JASS 2008: Trees Trees with many leaves

Nikolay Gravin

Saint-Petersburg State University Faculty of Mathematics and Mechanics

March 2008

What this talk is about:

- Linial's conjecture (posed in 1988)
- Storer's algorithm of finding a spanning tree with many leaves for cubic graphs (1981)
- The maximum leaf spanning tree problem is NP-complete (P. Lemke 1988)

Problem's definition

We are given a graph and we want to find a spanning tree in this graph.

Problem definition

Moreover we want to pick out the most "nonsingular" tree.

A good criteria of such "nonsingularity" is the number of leaves in a tree.

Problem definition

So we get the following problem:

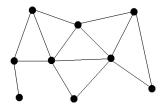
Given a graph we need to find a spanning tree with maximal number of leaves.

Definitions: Notations:

Spanning tree definition

Definition (Spanning tree)

A tree which is a subgraph of some graph G and contains all its vertices called a **spanning tree** of G.



Definitions: Notations:

Spanning tree definition

Definition (Spanning tree)

A tree which is a subgraph of some graph G and contains all its vertices called a **spanning tree** of G.



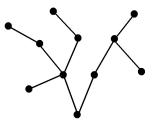
Introduction

Linial's Conjecture Storer's Algorithm for cubic graphs NP-completeness Definitions: Notations:

Leaf definition

Definition (Pendant vertex)

A vertex in a tree with degree one called a **pendant vertex** or a **leaf**.



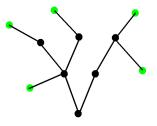
Introduction

Linial's Conjecture Storer's Algorithm for cubic graphs NP-completeness Definitions: Notations:

Leaf definition

Definition (Pendant vertex)

A vertex in a tree with degree one called a **pendant vertex** or a **leaf**.



Introduction Linial's Conjecture

NP-completeness

Definitions: Notations:

Notations

V(G) — Set of all vertices of the graph G

Storer's Algorithm for cubic graphs

- $\delta(G) :=$ Minimum degree of the graph G
- L(T) := Number of leaves in the tree T
- L(G) := Maximal number of leaves over all spanning trees of the graph G.

Conjecture Tightness of the Bound Known Results

Linial's Conjecture

Conjecture

Let G be a graph on N vertices with $\delta(G) = k$. Then

$$L(G) \geq \frac{k-2}{k+1}N + c_k$$

where c_k depends only on k.

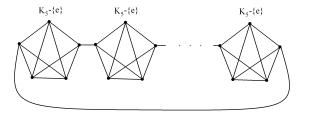
 $\delta(G) :=$ Minimum degree of the graph G.

L(G) := Maximal number of leaves over all spanning trees of the graph G.

Tightness

Conjecture Tightness of the Bound Known Results

The lower bound of L(G) $(\frac{k-2}{k+1}N + c_k)$, where k is minimum degree of G, is tight.



A series of examples for k = 4.

The same "necklace" example suits for another values of k.

Conjecture Tightness of the Bound Known Results

Known results about Linial's conjecture

• $\delta(G) = 3$ Linial's conjecture holds (Storer 1981)

- $\delta(G) = 4$ Linial's conjecture holds (Jerrold, R. Griggs, Mingshen Wu 1992)
- δ(G) = 5 Linial's conjecture holds (Jerrold, R. Griggs, Mingshen Wu 1992)
- $\delta(G) \ge 6$ open problem
- $\delta(G) \to \infty$ Linial's conjecture fails. (N. Alon 1990) There are series of graphs G_k with $\delta(G_k) = k$ such

$$L(G_k) \leq \left(1 - rac{\log(k)}{k+1}\right) |V(G_k)| \left(1 + rac{O(1)}{k+1}\right)$$

Conjecture Tightness of the Bound Known Results

- $\delta(G) = 3$ Linial's conjecture holds (Storer 1981)
- δ(G) = 4 Linial's conjecture holds (Jerrold, R. Griggs, Mingshen Wu 1992)
- δ(G) = 5 Linial's conjecture holds (Jerrold, R. Griggs, Mingshen Wu 1992)
- $\delta(G) \ge 6$ open problem
- $\delta(G) \to \infty$ Linial's conjecture fails. (N. Alon 1990) There are series of graphs G_k with $\delta(G_k) = k$ such

$$L(G_k) \leq \left(1 - \frac{\log(k)}{k+1}\right) |V(G_k)| \left(1 + \frac{O(1)}{k+1}\right)$$

