Basic Concepts of Differential Algebra

A. Würfl

TUM

March 19, 2007
(1) Basics

- Differential Fields and Ideals
- Integration of Rational Functions
- Rothstein/Trager Method (rational function case)
(2) Algebraic Integration
- Elementary Functions
- Liouville's Principle
- The Risch Algorithm
(3) Application
- Special Systems of Linear ODEs

What are we talking about?

The Problem

Given $f(x)$, find $g(x)$ such that

$$
g^{\prime}(x)=f(x)
$$

What are we talking about?

The Problem

Given $f(x)$, find $g(x)$ such that

$$
\int f(x) d x=g(x)
$$

What are we talking about?

The Problem

Given $f(x)$, find $g(x)$ such that

$$
\int f(x) d x=g(x)
$$

Examples:

$$
\begin{aligned}
& \int 3 x^{2}+2 x+1 d x=? \\
& \int \frac{3 x^{2}+2 x+1}{5 x^{3}+4 x^{2}+3 x+2} \mathrm{dx}=? \\
& \int \frac{x}{\exp (x)+1} \mathrm{dx}=?
\end{aligned}
$$

Definitions

Definition (Differential Field)

A field $F(\operatorname{char}(F)=0)$ with mapping $D: F \rightarrow F$ such that $\forall f, g \in F$:

$$
\begin{aligned}
D(f+g) & =D(f)+D(g) \\
D(f \cdot g) & =f \cdot D(G)+g \cdot D(f) .
\end{aligned}
$$

D is called differential operator.

Definition (Field of Constants)

Let F be a differential field, D a differential operator. The field of constants K is a subfield of F defined by

$$
K=\{c \in F: D(c)=0\}
$$

More Definitions

Definition (Differential Extension Field)

Let F, G be differential fields, D_{F}, D_{G} differential operators. Then G is a differential extension field of F if G is extension field of F and

$$
D_{F}(f)=D_{G}(f) \quad \forall f \in F
$$

Definition (Logarithmic Functions)

Let F be a differential field and G be a differential extension field of F. Then $\theta \in G$ is called logarithmic over F if there exists $u \in F$ such that

$$
D(\theta)=\frac{D(u)}{u}
$$

Write $\theta=\log (u)$.

Rational Part of the Integral: Hermite's Method

Problem:

given $a / b \in K(x)$ determine $I \in K^{*}(x)$ such that $\int a / b=I$

Hermite's Method

- apply Euclidean division, normalize:

$$
\int \frac{a}{b}=\int p+\int \frac{r}{q}
$$

- compute square-free factorization of q :

$$
q=\prod_{i=1}^{k} q_{i}^{i}
$$

- compute partial fraction expansion of r / q :

$$
\frac{r}{q}=\sum_{i=1}^{k} \sum_{j=1}^{i} \frac{r_{i j}}{q_{i}^{j}}
$$

Hermite's Method (cont'd)

We have:

$$
\int \frac{r}{q}=\sum_{i=1}^{k} \sum_{j=1}^{i} \int \frac{r_{i j}}{q_{i}^{j}}
$$

q_{i} square-free $\Leftrightarrow \operatorname{gcd}\left(q_{i}, q_{i}^{\prime}\right)=1$

$\rightarrow s \cdot q_{i}+t \cdot q_{i}^{\prime}=r_{i j}$ (extended Euclidean algorithm)

$$
\int \frac{r_{i j}}{q_{i}^{j}}=\int \frac{s}{q_{i}^{j-1}}+\int \frac{t q_{i}^{\prime}}{q_{i}^{j}}
$$

Integration by Parts:

$$
\int \frac{t q_{i}^{\prime}}{q_{i}^{j}}=\frac{-t /(j-1)}{q_{i}^{j-1}}+\int \frac{t^{\prime} /(j-1)}{q_{i}^{j-1}}
$$

Where are we?

(1) Problem:

$$
\int \frac{a}{b}=?
$$

(3) Partial Fraction Expansion:

Where are we?

(1) Problem:

$$
\int \frac{a}{b}=?
$$

(2) Euclidean Division:

$$
\int \frac{a}{b}=\int p+\int \frac{r}{q}
$$

(3) Partial Fraction Expansion:
(4) Integration by Parts:
with $\operatorname{deg}\left(r_{i}\right)<\operatorname{deg}\left(q_{i}\right), q_{i}$ square-free

Where are we?

(1) Problem:

$$
\int \frac{a}{b}=?
$$

(2) Euclidean Division:

$$
\int \frac{a}{b}=\int p+\int \frac{r}{q}
$$

(3) Partial Fraction Expansion:

$$
\int \frac{a}{b}=\int p+\sum_{j=1}^{i} \int \frac{r_{i j}}{q_{i}^{j}}
$$

(4) Integration by Parts:
with $\operatorname{deg}\left(r_{i}\right)<\operatorname{deg}\left(q_{i}\right), q_{i}$ square-free

Where are we?

