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Abstract

This paper considers the Tarski Algorithm and its implementation to the
finite geometrical problems.
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1 Introduction

1.1 Motivation
“. . . the most ignorant Person at a reasonable Charge, and with a little bodily

Labour, may write Books in Philosophy, Poetry, Politicks, Law, Mathematics and
Theology, without the least Assistance from Genius or Study.”

Jonathan Swift — Gulliver’s Travels

Problem of generation of correct assertion is well-known side of computer
usage in proof theory. Another side is verification of concrete assertion. We are
going to consider one special type of assertions - the systems of polynomial in-
equalities and equations. Then we apply such systems to geometry for solving
finite geometrical problems. Main idea belongs to the polish mathematician
Alfred Tarski.

1.2 A. Tarski

Figure 1: A. Tarski

Alfred Tarski (January 14, 1902, Warsaw, Russian-ruled Poland — October
26, 1983, Berkeley, California) was a logician and mathematician who spent
four decades as a professor of mathematics at the University of California,
Berkeley. He was born Alfred Teitelbaum, to parents who were Polish Jews in
Warsaw. Tarski’s first paper, published when he was only 19 years old, was on
set theory. He was a youngest person ever to complete a doctorate at Warsaw
University. Tarski left Poland in August 1939, on the last ship to sail from
Poland for the United States before the German invasion of Poland and the
outbreak of World War II. He became an American citizen in 1945. Tarski
wrote papers on topology, geometry, measure theory, mathematical logic, set
theory, metamathematics, and above all, model theory, abstract algebra, and
algebraic logic. During his life he supervised 24 Ph.D. dissertations, 5 by
women.
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2 Formalization

2.1 Geometrical view
We can mark out one kind of geometrical problems among other: problems on
proof. In such problems we used to prove given assertion. Here is an example
of assertion: that points of intersection of medians, heights and perpendicular
bisectors lies on the same line.

We should to find the way of formolization of geometrical problems due to
aplication to authomatic proofs. We describe the language of geometry. First
we simplify the picture by introducing some geometrical objects:

• points

• lines

• circles

and so on. This amount of concepts is insufficient for formulating of assertions.
Among objects we should also use relations between them. Let us introduce
some relations and their formal denotions in terms of predicats:

• “Point A is on the line l”, OnLine(A, l)

• “Point A is on the circle O”, OnCircle(A,O)

• “The distance between A and B equals distance between C and D”,
EqDistance(A,B, C, D)

Now we can formulate some axioms in this terms:

• “For any points A,B there are exists line l, such as A and B are on l”

↔ ∀A∀B∃l{OnLine(A, l)&OnLine(B, l)}

• “If points A and B both lies on lines l and m, and if A and B are different,
then l and m coincides.”

↔ ∀A∀B∀l∀m{A 6= B&OnLine(A, l)&OnLine(B, l)&
&OnLine(A,m)&OnLine(B,m)⇒ l = m}

And of course our main goal is formalization of assertions of problems on
proof. For example, the well known

Proposition. Medians of triangle intersects at one point.

now can be reformulated with introduced notions as:

Proposition. For any three mutually different points A1, A2 and A3 there
are four points B1, B2, B3 and C and six lines l1, l2, l3, m1, m2 and m3 such
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Figure 2: Medians intersects at one point

as:

OnLine(A2, l1)&OnLine(A3, l1)&OnLine(B1, l1)&
OnLine(A1, l2)&OnLine(A1, l2)&OnLine(B2, l2)&
OnLine(A1, l3)&OnLine(A2, l3)&OnLine(B3, l3)&

OnLine(A1,m1)&OnLine(B1,m1)&OnLine(C,m1)&
OnLine(A2,m2)&OnLine(B2,m2)&OnLine(C,m2)&
OnLine(A3,m3)&OnLine(B3,m3)&OnLine(C,m3)&

EqDistance(A1, B2, B2, A3)&
EqDistance(A2, B1, B1, A3)&
EqDistance(A1, B3, B3, A2)

In order to make theory mory easy we shorten the list of objects. Namely
we leave only points. Neveretheless we can still formulate relations using
predicats which works only with points. Instead of considering complicated
objects we consider their points.