Conjecture Tightness of the Bound Known Results

- $\delta(G) = 3$ Linial's conjecture holds (Storer 1981)
- δ(G) = 4 Linial's conjecture holds (Jerrold, R. Griggs, Mingshen Wu 1992)
- $\delta(G) = 5$ Linial's conjecture holds (Jerrold, R. Griggs, Mingshen Wu 1992)
- $\delta(G) \ge 6$ open problem
- $\delta(G) \to \infty$ Linial's conjecture fails. (N. Alon 1990) There are series of graphs G_k with $\delta(G_k) = k$ such

$$L(G_k) \leq \left(1 - \frac{\log(k)}{k+1}\right) |V(G_k)| \left(1 + \frac{O(1)}{k+1}\right)$$

Conjecture Tightness of the Bound Known Results

- $\delta(G) = 3$ Linial's conjecture holds (Storer 1981)
- δ(G) = 4 Linial's conjecture holds (Jerrold, R. Griggs, Mingshen Wu 1992)
- $\delta(G) = 5$ Linial's conjecture holds (Jerrold, R. Griggs, Mingshen Wu 1992)
- $\delta(G) \ge 6$ open problem
- $\delta(G) \to \infty$ Linial's conjecture fails. (N. Alon 1990) There are series of graphs G_k with $\delta(G_k) = k$ such

$$L(G_k) \leq \left(1 - \frac{\log(k)}{k+1}\right) |V(G_k)| \left(1 + \frac{O(1)}{k+1}\right)$$

Conjecture Tightness of the Bound Known Results

- $\delta(G) = 3$ Linial's conjecture holds (Storer 1981)
- δ(G) = 4 Linial's conjecture holds (Jerrold, R. Griggs, Mingshen Wu 1992)
- δ(G) = 5 Linial's conjecture holds (Jerrold, R. Griggs, Mingshen Wu 1992)
- $\delta(G) \ge 6$ open problem
- δ(G) → ∞ Linial's conjecture fails. (N. Alon 1990) There are series of graphs G_k with δ(G_k) = k such

$$L(G_k) \leq \left(1 - rac{\log(k)}{k+1}\right) |V(G_k)| \left(1 + rac{O(1)}{k+1}\right)$$

Conjecture Tightness of the Bound Known Results

- $\delta(G) = 3$ Linial's conjecture holds (Storer 1981)
- δ(G) = 4 Linial's conjecture holds (Jerrold, R. Griggs, Mingshen Wu 1992)
- δ(G) = 5 Linial's conjecture holds (Jerrold, R. Griggs, Mingshen Wu 1992)
- $\delta(G) \ge 6$ open problem
- δ(G) → ∞ Linial's conjecture fails. (N. Alon 1990) There are series of graphs G_k with δ(G_k) = k such

$$L(G_k) \leq \left(1 - rac{\log(k)}{k+1}\right) |V(G_k)| \left(1 + rac{O(1)}{k+1}\right)$$

Assumptions

Definitions, Assumptions Algorithm Proof

- Cubic is a graph where all vertices have degree equal to three.
- Now and then G be a cubic graph on N vertices.
- We want to pick out a spanning tree with at least $\lfloor \frac{1}{4}N \rfloor + 2$ leaves.
- We will construct such tree consequently and at each step of algorithm we have a partial tree of *G*.

Definitions, Assumptions Algorithm Proof

- Cubic is a graph where all vertices have degree equal to three.
- Now and then G be a cubic graph on N vertices.
- We want to pick out a spanning tree with at least $\lfloor \frac{1}{4}N \rfloor + 2$ leaves.
- We will construct such tree consequently and at each step of algorithm we have a partial tree of *G*.

Definitions, Assumptions Algorithm Proof

- Cubic is a graph where all vertices have degree equal to three.
- Now and then G be a cubic graph on N vertices.
- We want to pick out a spanning tree with at least $\lfloor \frac{1}{4}N \rfloor + 2$ leaves.
- We will construct such tree consequently and at each step of algorithm we have a partial tree of *G*.

