding if an
arbitrary equation of the first form has a solution. Thus, we get the following
undecidable problem:

Undecidable Problem 1 Let F1 denote the class of functions in several variables
that can be defined by expressions constructed from real variables, the integers and
the number π, combined through the traditional rules for addition, subtraction, mul-
tiplication, and composition with the sine function in arbitrary order. There is no
algorithm for deciding for an arbitrary given function Φ(χ1, . . . , χm) from the class
F1 whether the equation

Φ(χ1, . . . , χm) = 0

has a real solution.

If we have some class of functions for which there is no such algorithm, then any
wider class also does not have such an algorithm. But we can not tell anything about
any smaller class of functions. Perhaps, if we considered a subclass of F1 consisting
of functions constructed without the use of π, there would be a “decision” algorithm
for this subclass.

24



But the answer is also no. Consider the same equation in real numbers:

D2(χ1, . . . , χm) + sin2(πχ1) + . . .+ sin2(πχm) = 0.

We can eliminate the constant π by adding a new real variable:

sin(ψ) = 0, 2 ≤ ψ ≤ 4.

Rewrite inequality 2 ≤ ψ ≤ 4 (by adding yet another real variable) as:

2 ≤ ψ ≤ 4 ⇐⇒ −1 ≤ ψ − 3 ≤ 1
⇐⇒ (ψ − 3)2 ≤ 1
⇐⇒ (ψ − 3)2 = 1− z2

Hence the original equation is equivalent to the following equation in real numbers:

D2(χ1, . . . , χm) + sin2(ψχ1) + . . .+ sin2(ψχm)+

+ sin2(ψ) + (1− (ψ − 3)2 − z2)2 = 0

So, we obtain the following undecidable problem:

Undecidable Problem 2 Let F2 denote the class of functions in several variables
that can be defined by expressions constructed from real variables and the integers,
combined through the traditional rules for addition, subtraction, multiplication, and
composition with the sine function in arbitrary order. There is no algorithm for
deciding for an arbitrary given function Φ(χ1, . . . , χm) from the class F2 whether
the equation

Φ(χ1, . . . , χm) = 0

has a real solution.

Actually, we can consider even smaller subclass, consisting of functions only in
one variable. The similar problem for this class is undecidable, too. The idea of
passing to one variable bases on the following trick. Consider the map from R to
Rm defined as follows:

χ 7→ 〈χ sinχ, χ sinχ3, . . . , χ sinχ2m−1〉.

It is easy to check that the range of this map is everywhere dense in Rm. And
hence, it could be possible to replace variables χ1, . . . , χm by expressions χ sinχ,
χ sinχ3, . . ., χ sinχ2m−1 in one variable.

This idea is discussed in more detail in [Mat00].
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Adding Derivatives Another idea is to add not sine functions but derivatives.
Let us consider the example of J. Denef and L. Lipshitz.

Consider the differential operator tk
∂

∂tk
. It acts on a monomial txk

k as a multipli-
cation by xk:

tk
∂

∂tk
txk
k = xkt

xk
k

And (
tk
∂

∂tk

)i

txk
k =

(
tk
∂

∂tk

)(
tk
∂

∂tk

)i−1

txk
k =

=
(
tk
∂

∂tk

)
(xi−1

k txk
k ) = xi

kt
xk
k

This operator acts on a monomial tx1
1 . . . txm

m as follows:(
tk
∂

∂tk

)i

tx1
1 . . . txm

m = xi
kt

x1
1 . . . txm

m .

We can consider P (t1
∂

∂t1
, . . . , tm

∂
∂tm

), where P is a polynomial with integer coef-
ficients. It acts on a term tx1

1 . . . txm
m as follows:

P
(
t1
∂

∂t1
, . . . , tm

∂

∂tm

)
tx1
1 . . . txm

m = P (x1, . . . , xm)tx1
1 . . . txm

m .

Suppose we have a function in the power series form:

Y (t1, . . . , tm) =
∑

x1,...,xm∈N

cx1,...,xmt
x1
1 . . . txm

m .

The operator P (t1
∂

∂t1
, . . . , tm

∂
∂tm

) acts on function Y (t1, . . . , tm) as element-wise mul-
tiplication by P (x1, . . . , xm) :

P
(
t1
∂

∂t1
, . . . , tm

∂

∂tm

)
Y (t1, . . . , tm) =

=
∑

x1,...,xm∈N

cx1,...,xmP (x1, . . . , xm)tx1
1 . . . txm

m .

Finally, consider the equation

(1− t1) . . . (1− tm)P
(
t1
∂

∂t1
, . . . , tm

∂

∂tm

)
Y (t1, . . . , tm) = 1.
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It can be rewritten as∑
x1,...,xm∈N

cx1,...,xmP (x1, . . . , xm)tx1
1 . . . txm

m =
1

1− t1
· · · 1

1− tm
=

=
∑

x1,...,xm∈N

tx1
1 . . . txm

m .

Hence for all x1, . . . , xm ∈ N:

cx1,...,xmP (x1, . . . , xm) = 1.

Thus, the original differential equation has a solution in the power series form if
and only if the Diophantine equation P (x1, . . . , xm) = 0 has no solution in natural
numbers. So, we obtain the undecidable problem for partial differential equations:

Undecidable Problem 3 There is no algorithm for deciding for an arbitrary poly-
nomial P with integer coefficients whether the partial differential equation

P
(
t1, . . . , tm,

∂

∂t1
, . . . ,

∂

∂tm

)
Y (t1, . . . , tm) = 1

has a formal power series solution.