• “Points A, B and C are on the same line” OnLine(A,B, C)

• “Points A and B are on the same circle with center C” OnCircle(A,B, C)

• “The distance between A and B equals distance between C and D”
EqDistance(A,B, C, D)

And our example converts to

Proposition. For any three points A1, A2 and A3 there are four points B1,

5



B2, B3 and C such as:

A1 6= A2&A1 6= A3&A2 6= A3 ⇒
OnLine(A1, A2, B3)&OnLine(A2, A3, B1)&OnLine(A1, A3, B2)&
OnLine(A1, B1, C)&OnLine(A2, B2, C)&OnLine(A3, B3, C)&

EqDistance(A2, B1, B1, A3)&
EqDistance(A1, B2, B2, A3)&
EqDistance(A1, B3, B3, A2)

2.2 Algebraical view
Since we make assertions acceptable for machines we should exclude such
incomprehensible things such as points and predicats working on points from
our model. Broadly speaking machines understands only rational numbers, so
we should learn how to write propositions in it.

First we replace points by their coordinates: point A↔ ntiple (x1, ..., xn)
of reals

In case of plane it is convenient to use (x, y) instead of (x1, x2). We recur
to our example:

Proposition. For any real numbers a1,x, a1,y, a2,x, a2,y, a3,x, a3,y, there are
such real b1,x, b1,y, b2,x, b2,y, b3,x, b3,y, cx and cy:

(a1,x 6= a2,x ∨ a1,y 6= a2,y)&(a1,x 6= a3,x ∨ a1,y 6= a3,y)&
(a2,x 6= a3,x ∨ a2,y 6= a3,y)⇒

OnLine(a1,x, a1,y, a2,x, a2,y, b3,x, b3,y)&
OnLine(a2,x, a2,y, a3,x, a3,y, b1,x, b1,y)&
OnLine(a1,x, a1,y, a3,x, a3,y, b2,x, b2,y)&

OnLine(a1,x, a1,y, b1,x, b1,y, cx, cy)&
OnLine(a2,x, a2,y, b2,x, b2,y, cx, cy)&
OnLine(a3,x, a3,y, b3,x, b3,y, cx, cy)&

EqDistance(a1,x, a1,y, b2,x, b2,y, b2,x, b2,y, a3,x, a3,y)&
EqDistance(a2,x, a2,y, b1,x, b1,y, b1,x, b1,y, a3,x, a3,y)&
EqDistance(a1,x, a1,y, b3,x, b3,y, b3,x, b3,y, a2,x, a2,y)

Predicats can be simplified to numeric terms now:

OnLine(ax, ay, bx, by, cx, cy)←→
axby + aycx + bxcy − axcy − aybx − bycx = 0

EqDistance(ax, ay, bx, by, cx, cy, dx, dy)←→
(ax − bx)2 + (ay − by)2 = (cx − dx)2 + (cy − dy)2

And now, only in terms of trivial operations, we receive:
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Proposition. For any real numbers a1,x, a1,y, a2,x, a2,y, a3,x, a3,y, there are
such real b1,x, b1,y, b2,x, b2,y, b3,x, b3,y, cx and cy:

(a1,x 6= a2,x ∨ a1,y 6= a2,y)&(a1,x 6= a3,x ∨ a1,y 6= a3,y)&
(a2,x 6= a3,x ∨ a2,y 6= a3,y)⇒

a1,xa2,y + a1,yb3,x + a2,xb3,y − a1,xb3,y − a1,ya2,x − a2,yb3,x = 0 &
a2,xa3,y + a2,yb1,x + a3,xb1,y − a2,xb1,y − a2,ya3,x − a3,yb1,x = 0 &
a1,xa3,y + a1,yb2,x + a3,xb2,y − a1,xb2,y − a1,ya3,x − a3,yb2,x = 0 &

a1,xb1,y + a1,ycx + b1,xcy − a1,xcy − a1,yb1,x − b1,ycx = 0 &
a2,xb2,y + a2,ycx + b2,xcy − a2,xcy − a2,yb2,x − b2,ycx = 0 &
a3,xb3,y + a3,ycx + b3,xcy − a3,xcy − a3,yb3,x − b3,ycx = 0 &