Definitions, Assumptions Algorithm Proof

- Cubic is a graph where all vertices have degree equal to three.
- Now and then G be a cubic graph on N vertices.
- We want to pick out a spanning tree with at least $\lfloor \frac{1}{4}N \rfloor + 2$ leaves.
- We will construct such tree consequently and at each step of algorithm we have a partial tree of *G*.

Definitions, Assumptions Algorithm Proof

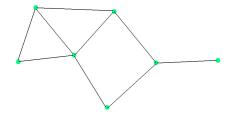
- Cubic is a graph where all vertices have degree equal to three.
- Now and then G be a cubic graph on N vertices.
- We want to pick out a spanning tree with at least $\lfloor \frac{1}{4}N \rfloor + 2$ leaves.
- We will construct such tree consequently and at each step of algorithm we have a partial tree of *G*.

Definitions, Assumptions Algorithm Proof

Definitions of a dead leaf

Definition Dead vertex

A leaf v of a partial tree T of G called **dead** iff v has no adjacent to it vertices outside T.

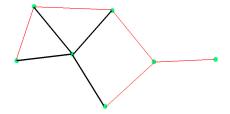


Definitions, Assumptions Algorithm Proof

Definitions of a dead leaf

Definition Dead vertex

A leaf v of a partial tree T of G called **dead** iff v has no adjacent to it vertices outside T.

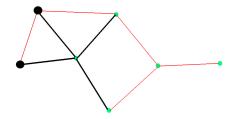


Definitions, Assumptions Algorithm Proof

Definitions of a dead leaf

Definition Dead vertex

A leaf v of a partial tree T of G called **dead** iff v has no adjacent to it vertices outside T.

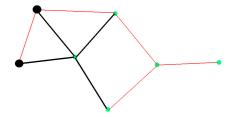


Definitions, Assumptions Algorithm Proof

Definitions of a dead leaf

Definition Dead vertex

A leaf v of a partial tree T of G called **dead** iff v has no adjacent to it vertices outside T.



D(T) := number of dead leaves in the partial tree T.

Definitions, Assumptions Algorithm Proof

Storer's Algorithm

Plan of algorithm

We would construct a spanning tree consequently.

• Consider cost function involving the number of leaves, dead leaves and vertices of *T*

$$f(T) := 3L(T) + D(T) - |V(T)|.$$

 At each step of algorithm we shall always seek to enlarge a constructed partial tree T of G while not decreasing f(T).

Definitions, Assumptions Algorithm Proof

Storer's Algorithm

Plan of algorithm

We would construct a spanning tree consequently.

• Consider cost function involving the number of leaves, dead leaves and vertices of ${\cal T}$

$$f(T) := 3L(T) + D(T) - |V(T)|.$$

 At each step of algorithm we shall always seek to enlarge a constructed partial tree T of G while not decreasing f(T).

Definitions, Assumptions Algorithm Proof

Storer's Algorithm

Plan of algorithm

We would construct a spanning tree consequently.

• Consider cost function involving the number of leaves, dead leaves and vertices of ${\cal T}$

$$f(T) := 3L(T) + D(T) - |V(T)|.$$

 At each step of algorithm we shall always seek to enlarge a constructed partial tree T of G while not decreasing f(T).

$$L(T) := Number of leaves in T.$$

 $D(T) := Number of dead leaves in T$

Definitions, Assumptions Algorithm Proof

Storer's Algorithm

Plan of algorithm

We would construct a spanning tree consequently.

- Starting tree T would be any vertex with its neighborhood, so $f(T) \ge 3 * 3 + 0 4 \ge 5$
- At the end of algorithm T would be some spanning tree of G.
 So D(T) = L(T) as all leaves would be dead.
- $3L(T) + L(T) |V(T)| \ge 5$, so $4L(T) \ge N + 5$

Definitions, Assumptions Algorithm Proof

Storer's Algorithm

Plan of algorithm

We would construct a spanning tree consequently.

- Starting tree T would be any vertex with its neighborhood, so $f(T) \ge 3 * 3 + 0 4 \ge 5$
- At the end of algorithm T would be some spanning tree of G.
 So D(T) = L(T) as all leaves would be dead.
- $3L(T) + L(T) |V(T)| \ge 5$, so $4L(T) \ge N + 5$

Definitions, Assumptions Algorithm Proof

Storer's Algorithm

Plan of algorithm

We would construct a spanning tree consequently.