3.2 Diophantine Games

Diophantine games were introduced by J. P. Jones in 1974. The definition of a
Diophantine game is as follows. Suppose we have one Diophantine equation:

D(a1, . . . , am;x1, . . . , xm) = 0

with equal numbers of parameters and unknowns, and two players:

• Alexander (who plays for parameters ai)

• Xerxes (who plays for unknowns xi)

The game process looks as follows. First, Alexander chooses the value of a1.
Then, (regarding the choice of Alexander) Xerxes chooses the value of x1. Next,
(regarding the choice of Xerxes) Alexander chooses the value of a2. After that,
Xerxes chooses the value of x2. And so on till the last choice of Xerxes.

The result of a game is determined as follows:

• If equality holds, then Xerxes is the winner.

• If inequality holds, then Alexander is the winner.
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Winning Strategies It is evident that Alexander has a winning strategy if and
only if the following statement is true:

∃a1∀x1∃a2∀x2 . . . ∃am∀xm : D(a1, . . . , am;x1, . . . , xm) 6= 0.

Similarly, Xerxes has a winning strategy if and only if

∀a1∃x1∀a2∃x2 . . . ∀am∃xm : D(a1, . . . , am;x1, . . . , xm) = 0

is true. Two these statements are the negations of each other. Hence for any game
D either Alexander or Xerxes has a winning strategy.

It looks quite simple but still there can be some difficulties. Consider the follow-
ing example. We have the Diophantine equation

(x1 + a2)
2 + 1 = (x2 + 2)(x3 + 2).

Who has a winning strategy in this game? First, we notice that (x2 + 2)(x3 + 2) is
always a composite number. Let us intoduce the following statement:

A = “There are infinitely many primes of the form k2 + 1”.

If A were true then for any Xerxes’s choice of x1 Alexander could choose a2 in such
way that left part would be a prime. So, we obtain that

Alexander has a winning strategy ⇐⇒ A is true.

If A were false then Xerxes could choose the value of x1 equal to the maximal prime
of the form k2 + 1. After any choice of Alexander he would be capable to factor the
left part of the equation. So,

Xerxes has a winning strategy ⇐⇒ A is false.

Since nobody knows at the moment for sure if A is true or not, it is also unknown
who of the players has a winning strategy in this game.

Undecidable Problem for Diophantine Games The negative solution of H10
problem leads to the following undecidable problem:

Undecidable Problem 4 There is no algorithm which would tell for an arbitrary
Diophantine game which one of two players has a winning strategy.

This problem is certainly undecidable. If it were not so, we could obtain an algorithm
capable to determine the solvability of an arbitrary Diophantine equation of the form
D(x1, . . . , xm) = 0 (where Alexander has nothing to choose).

But even if we know for some game who of two players has a winning strat-
egy, there still can be some algorithmic difficulties, which will be considered in the
following paragraphs.
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Algorithmic Difficulties of Alexander Let S be a Diophantine set with a non-
Diophantine complement:

a1 ∈ S ⇐⇒ ∃x1, . . . , xm : D(a1;x1, . . . , xm) = 0.

Add a2, . . . , am as fictitious parameters:

a1 ∈ S ⇐⇒ ∃x1, . . . , xm : D(a1, . . . , am;x1, . . . , xm) = 0.

Let Alexander have a winning strategy in this game.

Let A1 denote the set of all the “right” Alexander’s choices of the value of a1. It
is clear that a1 is “right” if and only if

∀x1, . . . , xm : D(a1, . . . , am;x1, . . . , xm) 6= 0.

Bring the negation out of the quantifier:

¬(∃x1, . . . , xm : D(a1, . . . , am;x1, . . . , xm) = 0).

We obtained the representation of S under brackets:

¬(a1 ∈ S).

And so:
a1 ∈ S.

Hence A1 = S. And hence A1 is non-Diophantine, that is, not listable and hence
undecidable.

So, we obtain that Alexander has no algorithm to determine if an arbitrary a1

is the “right” choice for him. Of course, this is not that tragic since Alexander can
find somehow only one such “right” a1 and use it for this game unlimited number
of times.

Algorithmic Difficulties of Xerxes The algorithmic difficulties of Xerxes can be
even greater. Consider the example of a Diophantine game, invented by J. P. Jones
in 1982: {

{a1 + a6 + 1− x4}2 · {〈(a6 + a7)
2 + 3a7 + a6 − 2x4〉2

+
〈
[(x9 − a7)

2 + (x10 − a9)
2][(x9 − a6)

2 + (x10 − a8)
2((x4 − a1)

2

+ (x10 − a9 − x1)
2)][(x9 − 3x4)

2 + (x10 − a8 − a9)
2][(x9 − 3x4 − 1)2

+ (x10 − a8a9)
2]− a12 − 1

〉2

+ 〈[x10 + a12 + a12x9a4 − a3]
2

+ [x5 + a13 − x9a4]
2〉

}
− x13 − 1

}
{a1 + x5 + 1− a5}

{
〈(x5 − x6)

2
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+ 3x6 + x5 − 2a5〉2 +
〈
[(a10 − x6)

2 + (a11 − x8)
2][(a10 − x5)

2

+ (a11 − x7)
2((a5 − a1)

2 + (a11 − x8 − a2)
2)][(a10 − 3a5)

2

+ (a11 − x7 − x8)
2][(a10 − 3a5 − 1)2 + (a11 − x7x8)

2]− x11 − 1
〉2

+ 〈[a11 + x11 + x11a10x3 − x2]
2 + [a11 + x12 − a10x3]

2〉
}

= 0.

It was shown by Jones that in this game Xerxes has a winning strategy but has no
effectively computable winning strategy.
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