(a1,x − b2,x)2 + (a1,y − b2,y)2 = (b2,x − a3,x)2 + (b2,y − a3,y)2 &

(a2,x − b1,x)2 + (a2,y − b1,y)2 = (b1,x − a3,x)2 + (b1,y − a3,y)2 &

(a1,x − b3,x)2 + (a1,y − b3,y)2 = (b3,x − a2,x)2 + (b3,y − a2,y)2

It’s not so easy to recognize in this proposition the well-known fact from
elementary school.

3 Algorithm

3.1 Tarski Theorem
Let us introduce special language A, which contains

• notation for all rational numbers

• variables for real numbers

• operations of addition and multiplication for constructing polynomials

• unary predicates = 0, > 0, < 0, so the elementary formulas have forms
P = 0, P > 0, and P < 0

• logical connectives &, ∨, ¬, ⇒
• quantifiers ∀ and ∃
This ingredients of language A are necessary for constructing the systems

of polynomial inequalities and equations, witch we are going to verify. Now
we specify the meaning of “system of polynomial inequalities and equations”.

We can’t called formula

x2y + 4xy3 > (x− y)2 & xy = 3x + 2y

assertion, because its verity depends on values of variables. Although we can
ask different precize questions:

• Is it true for x = 4 and y = 5?

• Is it true for any x and y?

• Do such x and y exist?

Recall some logical notions.
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Definition. 1. Open formulla is correctly constructed formula
without quantifiers.

2. Partially open formula is correctly constructed formula wich contain
open and closed variables.

3. Closed formula is correctly constructed formula where each entring
variable covered by corresponding quantifier.

And corresponding

Example. 1. (x ≡ y)→ (z&(y ∨ ¬x))

2. ∀x(∃y(x ∨ y)&(∀z((x&y)→ z)))

3. ∀x∃y(∀z(x ∨ y ∨ z)&∃z(x&¬y&¬z))

We are going to verfy the systems of closed polynomial inequalities and
equations with the following

Theorem. (Alfred Tarski) There exists an algorithm for deciding for a given
arbitrary closed formula of the language A whether the formula is true or not.

This algorithm may verify for example following formula

∀a1,x∀a1,y∀a2,x∀a2,y∀a3,x∀a3,y∃b1,x∃b1,y∃b2,x∃b2,y∃b3,x∃b3,y∃cx∃cy :

((a1,x− a2,x)2 > 0∨ ((a1,y − a2,y)2 > 0)&((a1,x− a3,x)2 > 0∨ ((a1,y − a3,y)2 > 0)&

((a2,x − a3,x)2 > 0 ∨ ((a2,y − a3,y)2 > 0)⇒
a1,xa2,y + a1,yb3,x + a2,xb3,y − a1,xb3,y − a1,ya2,x − a2,yb3,x = 0 &
a2,xa3,y + a2,yb1,x + a3,xb1,y − a2,xb1,y − a2,ya3,x − a3,yb1,x = 0 &
a1,xa3,y + a1,yb2,x + a3,xb2,y − a1,xb2,y − a1,ya3,x − a3,yb2,x = 0 &

a1,xb1,y + a1,ycx + b1,xcy − a1,xcy − a1,yb1,x − b1,ycx = 0 &
a2,xb2,y + a2,ycx + b2,xcy − a2,xcy − a2,yb2,x − b2,ycx = 0 &
a3,xb3,y + a3,ycx + b3,xcy − a3,xcy − a3,yb3,x − b3,ycx = 0 &