- Starting tree T would be any vertex with its neighborhood, so $f(T) \ge 3 * 3 + 0 4 \ge 5$
- At the end of algorithm T would be some spanning tree of G.
 So D(T) = L(T) as all leaves would be dead.
- $3L(T) + L(T) |V(T)| \ge 5$, so $4L(T) \ge N + 5$

Definitions, Assumptions Algorithm Proof

Storer's Algorithm

Plan of algorithm

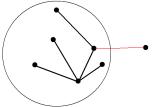
We would construct a spanning tree consequently.

- Starting tree T would be any vertex with its neighborhood, so $f(T) \ge 3 * 3 + 0 4 \ge 5$
- At the end of algorithm T would be some spanning tree of G.
 So D(T) = L(T) as all leaves would be dead.
- $3L(T) + L(T) |V(T)| \ge 5$, so $4L(T) \ge N + 5$

Definitions, Assumptions Algorithm Proof

Why we could enlarge T and do not decrease f(T)

Non leaf vertex of T is adjacent to vertex outside T.



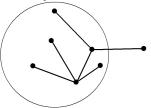
 $\begin{array}{ll} L(T) & D(T) & |V(T)| \\ +1 & + \geq 0 & +1 \end{array}$

f(T) := 3L(T) + D(T) - |V(T)|

Definitions, Assumptions Algorithm Proof

Why we could enlarge T and do not decrease f(T)

Non leaf vertex of T is adjacent to vertex outside T.



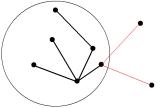
L(T)	D(T)	V(T)
+1	$+ \ge 0$	+1

$$f(T) := 3L(T) + D(T) - |V(T)|$$

Definitions, Assumptions Algorithm Proof

Why we could enlarge T and do not decrease f(T)

Some leaf of T is adjacent to two vertices outside T.



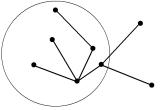
 $\begin{array}{ll} L(T) & D(T) & |V(T)| \\ +1 & + \ge 0 & +2 \end{array}$

f(T) := 3L(T) + D(T) - |V(T)|

Definitions, Assumptions Algorithm Proof

Why we could enlarge T and do not decrease f(T)

Some leaf of T is adjacent to two vertices outside T.



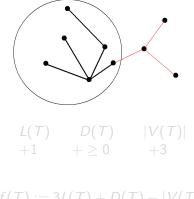
L(T)	D(T)	V(T)
+1	$+ \ge 0$	+2

$$f(T) := 3L(T) + D(T) - |V(T)|$$

Definitions, Assumptions Algorithm Proof

Why we could enlarge T and do not decrease f(T)

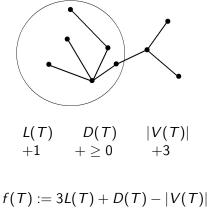
Some leaf of T is adjacent to an outside vertex with two neighbors outside T.



Definitions, Assumptions Algorithm Proof

Why we could enlarge T and do not decrease f(T)

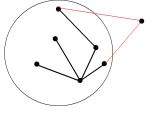
Some leaf of T is adjacent to an outside vertex with two neighbors outside T.



Definitions, Assumptions Algorithm Proof

Why we could enlarge T and do not decrease f(T)

Outside T there is a vertex v adjacent to at least two leaves of T and this two leaves are adjacent to only v outside T.



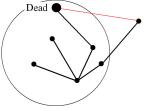
 $L(T) D(T) |V(T)| +0 + \ge 1 +1$

f(T) := 3L(T) + D(T) - |V(T)|

Definitions, Assumptions Algorithm Proof

Why we could enlarge T and do not decrease f(T)

Outside T there is a vertex v adjacent to at least two leaves of T and this two leaves are adjacent to only v outside T.



L(T)	D(T)	V(T)
+0	$+ \geq 1$	+1

$$f(T) := 3L(T) + D(T) - |V(T)|$$

Assertion Reduction Construction

NP-completeness

Theorem (Lemke) 1988

A maximum leaf spanning tree problem for cubic graphs is NP-complete.

INSTANCE: A cubic graph G and an integer number k

QUESTION: Does G posses a spanning tree with at least k leaves?