(1) Problem:

$$
\int \frac{a}{b}=?
$$

(2) Euclidean Division:

$$
\int \frac{a}{b}=\int p+\int \frac{r}{q}
$$

(3) Partial Fraction Expansion:

$$
\int \frac{a}{b}=\int p+\sum_{j=1}^{i} \int \frac{r_{i j}}{q_{i}^{j}}
$$

(4) Integration by Parts:

$$
\int \frac{a}{b}=\int p+\sum_{i=1}^{k} \int \frac{r_{i}}{q_{i}}
$$

with $\operatorname{deg}\left(r_{i}\right)<\operatorname{deg}\left(q_{i}\right), q_{i}$ square-free

Logarithmic Part of the Integral

Let $a, b \in K[x], b$ square-free, $\operatorname{deg}(a)<\operatorname{deg}(b)$. We want:

$$
\int \frac{a}{b}
$$

First Idea

Factor b over its splitting field K_{b} :

$$
b=\prod_{i=1}^{m}\left(x-\beta_{i}\right)
$$

Partial Fraction Expansion:

$$
\frac{a}{b}=\sum_{i=1}^{m} \frac{\gamma_{i}}{x-\beta_{i}} \text { where } \gamma_{i}, \beta_{i} \in K_{b}
$$

Logarithmic Part of the Integral

Let $a, b \in K[x], b$ square-free, $\operatorname{deg}(a)<\operatorname{deg}(b)$. We want:

$$
\int \frac{a}{b}
$$

First Idea

Factor b over its splitting field K_{b} :

$$
b=\prod_{i=1}^{m}\left(x-\beta_{i}\right)
$$

Get:

$$
\int \frac{a}{b}=\sum_{i=1}^{m} \gamma_{i} \cdot \log \left(x-\beta_{i}\right)
$$

Logarithmic Part of the Integral

Let $a, b \in K[x], b$ square-free, $\operatorname{deg}(a)<\operatorname{deg}(b)$. We want:

$$
\int \frac{a}{b}
$$

First Idea

Factor b over its splitting field K_{b} :

$$
b=\prod_{i=1}^{m}\left(x-\beta_{i}\right)
$$

Get:

$$
\int \frac{a}{b}=\sum_{i=1}^{m} \gamma_{i} \cdot \log \left(x-\beta_{i}\right)
$$

Problem:

 for $\operatorname{deg}(b)=m \rightarrow$ worst case degree of K_{b} over K is $m!$
Rothstein/Trager Method (rational function case)

Theorem

For $a, b \in K[x]$ as before the minimal algebraic extension field necessary to express

$$
\int \frac{a}{b}
$$

is $K^{*}=K\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ where the c_{i} are the distinct roots of

$$
R(z)=\operatorname{res}_{x}\left(a-z b^{\prime}, b\right) \in K[z] .
$$

Given $K^{*}, c_{i}(1 \leq i \leq n)$ as above

$$
\int \frac{a}{b}=\sum_{i=1}^{n} c_{i} \cdot \log \left(v_{i}\right)
$$

with

$$
v_{i}=\operatorname{gcd}\left(a-c_{i} b^{\prime}, b\right) \in K^{*}[x] .
$$

Reminder: Resultant

Definition (Resultant)

For $a(x)=\sum_{i=0}^{m} a_{i} x^{i}, b(x)=\sum_{i=0}^{n} b_{i} x^{i} \in R[x]$

$$
\operatorname{res}_{x}(a, b):=\left|\left(\begin{array}{ccccccc}
a_{m} & a_{m-1} & \cdots & a_{1} & a_{0} & & \\
& a_{m} & a_{m-1} & \cdots & a_{1} & a_{0} & \\
& & \cdots & \cdots & \cdots & \cdots & \\
b_{n} & b_{n-1} & \cdots & a_{m} & \cdots & \cdots & a_{0} \\
& b_{n} & b_{n-1} & \cdots & b_{0} & b_{1} & \\
& & \cdots & \cdots & \cdots & \cdots & \\
& & & b_{n} & \cdots & \cdots & b_{0}
\end{array}\right)\right|
$$

$$
\operatorname{res}_{x}(0, b):=0 \text { for } b \in R[x] \backslash\{0\}, \operatorname{res}_{x}(a, b):=1 \text { for } a, b \in R \backslash\{0\} .
$$

Non-rational Functions

What about

$$
\int \frac{1}{\exp (x)+1}
$$

or

$$
\int \frac{x}{\exp (x)+1} ?
$$

Obviously these are not rational

Non-rational Functions

What about

$$
\int \frac{1}{\exp (x)+1}
$$

or

$$
\int \frac{x}{\exp (x)+1} ?
$$

Obviously these are not rational. . .