(a1,x − b2,x)2 + (a1,y − b2,y)2 = (b2,x − a3,x)2 + (b2,y − a3,y)2 &

(a2,x − b1,x)2 + (a2,y − b1,y)2 = (b1,x − a3,x)2 + (b1,y − a3,y)2 &

(a1,x − b3,x)2 + (a1,y − b3,y)2 = (b3,x − a2,x)2 + (b3,y − a2,y)2

3.2 Proof
We will proof proposition of theorem by induction on number of variables in
system. First we precisely consider the case of one-variable system and then
show less formaly the idea of induction step.
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Figure 3: Graph of random polynomial

3.2.1 Base

Let all polynomials are one variable. We display graph of random polynomial
f for obviousness(fig.3).

For example, if we interested in areas where f(x) > 0:
As you can see(fig.4) the verity of inequality changes only when we come

throw the roots of polynomial. So, between the roots the verity of system
stay the constant, and if we want to learn all posibilities it’s enough to check
system only in points which lie on the segments between adjacent roots and in
two additional points: one which lefter than all roots and another one which
righter.

After spliting the system into separate polynomials, we can check them
one by one. Now we can sketch a skeleton of algorithm for one-variable case:

“Algorithm” of Tarski {version 0.1} for formula QxΦ(x)

1. Produce the list P1(x), . . . ,Pk(x) of all polynomials which occur in Φ(x)

2. Compute the set N = {x0, . . . , xn} consiting of all real roots of all poly-
nomials P1(x), . . . ,Pk(x) which are different from identical zero; assume
x0 < x1 < · · · < xn−1 < xn

3. Extend the set N to the set M = {y0, . . . , ym} ⊃ N such that

• for every i, such that 0 < i 6 n, there exists j, such that 0 < i 6 n
and xi−1 < yj < xi

• for every i, such that 0 6 i 6 m, y0 < xi

• for every i, such that 0 6 i 6 n, xi < ym

4. Formula ∃xΦ(x) is true if and only if Φ(y0)
∨
· · ·

∨
Φ(ym).

Formula ∀xΦ(x) is true if and only if Φ(y0)& . . .&Φ(ym).

We name it “algorithm” because it contains number of steps which we
unable to programme. We try gradually throw them out of construction.
First we simplify third step. Instead of accomplishment of new action such as
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Figure 4: Areas of verity f(x) > 0

extension of set of roots we just repeat old one. We calculate more roots and
use redundant roots exactly as points yi in described model.

Recall simple fact from calculus, that between every two roots of function
there is a root of derivative(fig.6). After that we easily understand, that it’s
sufficient to check roots of derivative as the points yi. As we have number of
polynomials we should take into consideration all intervals between adjacent
roots of all polynomials. The most easy construction which considers roots of
all polynomials is product of this polynomials. So, it’s enough to add roots
of derivative of product of all polynomials to deal with inner intervals. For
investigation two extreme rays it’s enough to add two points, broadly speaking,
−∞ and +∞.

From here we come to the next version of “algorithm”:

“Algorithm” of Tarski {version 0.2} for formula QxΦ(x)

1. Produce the list P1(x), . . . ,Pk(x) of all polynomials which occur in Φ(x)
(Pi(x) 6≡ 0)

2. Add the polynomial P0(x) = (P1(x) . . .Pk(x))′

3. Compute the set N = {x0, . . . , xn} consiting of all real roots of all poly-
nomials P0(x),P1(x), . . . ,Pk(x) which are different from identical zero

4. Extend the set N to the set M = {x−∞, x0, x1, . . . , xn, x+∞} where x−∞
and x+∞ are such numbers that x−∞ < x0 < x1 < · · · < xn−1 < xn <
x+∞

5. Formula ∃xΦ(x) is true if and only if

Φ(x−∞) ∨ Φ(x0) ∨ · · · ∨ Φ(xn) ∨ Φ(x+∞)

Formula ∀xΦ(x) is true if and only if

Φ(x−∞)&Φ(x0)& . . .&Φ(xn)&Φ(x+∞)

For the following modification we introduce a notion of Tarski table.