Assertion Reduction Construction

NP-completeness

Theorem (Lemke) 1988

INSTANCE: A cubic graph G

QUESTION: Does G posses a spanning tree with at least $\frac{|V(G)|}{2} + 1$ leaves?

EQUIVALENT QUESTION: Does G posses a spanning tree with no vertices of degree two?

Assertion Reduction Construction

Why equivalent question

- $a_1 :=$ number of vertices in spanning tree with degree 1.
- $a_2 :=$ number of vertices in spanning tree with degree 2.
- $a_3 :=$ number of vertices in spanning tree with degree 3.
- N := number of vertices in T.

Assertion Reduction Construction

Why equivalent question

Then

$$a_1 + a_2 + a_3 = N$$

 $a_1 + 2a_2 + 3a_3 = 2 * (N - 1)$

$$a_1 - a_3 = 2$$
$$a_1 + a_3 \le N$$

We want

$$a_2 = 0 \Leftrightarrow a_1 \ge \frac{N}{2} + 1.$$

Assertion Reduction Construction

Why equivalent question

Then

$$a_1 + a_2 + a_3 = N$$

 $a_1 + 2a_2 + 3a_3 = 2 * (N - 1)$
 $a_1 - a_3 = 2$
 $a_1 + a_3 \le N$

We want

$$a_2=0 \Leftrightarrow a_1\geq \frac{N}{2}+1.$$

Assertion Reduction Construction

reduction

The proof is by reduction of known NP-complete problem EXACT COVER BY 3-SETS to ours.

INSTANCE: Positive integers n and m, subsets $S_1, S_2, ..., S_m$ of $\{1, 2, ..., n\}$, with $|S_i| = 3$ for all $i \in \{1, 2, ..., m\}$.

QUESTION: Is there a subset $Q \subseteq \{1, 2, ..., m\}$ such that $\bigcup_{i \in Q} S_i = \{1, 2, ..., n\} \text{ and } \forall i_1, i_2 \in Q, i_1 \neq i_2 \Rightarrow S_{i_1} \cap S_{i_2} = \emptyset ?$

Assertion Reduction Construction

reduction

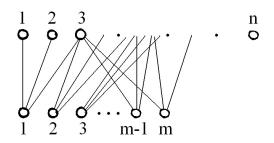
The proof is by reduction of known NP-complete problem EXACT COVER BY 3-SETS to ours.

INSTANCE: Positive integers n and m, subsets $S_1, S_2, ..., S_m$ of $\{1, 2, ..., n\}$, with $|S_i| = 3$ for all $i \in \{1, 2, ..., m\}$.

QUESTION: Is there a subset $Q \subseteq \{1, 2, ..., m\}$ such that $\bigcup_{i \in Q} S_i = \{1, 2, ..., n\} \text{ and } \forall i_1, i_2 \in Q, i_1 \neq i_2 \Rightarrow S_{i_1} \cap S_{i_2} = \emptyset ?$

Assertion Reduction Construction

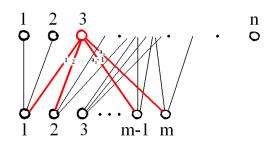
construction



EXACT COVER BY 3-SETS instance representation as a bipartite graph

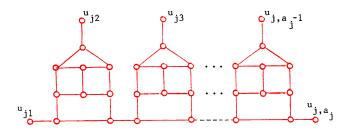
Assertion Reduction Construction

construction



In this representation we take every vertex from the set $\{1, 2, ..., n\}$ and all adjacent to it edges.

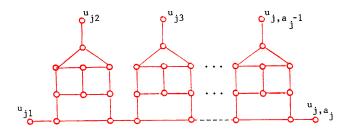
construction



Draw the construction above for every vertex $j \in \{1, 2, ..., n\}$. In the figure u_{ji} corresponds to the *i*-th edge coming out from the vertex *j*.

Call graph constructed above U_j . Draw the same construction U_0 with 2m vertices $u_{0,1}, u_{0,2}, ..., u_{0,2m}$ of degree one.

construction



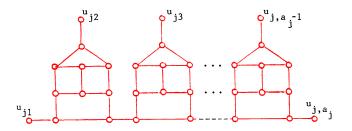
Draw the construction above for every vertex $j \in \{1, 2, ..., n\}$. In the figure u_{ji} corresponds to the *i*-th edge coming out from the vertex *j*.