What is an Elementary Function?

Definition

Let F be a differential field, G a differential extension field of F
(1) $\theta \in G$ is called logarithmic over F, if $\exists u \in F$ such that

$$
\theta^{\prime}=\frac{u^{\prime}}{u} .
$$

Write $\theta=\log (u)$.
(2) $\theta \in G$ is called exponential over F, if $\exists u \in F$ such that

$$
\frac{\theta^{\prime}}{\theta}=u^{\prime}
$$

Write $\theta=\exp (u)$.
(3) $\theta \in G$ is called algebraic over F, if $\exists p \in F[z]$ such that

$$
p(\theta)=0 .
$$

Finding a Pattern

Examples of elementary functions and their integrals:

$$
\begin{aligned}
& \int \cos (x)=\sin (x) \\
& \int \frac{1}{\sqrt{1-x^{2}}}=\arcsin (x) \\
& \int \operatorname{arccosh}(x)=x \operatorname{arccosh}(x)-\sqrt{x^{2}-1}
\end{aligned}
$$

Finding a Pattern

Examples of elementary functions and their integrals:

$$
\begin{aligned}
& \int\left(\frac{1}{2} \exp (i x)+\frac{1}{2} \exp (-i x)\right)=-\frac{1}{2} i \exp (i x)+\frac{1}{2} i \exp (-i x) \\
& \int \frac{1}{\sqrt{1-x^{2}}}=-i \log \left(\sqrt{1-x^{2}}+i x\right) \\
& \int \log \left(x+\sqrt{x^{2}-1}\right)=x \log \left(x+\sqrt{x^{2}-1}\right)-\sqrt{x^{2}-1}
\end{aligned}
$$

Liouville's Principle

Theorem (Liouville)

Let F be a differential field, G an elementary extension field of F and K their common constant field.

$$
g^{\prime}=f
$$

has a solution $g \in G$ if and only if there exist $v_{0}, v_{1}, \ldots, v_{m} \in F$, $c_{1}, \ldots, c_{m} \in K$ such that

$$
f=v_{0}^{\prime}+\sum_{i=1}^{m} c_{i} \frac{v_{i}^{\prime}}{v_{i}} .
$$

In other words, such that

$$
\int f=v_{0}+\sum_{i=1}^{m} c_{i} \log \left(v_{i}\right) .
$$

Proof - The rough Idea

- proof by induction on the number of new elementary extensions required to express the integral
- three cases: logarithmic, exponential or algebraic extensions
- basic arguments like polynomial arithmetic and differentiation
- for more details see: [Ros72] or [Ged92] pp. 523f

The Risch Algorithm - Logarithmic Case

Theorem (Rothstein/Trager Method - Logaritmic Case)

Let θ be transcendental and logarithmic over F (i.e. $\exists u \in F: \theta^{\prime}=u^{\prime} / u$); $a(\theta) / b(\theta) \in F(\theta)$ with $\operatorname{gcd}(a, b)=1, b$ monic and square-free.
$\int \frac{a(\theta)}{b(\theta)}$ is elementary if and only if all the roots of

$$
R(z)=\operatorname{res}_{\theta}\left(a(\theta)-z \cdot b(\theta)^{\prime}, b(\theta)\right) \in F[z]
$$

are constans.

The Risch Algorithm - Logarithmic Case (cont'd)

Theorem (Rothstein/Trager Method - Logaritmic Case)

Let θ be transcendental and logarithmic over F (i.e. $\exists u \in F: \theta^{\prime}=u^{\prime} / u$); $a(\theta) / b(\theta) \in F(\theta)$ with $\operatorname{gcd}(a, b)=1, b$ monic and square-free. If $\int \frac{a(\theta)}{b(\theta)}$ is elementary then

$$
\frac{a(\theta)}{b(\theta)}=\sum_{i=1}^{m} c_{i} \frac{v_{i}(\theta)^{\prime}}{v_{i}(\theta)}
$$

where c_{i} are the distinct roots of $R(z)$ and

$$
v_{i}(\theta)=\operatorname{gcd}\left(a(\theta)-c_{i} \cdot b(\theta)^{\prime}, b(\theta)\right) \in F\left(c_{1}, \ldots, c_{m}\right)[\theta]
$$

The Risch Algorithm - Exponential Case

Theorem (Rothstein/Trager Method - Exponential Case)

Let θ be transcendental and exponential over F (i.e. $\exists u \in F: \theta^{\prime} / \theta=u$); $a(\theta) / b(\theta) \in F(\theta)$ with $\operatorname{gcd}(a, b)=1, b$ monic and square-free.
$\int \frac{a(\theta)}{b(\theta)}$ is elementary if and only if all the roots of

$$
R(z)=\operatorname{res}_{\theta}\left(a(\theta)-z \cdot b(\theta)^{\prime}, b(\theta)\right) \in F[z]
$$

are constans.