10



Figure 5: Significant points

Definition. Tarski table is table of values of all polynomials in all points.

x−∞ x0 . . . xj . . . xn x+∞
P0(x) P0(x−∞) P0(x0) . . . P0(xj) . . . P0(xn) P0(x+∞)

...
Pi(x) Pi(x−∞) Pi(x0) . . . Pi(xj) . . . Pi(xn) Pi(x+∞)

...
Pk(x) Pk(x−∞) Pk(x0) . . . Pk(xj) . . . Pk(xn) Pk(x+∞)

We assume that x−∞ < x0 < · · · < xj · · · < xn < x+∞
Tarski table have some significant for us properties. As we remember, all

xj was added in set as roots of some polynomial, so every point is someone’s
root:

∀j∃i{Pi(x) 6≡ 0&Pi(xj) = 0}

and all roots are added:

∀i∀x′{(Pi(x) 6≡ 0&Pi(x′) = 0)⇒ ∃j{x′ = xj}}

If we imagine that we can construct Tarski table than we can rewrite
“algorithm” in the next way:

“Algorithm” of Tarski {version 0.3} for formula QxΦ(x)

1. Produce the list P1(x), . . . ,Pk(x) of all polynomials which occur in Φ(x)
(Pi(x) 6≡ 0)

2. Add the polynomial P0(x) = (P1(x) . . .Pk(x))′

3. Construct Tarski table for P0(x),P1(x), . . . ,Pk(x)

4. Calculate logical values Φ(x−∞), Φ(x0), . . . , Φ(xn), Φ(x+∞) using the
values of the polynomials from the table (but not the values of the x’s)
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Figure 6: Roots structure

5. Formula ∃xΦ(x) is true if and only if

Φ(x−∞) ∨ Φ(x0) ∨ · · · ∨ Φ(xn) ∨ Φ(x+∞)

Formula ∀xΦ(x) is true if and only if

Φ(x−∞)&Φ(x0)& . . .&Φ(xn)&Φ(x+∞)

We are still unable to find roots of polynomials, but for now all other steps
can be programmed pretty good. First we notice that all possible predicats
come from comparison of polynomials with null. So we are not interested in
numerical values of polynomials in point, we are interested only in their signs.

From here we come to

Definition. Semisimplified Tarski table for polynomials P0(x), . . . ,Pk(x) is
table which obtains from simple Tarski table with cancellation of numerical
values.

−∞ x0 . . . xj . . . xn +∞
P0(x)

...
Pi(x) tij

...
Pk(x)

tij =


−, if Pi(xj) < 0
0, if Pi(xj) = 0
+, if Pi(xj) > 0

In the algorithm we are not interested in points except the step, where we
calculate the Tarski table, bur it’s turn out that for constructing of body of
semisimplified Tarski table not necessary know the values of xi.
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Definition. Simplified Tarski table for polynomials P0(x), . . . ,Pk(x) is just
semisimplified table without values of xi.

P0(x) ± 0 ± 0 . . . ± 0 . . . ± 0 ± 0
...

...
...

...
...

...
...

...
Pi(x) ± 0 ± 0 . . . ± 0 . . . ± 0 ± 0

...
...

...
...

...
...

...
...

Pk(x) ± 0 ± 0 . . . ± 0 . . . ± 0 ± 0

For this we need enlarge our set of polynomials. And after construction
of simplified Tarski table for them, we automatically receive simplified Tarski
table for initial set of polynomials.

Definition. A system of functions is called semisaturated, if with each func-
tion the system contains its derivative.

It’s obvious exercise to prove the next

Lemma. Every finite system of polynomials can be extended to a finite semisat-
urated system of polynomials.

For the semisaturate system of polynomials faithful the following

Lemma. If the system of polynomials P0(x), . . . ,Pk(x) is semisaturated and
Pi(x) 6≡ 0, then the ith row cannot contain 0 in two consequetive cells.