Call graph constructed above U_j .

Draw the same construction U_0 with 2m vertices

 $u_{0,1}, u_{0,2}, ..., u_{0,2m}$ of degree one.

construction



Draw the construction above for every vertex $j \in \{1, 2, ..., n\}$. In the figure u_{ji} corresponds to the *i*-th edge coming out from the vertex *j*.

Call graph constructed above U_j .

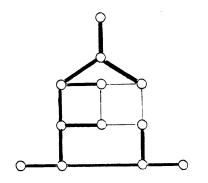
Draw the same construction U_0 with 2m vertices

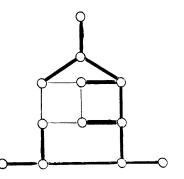
 $u_{0,1}, u_{0,2}, ..., u_{0,2m}$ of degree one.

Assertion Reduction Construction

construction

The only two ways to assign the edges of a repeating sub-unit so that its nine interior vertices have odd degree in a spanning tree.





Assertion Reduction Construction

construction

The final cubic graph G will consists of $\bigcup_{j=0}^{n} U_j$ and some other vertices and edges.

For every set S_i consider three edges coming out from corresponding vertex of the bipartite graph. This three edges corresponds to some three vertices $u_{i_1e_1}$, $u_{i_2e_2}$, $u_{i_3e_3}$.

Now let us describe the H_i graph corresponding to S_i .

Assertion Reduction Construction

construction

The final cubic graph G will consists of $\bigcup_{j=0}^{n} U_j$ and some other vertices and edges.

For every set S_i consider three edges coming out from corresponding vertex of the bipartite graph. This three edges corresponds to some three vertices $u_{i_1e_1}$, $u_{i_2e_2}$, $u_{i_3e_3}$.

Now let us describe the H_i graph corresponding to S_i .

Assertion Reduction Construction

construction

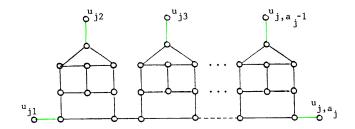
The final cubic graph G will consists of $\bigcup_{j=0}^{n} U_j$ and some other vertices and edges.

For every set S_i consider three edges coming out from corresponding vertex of the bipartite graph. This three edges corresponds to some three vertices $u_{i_1e_1}$, $u_{i_2e_2}$, $u_{i_3e_3}$.

Now let us describe the H_i graph corresponding to S_i .

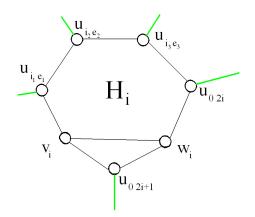
construction

 U_j :



Assertion Reduction Construction

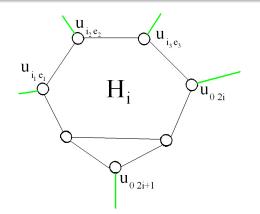
construction



So now the union of all U_i and H_i is a cubic graph.

Assertion Reduction Construction

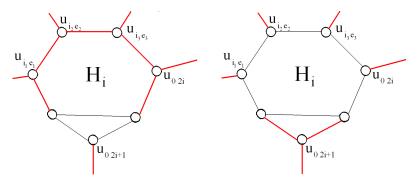
construction



We know that if a spanning tree has no vertices of degree two then all exterior edges (belong to some U_j) should belong to spanning tree.

construction

The only two ways to assign the edges of H_i so that its seven vertices have odd degree in a spanning tree.



Assertion Reduction Construction

construction

The first way corresponds to the situation when we take S_i in the covering.

And the second when we do not take S_i .

Assertion Reduction Construction

construction

The part of spanning tree corresponding to U_j is a connected subgraph.

In the first situation we connect $U_{i_1}, U_{i_2}, U_{i_3}$ with U_0 .

In the second we do no connections between $U_{i_1}, U_{i_2}, U_{i_3}, U_0$

Assertion Reduction Construction

construction

The part of spanning tree corresponding to U_j is a connected subgraph.

In the first situation we connect $U_{i_1}, U_{i_2}, U_{i_3}$ with U_0 .

In the second we do no connections between $U_{i_1}, U_{i_2}, U_{i_3}, U_0$

Assertion Reduction Construction

THANK YOU!