The Risch Algorithm - Exponential Case (cont'd)

Theorem (Rothstein/Trager Method - Exponential Case)

Let θ be transcendental and exponential over F (i.e. $\exists u \in F: \theta^{\prime} / \theta=u$); $a(\theta) / b(\theta) \in F(\theta)$ with $\operatorname{gcd}(a, b)=1, b$ monic and square-free.
If $\int \frac{a(\theta)}{b(\theta)}$ is elementary then

$$
\frac{a(\theta)}{b(\theta)}=g^{\prime}+\sum_{i=1}^{m} c_{i} \frac{v_{i}(\theta)^{\prime}}{v_{i}(\theta)}
$$

where c_{i} are the distinct roots of $R(z)$,

$$
\begin{aligned}
v_{i}(\theta) & =\operatorname{gcd}\left(a(\theta)-c_{i} \cdot b(\theta)^{\prime}, b(\theta)\right) \in F\left(c_{1}, \ldots, c_{m}\right)[\theta], \\
g^{\prime} & =-\left(\sum_{i=1}^{m} c_{i} \operatorname{deg}\left(v_{i}(\theta)\right)\right) u^{\prime} .
\end{aligned}
$$

The Risch Algorithm - Algebraic Case

Surprise:

Algebraic case more complicated than transcendental cases!

- Liouville's Principle still holds
- algorithm for integral based on computational algebraic geometry
- for further details see:
B. Trager "'Integration of Algebraic Functions"', Dept. of EECS, M.I.T. (1984)

Upper Triangular Systems

Definition (Upper Triangular System of ODEs)

Let K be a differential field and $p_{i j}(t) \in K, g_{i}(t) \in K(1 \leq i \leq n)$.

$$
\left\{\begin{array}{lcc}
x_{1}^{\prime}(t)=p_{11}(t) x_{1}(t)+ & p_{12}(t) x_{2}(t)+\cdots+ & p_{1 n}(t) x_{n}(t)+g_{1}(t) \\
x_{2}^{\prime}(t)= & p_{22}(t) x_{2}(t)+\cdots+ & p_{2 n}(t) x_{n}(t)+g_{2}(t) \\
\vdots & & \vdots \\
x_{n}^{\prime}(t)= & p_{n n}(t) x_{n}(t)+g_{n}(t)
\end{array}\right.
$$

is upper triangular system with initial conditions

$$
x_{1}(0)=a_{1}, \quad x_{2}(0)=a_{2}, \ldots, \quad x_{n}(0)=a_{n} .
$$

$p_{i j}$ continuous for $t \in(a, b) \rightarrow$ unique solution for $t \in(a, b)$

Integrating Factor

Use back substitution to solve system!

$$
x_{n}^{\prime}(t)=p_{n n}(t) x_{n}(t)+g_{n}(t)
$$

Integrating Factor

Multiply both sides by

$$
\mu(t):=\exp \left(-\int p_{n n}(t) d t\right)
$$

to get

$$
x_{n}(t)=\frac{1}{\mu(t)}\left(\int \mu(t) g_{n}(t) d t+C_{n}\right)
$$

C_{n} is chosen to satisfy the initial condition.

Solving the System by Recursion

- Substitute $x_{n}(t)$ into the equation for $x_{n-1}(t)$:

$$
x_{n-1}^{\prime}(t)=p_{n-1 n-1}(t) x_{n-1}(t)+p_{n-1 n}(t) x_{n}(t)+g_{n-1}(t)
$$

- New integrating factor:

$$
\exp \left(-\int p_{n-1 n-1}(t) d t\right)
$$

- Continue recursivly until all x_{i} are known

Bibliography

囯 Geddes，Czapor，Labahn
Algorithms for Computer Algebra
Kluwer Academic Publishers，Boston， 1992
圊 Manuel Bronstein
Symbolic Integration I
Springer，Heidelberg， 1997
E Maxwell Rosenlicht
Integration in Finite Terms
American Mathematics Monthly（79），pp．963－972， 1972
埥 von zur Gathen，Gerhard
Modern Computer Algebra
Cambridge University Press，Cambridge， 2003

Thank you for your attention!