Proposition of lemma easy follows from our remark about root of derivative
between roots of function. For the final cut we introduce the

Definition. A semisaturated system of polynomials P0(x), . . . ,Pn(x) is called
saturated if for each its two polynomials Pk(x) and Pl(x) such that

0 < deg(Pl(x)) 6 deg(Pk(x)),

the system also contains the remainder R(x) from dividing Pk(x) by Pl(x),
i.e.,

Pk(x) = Q(x)Pl(x) + R(x),deg(R(x)) < deg(Pl(x))

The following lemma gives us possibility to extend our initial system of
polynomials to saturated system.

Lemma. Every finite system of polynomials can be extended to a finite satu-
rated system of polynomials.

Lemma can be prooven with consequtive examination of degrees starting
from the biggest.

Saturated system of polynomials poses the next property, which allow us
construct it inductivly:

Lemma. If P0(x), . . . ,Pk−1(x),Pk(x) is a saturated system of polynomials and

deg(P0(x)) 6 · · · 6 deg(Pk−1(x)) 6 deg(Pk(x)),

then the system P0(x) . . .Pk−1(x) is also saturated.
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From this we come to inductive construction of simplified Tarski system
for saturated system P0(x), . . . ,Pk(x).

First we choose all constant polynomials from the set and construct table
for them.

P0(x) 0 0
P1(x) ± ±

...
...

...
Pk(x) ± ±

Let us construct table for first k−1 polynomials, and we want to construct
table for next one.

From representation of polynomial Pk(x) = pnxn + pn−1x
n−1 + · · ·+ p0 we

can guess the contents of extreme cells as the sign on −∞ and +∞.

P0(x) 0 0 . . . 0 . . . 0 0
...

...
...

...
...

...
...

...
Pi(x) ± ± 0 . . . ± 0 . . . ± 0 ±

...
...

...
...

...
...

...
...

Pk−1(x) ± ± 0 . . . ± 0 . . . ± 0 ±
Pk(x) ± ±

For fulfilling of another cells we will use the saturation of system. Namely
for every l exists such m so

Pk(x) = Q(x)Pl(x) + Pm(x)

If in point xi Pl turns to be 0 then it’s enough copy to i-th cell for Pk the
value of i-th cell for Pm:

Pk(xi) = Q(xi)Pl(xi) + Pm(xi) = Pm(xi)

Due to construction of the system for each xi exists such Pl 6≡ 0:
Pl(xi) = 0, so we can fulfill all cells.

It remains to add roots of new polynomial. Because every two roots of
it separated by roots of derivative which was added before, it’s enough to
examinate every pair of adjacent columns on apperance of root of Pk between
them. Evidently it’s appear if and only if in the corresponding adjacent cells
stays plus and minus.

P0(x) ± 0 ± 0 . . . ±0 ±0 . . . ± 0 ± 0
...

...
...

...
...

...
...

...
...

Pi(x) ± 0 ± 0 . . . ±0 ±0 . . . ± 0 ± 0
...

...
...

...
...

...
...

...
...

Pk−1(x) ±0 ± 0 . . . ±0 ±0 . . . ± 0 ± 0
Pk(x) ± ±0 . . . − 0 + . . . ±0 ±

New cells in previous rows we fulfills according to majorizing value of ad-
jacent cells: they can’t be different signs due to constrution of table. If they
both equals null, it’s possible only in first row, else we assume the value of
midle cell to the nonzero value of adjacent cells.
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With this we finish recursive construction of simplified Tarski table for
the saturated system of polynomials. Table for initial system is subtable of
resulting table for saturated system. We know it rows, but not columns. But
it doesn’t matter because we can check more points: redundant points doesn’t
affect to the result and we come to the final version of algorithm for one
variable case:

Algorithm of Tarski {version 0.4} for formula QxΦ(x)

1. Produce list Q1(x), . . . ,Ql(x) of all polynomials which occur in Φ(x)
(Qi(x) 6≡ 0)

2. Append the polynomial Q0(x) = (Q1(x) . . .Ql(x))′

3. Extend the list to saturated system of polynomials P0(x), . . . ,Pk(x) and
order them so that

deg(P0(x)) 6 · · · 6 deg(Pk−1(x)) 6 deg(Pk(x))

4. Construct simplified Tarski table for P0(x),P1(x), . . . ,Pm(x) for m =
0, 1, 2, . . . , k

5. Calculate logical value of Φ(x) for every column in the table

6. Formula ∃xΦ(x) is true if and only if at least one of the calculated values
of Φ(x) was true;
Formula ∀xΦ(x) is true if and only if all calculated values of of Φ(x) were
true

3.2.2 Induction step

From general formula we step by step exclude the variables until there is one
variable. For one variable system we use the previous algorithm. Main idea is
like we solve the equation or inequality with parameter P(a, x) > 0 we come
to the answer depending on a. But we are interested only in special properties
of answer set depending on quantifier on x.

For example if we have inequality of type

A := (∃x : P (a, x) > 0)

and answer is
Q1(a) := (a < −2), x ∈ (2; 3) ∪ {−a} ⇒ A = True
Q2(a) := (−2 ≤ a ≤ 3), x ∈ [4; 7 + a]⇒ A = True
Q3(a) := (3 < a), x ∈ ∅ ⇒ A = False

Then we may assume that A ≡ Q1(a)∨Q2(a). For example ∃x : bx+c = 0
is equivalent to (b 6= 0 ∨ (b = 0 & c = 0)).

And ∃x : ax2 + bx + c = 0 is equivalent to

(a 6= 0 & b2 ≥ 4ac) ∨ (b 6= 0 ∨ (b = 0 & c = 0)).

In general view we do the following consequetive quantifiers elemenations:
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{
Q1x1, . . . ,Qn−1xn−1Qnxn : Pn(x1, . . . , xn−1, xn)

Qnxn : Pn(x1, . . . , xn−1, xn)↔Pn−1(x1, . . . , xn−1)

}
⇓{

Q1x1, . . . ,Qn−2xn−2Qn−1xn−1 : Pn−1(x1, . . . , xn−2, xn−1)
Qn−1xn−1 : Pn−1(x1, . . . , xn−2, xn−1)↔Pn−2(x1, . . . , xn−2)

}
⇓
...
⇓

Q1x1 : P1(x1)

For simplity we consume consider two-variable case. Many variable case
investigated in the same way. We view on every polynomial like on a polynmial
of x with coefficients from ring of rational function of a. Initialy there is only
polynomials of a.

P(a, x) =
∑
i,j

Pi,ja
jxi =

∑
i

∑
j

Pi,ja
j

 xj

We start to apply the method of construction of Tarski table described
above, and every time when we want to divide some rational function over
another on we take in excess all possible variants of sign of it’s leading coeffi-
cients. If we consider the case when the leading coefficient equals 0 we start to
take in excess all posyble variants for the second one and so on. Also, in every
branch of excess we remember selected values for rational function end in the
case, when we can splited some new function into combination of reviewed
function for which we know it’s sign we don’t start new excess. When we start
to fullfil the row in table we also want to know the leading coefficients. There
we also take in excess all possible variants. Depending on resulting table we
add od don’t add the corresponding branch of excess in new system.

4 Conclusion
After a number of modification this method allows to prove that in three-
dimensional space we can touch one ball with 12 balls of the same radius, but
not with 13.

This algorithm is strikly unefficient. It’s complexity cann’t be bounded to
the bottom by any towers of exponents with size of input at the top.

For the geometrical problems we can use the random points method. for
example if we want prove some property are faithfull for all points then we can
check it for a number of random points. If all tests are succed for this points
then we may assume that the property are faithfull.

For speedup of algorithm we can use the cylindrical algebraic decomposi-
tion. Main idea of this method in extension of language in which we work, but
it makes the algorithm more difficult.
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For example
x2 + y2 + z2 < 1

turns to 
−1 < x < 1,

−
√

1− x2 < y <
√

1− x2,

−
√

1− x2 − y2 < z <
√

1− x2 − y2

That gives us very short number of conditions.
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